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Abstract

Background: Recent computational techniques have facilitated analyzing genome-wide protein-protein interaction
data for several model organisms. Various graph-clustering algorithms have been applied to protein interaction
networks on the genomic scale for predicting the entire set of potential protein complexes. In particular, the
density-based clustering algorithms which are able to generate overlapping clusters, i.e. the clusters sharing a set
of nodes, are well-suited to protein complex detection because each protein could be a member of multiple
complexes. However, their accuracy is still limited because of complex overlap patterns of their output clusters.

Results: We present a systematic approach of refining the overlapping clusters identified from protein interaction
networks. We have designed novel metrics to assess cluster overlaps: overlap coverage and overlapping
consistency. We then propose an overlap refinement algorithm. It takes as input the clusters produced by existing
density-based graph-clustering methods and generates a set of refined clusters by parameterizing the metrics. To
evaluate protein complex prediction accuracy, we used the f-measure by comparing each refined cluster to known
protein complexes. The experimental results with the yeast protein-protein interaction data sets from BioGRID and
DIP demonstrate that accuracy on protein complex prediction has increased significantly after refining cluster
overlaps.

Conclusions: The effectiveness of the proposed cluster overlap refinement approach for protein complex
detection has been validated in this study. Analyzing overlaps of the clusters from protein interaction networks is a
crucial task for understanding of functional roles of proteins and topological characteristics of the functional
systems.

Background
Protein-protein interaction data are a crucial resource in
understanding the underlying mechanisms of biological
processes. In recent years, high-throughput experimental
techniques have made remarkable advances in identify-
ing protein-protein interactions on the scale of the
entire genome, collectively referred to as the interac-
tome. The rich amount of protein-protein interaction
data sets have been integrated and mapped into a pro-
tein interaction network [1-3]. This network is

represented as an undirected and un-weighted graph
where proteins are nodes and interactions are edges.
Over the past few years, systematic analysis of protein

interaction networks by theoretical and empirical studies
has been in the spotlight in bioinformatics. It has been
observed that the genome-scale interaction networks of
several model organisms are typically modular [4]. Con-
sequently, a wide range of graph clustering algorithms
[5] have been applied to the interaction networks to
predict potential protein complexes, the sets of proteins
closely binding each other to perform specific cellular
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Previous graph clustering algorithms can be categor-
ized into density-based approaches, hierarchical
approaches and partition-based approaches. Density-
based approaches detect densely connected subgraphs in
protein interaction networks. A typical example in this
category is the maximal clique algorithm to detect fully
connected subgraphs [6]. Because of the strict con-
straints of the maximum-size cliques, relatively dense
subgraphs are identified by using a density threshold or
incorporating the percolation of small-size cliques.
Because of computational inefficiency of finding cliques,
a number of heuristic seed-growth style algorithms have
been presented. They select seeds as initial points and
expand them using alternative density functions. Typical
examples include MCODE [7], DPClus [8], IPCA [9]
and the entropy-based algorithm [10]. The details of
these algorithms are discussed in the Method section.
The hierarchical approaches have been frequently

applied to genomic or proteomic data because the hier-
archical nature of clusters is significant to understand
the global structure of functional organizations. Bottom-
up hierarchical approaches start with each node as a
separate cluster and then iteratively merge the two clo-
sest clusters. Top-down hierarchical approaches start
with the whole graph as a single cluster and then recur-
sively divide the cluster into smaller clusters. The itera-
tive merging approaches should precisely measure
distance or similarity between two clusters by estimating
strength of interconnections or statistical significance of
common members [11,12]. For the recursive division,
finding exact cutting point for each iteration is a chal-
lenging issue. The edge-betweenness method [13] is an
example to detect the hierarchy by identifying a bridge
between two potential clusters repeatedly using the
betweenness measure. The betweenness of an edge is
calculated by the fraction of the shortest paths passing
through the edge.
Partition-based approaches explore the best partition

