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Abstract

Background: The heme-protein interactions are essential for various biological processes such as electron transfer,
catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can
provide crucial clues to understand these activities and aid in functional annotation, however, insufficient work has
been done on the research of heme binding residues from protein sequence information.

Methods: We propose a sequence-based approach for accurate prediction of heme binding residues by a novel
integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical
properties. In order to select the informative physicochemical properties, we design an intuitive feature selection
scheme by combining a greedy strategy with correlation analysis.

Results: Our integrative sequence profile approach for prediction of heme binding residues outperforms the
conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the
independent tests.

Conclusions: The novel feature of an integrative sequence profile achieves good performance using a reduced set
of feature vector elements.

Background
The heme-protein interactions are involved in a wide
range of biological processes such as electron transfer,
catalysis, signal transduction and control of gene expres-
sion [1]. To better understand the mechanism of heme-
protein interactions and aid in heme related functional
annotation, it is crucial to characterize and identify the
binding sites of heme proteins[2]. It is well known that
experimental techniques towards the determination of
heme binding sites are prohibitively time-consuming
and labour-intensive. Therefore, computational
approaches are significantly in need for a rapid, high-
throughput prediction of heme binding residues.
Recently, a pioneering method HemeBIND [3] is spe-

cifically designed to predict heme binding residues on
heme proteins. At present, HemeBIND provides two
complementary methods to distinguish heme binding

sites from the rest of heme proteins. The main method
integrates both sequence and structural features includ-
ing evolutionary profile, solvent accessibility, depth, and
protrusion index. Although the structural information
can provide helpful insights for characterizing heme
binding residues, there are currently only small fractions
of 3D structures available for the heme proteins, which
will limit the application scope of the structure-based
methods. Therefore, HemeBIND also provides an alter-
native sequence-based method which can predict heme
binding sites when only sequence information is avail-
able for heme proteins. The sequence-based classifier is
constructed by the evolutionary information of amino
acid sequences in the form of position specific scoring
matrices (PSSM) that is generated by multiple sequence
alignments.
In fact, in addition to PSSM, the physicochemical

properties with high interpretability are also commonly
used in the prediction of protein function from
sequences[4-8]. Our previous work [9] also confirms the* Correspondence: liujuan@whu.edu.cn
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role of physicochemical properties in DNA-binding resi-
dues. However, to the best of our knowledge, no related
work has incorporated physicochemical and biological
properties from the Amino Acid Index (AAindex) data-
base [10,11] to analyze and predict heme binding
residues.
In the present study, we focus on the prediction of

sequence-based heme binding sites, and attempt to inte-
grate the physicochemical properties into PSSM, to pro-
vide additional insights to the heme binding residues
and advance the prediction performance in actual appli-
cations. First, we use an intuitive feature selection
scheme to choose an informative and compact subset of
physicochemical descriptors in AAindex database. Then,
we propose a novel integrative sequence profile, which
is generated by coupling PSSM with the selected physi-
cochemical properties. Evaluation experiments by using
5-fold cross validation on the training set and on the
independent test demonstrate that our proposed
approach outperforms the conventional methods based
on PSSM profiles for prediction of heme binding
residues.

Methods
Datasets
For training and testing, we used the datasets of heme
proteins in previous studies [3,12]. The training set con-
sists of 75 heme protein chains, derived from the nonre-
dundant dataset of 89 heme proteins prepared by
Fufezan et al [12]. After removing 14 chains whose HET
group codes are not labelled as “HEM”, we obtained the
remaining 75 heme protein chains as the training set
(PHeme-75). Since the heme proteins in PHeme-75
were constructed before March 2007, we used the other
heme proteins collected after March 2007 as the testing
set (PHeme-72) [3]. PHeme-72 is a nonredundant set of
72 heme protein chains, sharing no more than 30%
sequence identity with any one of the 75 chains in the
training set.
Following previous studies[3,13-16], we used the

Ligand Protein Contact server to assign heme binding
and nonbinding residues for the protein chains in the
datasets. Among the training set of PHeme-75, we
obtained 18584 residues with atomic coordinates, of
which about 13.5% are heme binding sites. On the test-
ing set of Pheme-72, there are 18581 residues, of which
about 14.3% are heme binding residues.