of a network, including the periphery. The Restricted
Neighborhood Search Clustering (RNSC) [14] is a cost-
based local search algorithm to find an optimal parti-
tion. The process begins with a random or user-speci-
fied partition. Each vertex on the border of a cluster is
then moved to an adjacent cluster in a random manner
such that cost is minimized. The cost function captures
the ratio of invalid links between clusters to valid links
within clusters. Markov Clustering (MCL) [15] is a fast
and scalable partition-based algorithm by flow simula-
tion. This algorithm simulates random walks within a
Markov matrix that is mapped to the input graph. It
repeatedly alternates between two operators, expansion
and inflation, to update the matrix. This process con-
tinues until there is no further change in the matrix, ter-
minating with the best partition of the graph.

Although these previous graph clustering algorithms
are qualified to detect protein complexes from protein
interaction networks, their accuracy is still limited. One
of the challenges is overlapping cluster generation. The
clustering algorithms should be able to assign each node
to multiple clusters because a protein could have differ-
ent interacting partners at different times and places.
However, because the partition-based or hierarchical
clustering algorithms always produce disjoint sets, only
density-based methods are suitable for detecting over-
lapping clusters. A previous study [16] has presented a
general model of overlapping sub-network structures.
This model was validated by the intra-connection rate
of each overlapping cluster.
We also note that the overlapping clusters sharing a

set of proteins often represent the same protein com-
plex. The examples in the protein interaction network
of S. cerevisiae are shown in Table 1. For each cluster
generated by the entropy-based approach, we computed
f-measure by comparing to known protein complexes
and chose the protein complex with the highest f-score.
We observed in this test it occurs frequently that two or
more clusters, in particular overlapping clusters, have
the highest f-score to the same protein complex. In
Table 1, the Prp19-associated complex is composed of
eight proteins. The entropy-based method produced
three overlapping clusters which have the best matches
for the complex in f-measure. Four common proteins
(YDR416W, YGR129W, YLL036C, YLR117C) over all
three clusters are the members of the complex. The
other four proteins in the complex also appear in one of
the three clusters. How could we then infer a protein
complex with higher accuracy from the overlapping
clusters? The next three examples in Table 1 show the
case that we can detect a protein complex with higher
accuracy when we take the union set of two overlapping
clusters. In contrast, the last example in table 1 is the
case that the intersection set of two overlapping clusters
matches a protein complex more precisely.
In this article, we present a novel systematic approach

to refine overlapping clusters and re-generate a new set
of clusters from protein interaction networks. The aim
of this study is to increase accuracy of protein complex
prediction by refining the overlaps. First, we implement
five density-based graph-clustering methods to obtain a
set of preliminary overlapping clusters. We next intro-
duce a unique strategy to refine the preliminary clusters
by applying novel metrics: overlap coverage and overlap-
ping consistency. We propose an overlap refinement
algorithm which yields a final set of clusters by parame-
terizing the metrics. The experimental results with the
protein-protein interaction data sets of S. cerevisiae
downloaded from BioGRID [17] and DIP [18] show that
the proposed approach achieves a statistically significant
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improvement on accuracy of protein complex
prediction.

Methods
Previous density-based clustering methods
Density-based graph-clustering algorithms search den-
sely connected subgraphs in protein interaction net-
works. We discuss four commonly-used methods in this
category: CFinder, MCODE, DPClus and the entropy-
based algorithm.
CFinder
Palla et al. [19] introduced a process of k-clique percola-
tion along with the associated definitions of k-clique
adjacency and k-clique chain. Two k-cliques are adjacent
if they share (k − 1) nodes where k is the number of
nodes in each clique. A k-clique chain is the union of a
sequence of adjacent k-cliques. A k-clique percolation

cluster is then a maximal k-clique chain. CFinder [20]
searches all k-clique percolation clusters in an undir-
ected graph with a parameter k. Larger k values corre-
spond to a higher stringency during the identification of
dense subgraphs and provide smaller groups with a
higher density of links inside them.
MCODE
MCODE [7] is a typical seed-growth style clustering
algorithm. It weights each node v by the core-clustering
coefficient of v, which is defined as the density of the
highest k-core of the directly connected neighbors of v
together with v itself. Compared to the general cluster-
ing coefficient [21], the core clustering coefficient ampli-
fies the weights of heavily interconnected regions while
deleting many less-connected nodes. The k-core of a
graph is a maximal subgraph such that each node in the
subgraph has at least k links [22]. The algorithm then
seeds a cluster with the highest weighted node and
recursively includes a neighboring node if its weight is
above a threshold.
DPClus
DPClus [8] is also a seed-growth algorithm to find local
dense regions based on connectivity. It weights each
node by sum of the edge weights to its neighboring
nodes, while each edge is weighted by the number of
common neighbors between two ending nodes. The node
with the highest weight is selected as a seed which
becomes a single-node cluster. The cluster grows gradu-
ally by adding repeatedly its neighboring nodes if it
reaches a density threshold for either the core or the per-
iphery. IPCA [9] has the same process to DPClus on
weighting nodes and selecting a seed. However, on the
step of extending the seed cluster, a neighboring node is
added if it has a higher ratio of links to the cluster than
an interaction probability threshold and if the diameter
of the cluster is less than a maximum diameter threshold.
Entropy-based algorithm
The entropy-based approach [10] has been recently
introduced as a seed-growth algorithm. It repeatedly
finds a locally optimal cluster with minimal graph
entropy. A high-level description of the algorithm is
given below:

1. Select a random seed node, and form a seed clus-
ter including the selected seed and its neighbors.
2. Remove nodes in the cluster iteratively to decrease
graph entropy until it is minimal.
3. Add neighboring nodes of the cluster iteratively to
decrease graph entropy until it is minimal.
4. Output the cluster, and repeat the steps (1), (2)
and (3) until no seed candidate remain.

As a weakness, this algorithm might fall into the local
minimum too quickly. To avoid this problem, we

Table 1 Examples of overlapping clusters representing
the same protein complex

Prp19-associated complex

complex : YLL036C YMR213W YJR050W YLR117C YDR416W
YGR129W YBR188C YPR101W

cluster-1 : YLL036C YDR416W YMR213W YGR129W YLR117C
YNR011C YDR364C

cluster-2 : YLL036C YJR050W YDR416W YGR129W YLR117C
YPL213W YIR009W

cluster-3 : YLL036C YDR416W YBR188C YGR129W YLR117C
YPR101W

Set3p complex

complex : YGL194C YIL112W YDR155C YOL068C YKR029C
YBR103W YCR033W

cluster-1: YGL194C YKR029C YCR033W YIL112W

cluster-2 : YGL194C YKR029C YBR103W

cAMP-dependent protein kinase

complex : YIL033C YJL164C YPL203W YKL166C

cluster-1 : YNL227C YKL166C YPL203W

cluster-2 : YIL033C YPL203W

NuA4 histone acetyltransferase complex

complex : YFL039C YJL081C YPR023C YEL018W YJR082C YNL136W
YFL024C YOR244W YGR002C YHR099W YDR359C
YNL107W YHR090C

cluster-1 : YNL107W YOR244W YFL024C YPR023C

cluster-2 : YJL081C YFL024C

RAVE complex

complex : YJR033C YDR202C YDR328C

cluster-1 : YDR306C YDR202C YJL204C YGL149W YOR080W
YJL149W YMR258C YBR280C YJR033C YML088W
YDR131C YLR368W YLR097C YDL132W YLR352W
YDR328C YLR224W

cluster-2 : YMR054W YJR033C YDR202C YOR270C YBR127C
YDL185W YHR060W

We applied the entropy-based approach to the yeast protein interaction
network. For each cluster, we computed f-scores by comparing to
experimentally determined protein complexes and chose one complex with
the highest f-score. It shows five examples that two or more clusters have the
highest f-score to the same protein complex.
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propose a slight variation of the entropy-based cluster-
ing algorithm. (It will be called the modified entropy-
based method.) A high-level description of the algorithm
is given below:

1. Select a clique of size 3 as an initial cluster.
2. Add all neighboring nodes of the cluster.
3. Remove nodes added on the step (2) iteratively to
decrease graph entropy until it is minimal.
4. Repeat the steps (2) and (3) until the step (3)
removes all nodes added on the step (2).
5. Output the cluster, and repeat the steps from (1)
to (4) until no seed candidate remain.