Feature construction
To build a classifier that can identify heme-binding resi-
dues from protein sequences, we constructed an effec-
tive strategy for integrating various features based on
evolutionary profiles and physicochemical properties.
For each target (or central) residue, the feature vector

was constructed by the sliding window on a consecutive
sequence for including the environmental information.
In our study, we set w = 17 as the optimal size for
building the sliding window (see details in Results
section).

Evolutionary information
This was obtained as the PSSMs generated by three
iterations of PSI-BLAST [17] searches against NCBI
nonredundant database (ftp://ftp.ncbi.nlm.nih.gov/blast/
db/). The log odds values of 20 amino acid substitutions
at a given alignment position were utilized to represent
the evolutionary profile of a residue. The PSSM values
were scaled to the range 0[1] by a standard logistic
function [18]. One additional bit is utilized to deal with
the terminal spanning windows. For the window size w,
a vector of size (20+1)*w is used for representing a
sample.

Physicochemical property
Physicochemical properties (PP) are the most intuitive
features for biochemical reactions and are widely applied
in bioinformatics studies [4]. AAindex (http://www.gen-
ome.ad.jp/aaindex/) database is the collection of numeri-
cal indices representing various physicochemical
properties of amino acids. The AAindex1 section of the
AAindex database currently contains 544 amino acid
indices. We removed the indices with missing values in
AAindex1, with 531 entries left for use in our study.
The raw values of these physicochemical properties
were normalized to zero mean and unit standard devia-
tion according to:

P′
ij =

Pij − μ

σ
(1)

μ =
1
20

20∑
j=1

Pij (2)

σ =

√√√√ 1
20

20∑
j=1

(
Pij − μ

)2 (3)

where Pij is the raw value of the i-th physicochemical
property for the j-th amino acid type.
In order to select a subset of informative physico-

chemical properties, we first measured and ranked the
predictive power of these 531 individual indices for
correctly classifying all residues with atomic coordi-
nates in Pheme-75 dataset using the area under the
receiver operating characteristic curve (AUC). At this
stage, no classifier is built so that no cross-validation
scheme is required to calculate the AUC scores [19].
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The AUC for an amino acid type is calculated in the
same way as it would be for a classifier output. Each
sample is associated with a feature value (e.g. an
amino acid scale for a physicochemical property) and a
positive or negative class label. A sample set is there-
fore converted into a sequence of feature values with
an associated positive or negative label. The receiver
operating characteristic curve and its AUC is calcu-
lated over this sequence.
We then designed a greedy approach in combination

with correlation analysis for feature selection by

constructing and assessing a series of heme binding sites
predictors using 5-fold cross validation on the Pheme-
75 dataset. Figure 1 shows the workflow of the iterative
feature selection process. In this implementation, let C
be the set of candidate features to be selected, and S be
the set of features already selected. Initially, C was com-
posed of the preselected features via AUC scores and S
was empty. The features from C were then iteratively
selected into S until C was empty. At the end, the fea-
tures in S were used as the final feature subset in the
whole feature selection process.

Figure 1 Workflow of the proposed iterative feature selection process.
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Integrative sequence profile
For the purpose of combining the predictive power of
PSSM and PP, it is conventional to concatenate the
vector elements of the PSSM and PP into a longer fea-
ture vector. Instead of using a concatenated vector
with a high dimension, we implemented a condensed
integrative profile by coupling PSSM with PP (called
PSSMPP). The feature set of PSSMPP was constructed
by summing up the 20 amino acid columns of the
PSSM, weighted by the corresponding 20 amino acid
values for a certain physicochemical property. Figure 2
presents an example for generating the PSSMPP profile
vector. In the PSSMPP, the entry Fip of row i in the
PSSM for a considering physicochemical property p is
defined as follows, in much the similar way as previous
work [20-22].