This modification allows the clusters to keep growing
in the case where the addition of a neighboring node
will temporarily increase entropy, but the addition of
that node along with certain additional neighboring
nodes will ultimately decrease entropy. For example, if
there exists a set of densely connected neighboring
nodes of a cluster, the original algorithm will only con-
sider each node independently. However, the modified
algorithm will consider the set as a whole.

Cluster overlap analysis
In this section, we introduce novel metrics to define
properties of cluster overlaps. Suppose we have a set of
n clusters. An overlap is a non-empty intersection of
two clusters. Then, the overlaps of a cluster ci can be
defined as a non-unique collection of sets of vertices in
ci, each of which is an overlap of ci with another cluster.
When V (ci) denotes the set of all vertices in ci,

Overlaps(ci) = {V(ci) ∩ V(cj)|1 ≤ j ≤ n, j �= i}, (1)

where V (ci) ∩ V (cj) ≠ ∅. The cluster ci may have
overlaps with several other clusters, and each overlap
may have the different number of vertices. The average
overlap size of a cluster ci is then formulated as

Soverlap(ci) =

∑
o∈Overlaps(ci) |o|

|Overlaps(ci)|
(2)

where |o| is the size of the overlap o.
Overlap rate
The overlap rate of a cluster ci is defined as the average
overlap size of ci, divided by the total number of vertices
in ci.

Roverlap(ci) =
Soverlap(ci)

|V(ci)| (3)

This formula indicates the fraction of the vertices in ci
involved in the average overlap. Higher the overlap rate

of ci is, more vertices in ci appear in any other clusters
on average.
Overlap coverage
The overlap coverage of a cluster ci represents the ratio
of the number of vertices in ci which appear in one or
more overlaps of ci.

Cov(ci) =

∣
∣
∣
⋃

o∈Overlaps(ci) o
∣
∣
∣

|V(ci)|
(4)

This formula can be used to measure how unique the
cluster ci is. Higher overlap coverage of ci indicates that
a larger portion of the vertices in ci are also included
into other clusters. For instance, if all vertices in ci are
shared with other clusters, then ci has the maximum
overlap coverage which is 1.
Overlapping consistency
The overlapping consistency of a cluster ci measures the
uniformity of the overlaps of ci. It is calculated as the
overlap rate divided by the overlap coverage.

Cons(ci) =
Roverlap(ci)

Cov(ci)
(5)

The overlapping consistency ranges between 0 and 1,
inclusive, because the values for Roverlap(ci) are upper-
bounded by the values of Cov(ci). For instance, if a ver-
tex in ci also belongs to several different clusters and
the other vertices in ci do not belong to any other clus-
ters, then ci has the maximum overlapping consistency
because the overlap rate and overlap coverage are the
same. If both of the overlapping consistency and the
overlap coverage are high, this could indicate the over-
lapping clusters represent highly related groups.

Cluster overlap refinement
We propose an algorithm for refining the preliminary
overlapping clusters using the novel metrics defined
above. This method creates a new cluster from the preli-
minary clusters that have significant overlaps by para-
meterizing the metrics. This cluster overlap refinement
algorithm is described in Table 2.
The algorithm takes as input a set of preliminary clus-

ters, S. It requires three parameters as thresholds: the
minimum overlap coverage minCov, the minimum over-
lapping consistency minCons, and the minimum consen-
sus constraint minCss. In Line 2 of the algorithm, the
minCov and minCons become the minimum boundaries
of overlap coverage and consistency for each cluster to
be refined. Line 15 enforces the consensus constraint to
merge clusters only if they are strongly related. This
constraint changes the overlap optimizing process. If
this minimum consensus constraint minCss was 100%,
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then the result would be the intersection of the overlap-
ping clusters. If it was 0%, the result would be the union
of them. This constraint can thus be chosen flexibly
between the intersection and the union to select only
significant vertices from overlapping clusters. The
proper selection of the minimum consensus value pre-
vents a set of clusters from being generated by the two
extreme cases of the union, which is too generous, and
the intersection, which is too strict.

Clustering accuracy measure
For clustering accuracy evaluation, we compare each clus-
ter to real protein complexes using the f-measure as a
combination of precision and recall. Suppose we compare
a cluster c with a protein complex pi. Recall, also called a
true positive rate or sensitivity, is the ratio of common
members of c and pi to the number of proteins in pi.

Recall =
|c ∩ pi|

|pi| (6)

Precision, also called a positive predictive value, is the
ratio of common proteins of c and pi to the number of
proteins in c.

Precision =
|c ∩ pi|

|c| (7)

The f-score is then the harmonic mean of recall and
precision.

f =
2 × Recall × Precision

Recall + Precision
(8)

This f-score makes a direct comparison between an
output cluster and a gold-standard protein complex
without any bias towards the cluster size. For each out-
put cluster, we search for the best match from the list
of gold-standard protein complexes in regard to f-scores.
The accuracy of clustering algorithms is then measured
by the average f-score of the best matches over all out-
put clusters.

Results and discussion
Data source
We explored the application of our approach to protein-
protein interaction data of S. cerevisiae. The genome-
wide yeast protein-protein interaction data are publicly
available in several open databases such as BioGRID
[17], IntAct [23], MINT [24], MIPS [25], STRING [26]
and DIP [18]. In this experiment, we used two protein-
protein interaction data sets. First, we downloaded the
core protein-protein interaction data of S. cerevisiae
from DIP, which includes 2526 distinct proteins and
5949 interactions between them. The core interactions

Table 2 The cluster overlap refinement algorithm

OverlapOptimization (S, minCov, minCons, minCss)

1 for each g Î S

2 if Cov(g) <minCov or Cons(g) <minCons

3 Add g into S’

4 end if

5 else

6 Assign all nodes a value of 0

7 Increment the value of each node in g

8 count ¬ 1

9 Find overlapping clusters with g

10 for each overlapping cluster c

11 g ¬ g ∪ c

12 Increment the value of each node in c

13 count ¬ count +1

14 end for

15 Remove from g any node with a value less than (n × minCss)

16 if g is not redundant

17 Add g into S’

18 end if

19 end else

20 end for

21 return S’

__________________________________________________________________________

This algorithm takes as input a set of preliminary clusters, S, generated by any density-based clustering methods. It returns the refined set of clusters, S’, as
output.
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have been selected from the full data set by curative
processes based on protein sequences and RNA expres-
sion profiles [27]. We thus expect that most of the
interactions in this data set are reliable. However, we
have to consider a number of false negatives, i.e. true
interactions which do not appear in this data set. Next,
we tested with the exceptionally large protein-protein
interaction data set of S. cerevisiae from BioGRID,
which includes 5590 distinct proteins and 92906 interac-
tions. This data set has been accumulated from high-
throughput experimental results published. It is there-
fore likely to contain a significant number of false posi-
tives, i.e. spurious interactions which do not occur in
vivo.
To evaluate clustering accuracy of the proposed

approach, we acquired the protein complex data
recently determined [28]. As gold-standard, we com-
bined both data sets: CYC2008 which has 408 manually
curated heteromeric protein complexes derived from
small-scale experiments and YHTP2008 which com-
prises 400 putative complexes collected mostly from
high-throughput experimental results.