Fip =
20∑
j=1

wpj · Mij (4)

where
(1) i is the index of a position in the protein sequence;
(2) wpjis the normalized value of physicochemical

property p for the j-th amino acid;
(3) Mij is the scaled value of the j-th type of amino

acid in the position i of the PSSM.

Model construction and evaluation
Support Vector Machines (SVMs) were applied to pre-
diction of heme binding sites in our experiments. The
SVMs are based on a rigorous statistical learning theory
and have high generalization ability [23]. The SVM algo-
rithms have demonstrated powerful performance in
similar bioinformatics studies [24-27]. In this study, the
SVM models were implemented with the radial basis
function as a kernel using the e1071 library in R (http://
cran.r-project.org/web/packages/e1071/), which provides
the interface to the LibSVM. The models were first eval-
uated by 5-fold cross validation on the training set. Each
classifier was trained using a data set comprising all
positive samples from the cross validation fold and an
equal number of randomly chosen negative samples.
The models were further evaluated by the independent
test on PHeme-72.
The performance of classification algorithms can be

assessed by these metrics: accuracy (ACC), sensitivity
(SN, also called recall), specificity (SP), precision (PR),
Matthew’s correlation coefficient (MCC) and F-measure
(F1). These metrics are calculated using the numbers of
true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN) for each classifier. The
performance measures are defined by the following
equations.

ACC =
TP + TN

TP + TN + FP + FN
(5)

SN =
TP

TP + FN
(6)

SP =
TN

TN + FP
(7)

PR =
TP

TP + FP
(8)

MCC =
TP × TN − FP × FN√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
(9)

F1 =
2 × SN × PR

SN + PR
(10)

The receiver operating characteristic curve is a plot of
the sensitivity versus (1-specificity) for a binary classifier
at varying thresholds. The AUC was used as a main
measure of classification performance throughout our
work.

Results
Analysis of the selected physicochemical properties
Although some of the individual amino acid indices
show modest discrimination abilities for distinguishing
binding from nonbinding residues, the inter-feature
redundancy makes it fail to improve the classification
performance when they are combined together (data not
shown). To rectify this problem, we performed a greedy
feature selection approach in combination with correla-
tion analysis to reach an optimal subset of features. Fol-
lowing the proposed iterative feature selection process,
we obtained a subset of four physicochemical properties,
which are listed in Table 1.
From Table 2, most of the correlation coefficients

among them were sufficiently low, which can partly jus-
tify using them in combination. These derived 4 physi-
cochemical properties are related to alpha propensity
[28], beta propensity[29] and the preference for linker
regions of amino acids[30]. For example, when we use
the amino acid scale SUYM030101 for analysis of heme
binding and nonbinding residues, the heme binding resi-
dues are more abundant in the types of amino acids
with high propensity in linker regions.

Prediction performance on Pheme-75 dataset using
various feature sets
In this section, we evaluated the classification perfor-
mance of different feature sets using 5-fold cross
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validation on Pheme-75. Since the sliding window strat-
egy was used to include the environment information,
we should try different window sizes in order to find

out an optimal window length. Figure 3 shows the per-
formance of various features at varying window size
from 1 to 29. In this study we adopted the window size

Figure 2 Flowchart of generating the PSSMPP profile. Given a heme binding protein sequence (PDB id: 1A6M; Chain: A), a window size of 3
is set for a simple illustration. The central residue is 9 L (residue number in the sequence; residue name), with its two neighbouring residues on
both sides (8 Q and 10 V).
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of 17 unless otherwise stated, since all features achieved
highest AUC values at this size. A closer examination of
Figure 3 reveals that the conventional representation
method of concatenating the vector elements of the
PSSM and PP (PSSM +PP) yields marginally higher per-
formance than PSSM at the cost of training time. How-
ever, the integrative profile of PSSMPP consistently
outperforms all other feature sets when the window size
is larger than 9. When using the optimal window size of
17, it is more obviously shown that PSSMPP performs
better than the PSSM and the concatenated combina-
tion of PSSM with PP (PSSM +PP).
Table 3 presents the detailed metrics of the SVM clas-

sifiers using various features at the window size of 17. It
is worth mentioning that the PSSMPP feature set
improves precision and other metrics at the expense of
the recall, but without dramatically compromising the
recall measure. The moderate improvement of the over-
all performance is promising, considering the fact that
PSSMPP used a significantly lower size of 85 ((4+1) *17)
dimensions in the input vectors than the sizes of 357
and 425 ((20+4+1) *17), for PSSM and (PSSM+PP),
respectively. The result is in agreement with the finding
of the previous work [31] that a simple representation
of the feature space could be much more powerful and
efficient than the original data with all information
included.

Independent test on PHeme-72 dataset and comparison
with HemeBIND
A true test of any prediction approach is to make pre-
dictions for the unseen dataset not utilized in training.
In the section, we evaluated the prediction performance
on an independent set of PHeme-72 using the best
model trained on Pheme-75. As shown in Table 4, the
testing performance of our model is not worse but even
better than the training performance when using the

same feature sets. The result suggests that the features
we used here are not overfitting to the training set. In
fact, for fairly comparing the predictive power of differ-
ent features, we trained the SVM models using default
parameters, resulting in the fact that the performance of
the independent test set is even higher than that of the
training set.
In HemeBIND [3], two sequence-based classifiers were

built by using amino acid binary pattern and PSSM,
respectively. The authors have shown that the classifier
based on PSSM significantly improved the prediction
performance of the method based on unique representa-
tions (or binary encoding) of amino acid sequence and
its environment. We implemented these two models,
and compared our PSSMPP method with them using
the same training and testing set, and the same defini-
tion of heme binding residues. Table 4 shows that our
PSSMPP approach performs better than the binary and
PSSM methods. Both in our work and Liu and Hu’s
study[3], the PSSM method outperforms the binary
method.

Conclusions
The main goal of the current study is to provide valu-
able insights to the heme binding residues and improve
the classification performance based on heme protein
sequences. In order to mine the informative physico-
chemical descriptors for heme binding residues, we
designed a greedy approach in combination with corre-
lation analysis for feature selection. Based on the
selected physicochemical properties, we implemented an
integrative sequence profile by coupling PSSM with four
heme related physicochemical properties. The novel fea-
ture of PSSMPP achieves good performance using a
reduced set of feature vector elements, whose size is sig-
nificantly smaller than that of the conventional feature
sets (i.e., PSSM). We believed that the reduced set of an

Table 1 The list of the selected subset of physicochemical properties on Pheme-75 dataset

ID Description AUC

QIAN880117 Weights for beta-sheet at the window position of -3 0.598

AURR980103 Normalized positional residue frequency at helix termini N” 0.593

AURR980118 Normalized positional residue frequency at helix termini C” 0.583

SUYM030101 Linker propensity index 0.573

Table 2 The correlation coefficients among the four physicochemical properties on Pheme-75 dataset

QIAN880117 AURR980103 AURR980118 SUYM030101

QIAN880117 - - - -

AURR980103 0.020 - - -

AURR980118 -0.053 0.557 - -

SUYM030101 0.107 0.104 0.286 -
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integrative sequence profile feature can potentially be
expanded to predict other functional residues on
proteins.

List of abbreviations used
PSSM: Position Specific Scoring Matrices; AAindex: Amino Acid Index; PP:
Physicochemical Property; AUC: Area Under Curve; SVM: Support Vector
Machine; ACC: Accuracy; SN: Sensitivity; SP: Specificity; PR: Precision; MCC:
Matthew’s Correlation Coefficient; Fl: F-measure; TP: True Positive; FP: False
Positive; TN: True Negative; FN: False Negative.
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