Protein complex detection from DIP data
Clustering by existing methods
To predict potential protein complexes from DIP pro-
tein-protein interaction data, we tested five density-
based graph clustering approaches: CFinder, MCODE,
DPClus, the entropy-based method, and the modified
entropy-based method. Their clustering results are
shown in Table 3. The entropy-based method pro-
duced a large number of small-sized clusters including
many singletons, i.e. clusters containing only a single
protein, whereas the modified entropy-based method
generated a small number of large-sized clusters. The
output clusters of CFinder has the highest average
overlap rate which is close to 0.2. The overlap rate of
a cluster indicates the proportion of overlaps in the

cluster on average. The average overlap rate of 0.2
thus implies that 20% of the nodes in each cluster are
involved in overlapping on average. Interestingly,
MCODE was not able to yield any overlapping clusters
although it searches densely connected sub-graphs.
For each method, the distribution of occurrences of
any protein over all output clusters is plotted in a log
scale in Figure 1. We counted how many times each
protein occurs in different clusters. As a general pat-
tern of output clusters, these plots describe the expo-
nential decrease of the number of proteins with
respect to the number of occurrences. In this experi-
ment, a slightly different trend from the average over-
lap rate on CFinder was perceptible. CFinder
generated less proteins occurring in multiple clusters
than DPClus and the modified entropy-based method.
This result implies that CFinder produces the clusters
with higher overlapping consistency because of a
higher overlap rate, but lower overlap coverage
because of less proteins involved in overlapping, than
the other methods.
To evaluate accuracy of each method, we measured

the average f-score of output clusters comparing to
gold-standard protein complexes. As shown in Table 3,
the clusters generated by CFinder have the highest aver-
age f-score. However, as a drawback, CFinder requires
the longest runtime in the large-size complex network
among all the methods tested. The clusters generated by
the entropy-based method have the lowest average f-
score because most of them are extremely small-sized.
However, the modification of this method has markedly
improved its accuracy by yielding relatively large clus-
ters, and achieved a slightly higher level of accuracy
than MCODE and DPClus.
Improvement by cluster overlap refinement
We implemented the cluster overlap refinement
approach to assess improvement on protein complex
detection. We used as input the set of clusters produced
by three clustering algorithms: CFinder, DPClus and the
modified entropy-based method. We were not able to
test MCODE because the clusters did not have any
overlaps. We also dropped testing the original entropy-
based method because the average overlapping rate is
close to 0. Instead of the entropy-based method, we
used the modified entropy-based method for this experi-
ment. The optimal refinement of cluster overlaps was
performed by changing the values of three parameters:
the minimum overlap coverage threshold (minCov), the
minimum overlapping consistency threshold (minCons)
and the minimum consensus constraint (minCss). It col-
lected all overlapping clusters which have the overlap
coverage and the overlapping consistency greater than
their minimum thresholds, and then re-generated a new
set of clusters by selecting the optimal value of minCss.

Table 3 Clustering results of five density-based
approaches and their accuracy on DIP data

method number of
clusters

average overlap
rate

average f-
score

CFinder 172 0.199 0.602

MCODE 272 0.000 0.456

DPClus 449 0.160 0.473

Entropy 1294 0.060 0.309

Modified-
Entropy

110 0.099 0.485

We tested five density-based graph-clustering approaches on the yeast
protein-protein interaction data from DIP. Their clustering results and the
average overlap rates are shown. The overlap rate of a cluster indicates the
proportion of overlaps in the cluster on average. As accuracy of each method
on predicting protein complexes, we measured the average f-score of the
clusters comparing to protein complexes experimentally determined.
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First, we used varying parameter values of minCov
and minCons between 0 and 1 to explore the effect of
minCss on protein complex detection accuracy. Since
the minimum consensus of 0 means taking the union of
all overlapping clusters, the output clusters are gradually
enlarged as minCss decreases. In contrast, the minimum
consensus of 1, as taking the intersection of overlapping
clusters, resulted in the lowest average cluster size. Fig-
ure 2 shows how accuracy of the clusters refined is
affected by different values of minCss. Figure 2(a), (b)
and 2(c) are the results when we used the preliminary
clusters produced by CFinder, DPClus and the modified
entropy-based method, respectively. We varied the para-
meter values of minCov and minCons from 0.1 to 0.6,
but assigned the same value to minCov and minCons
for each case. Use of low values of minCov and min-
Cons means that the overlap refinement process is
applied to the clusters even if they have only a small
portion of overlaps. Therefore, when minCov and min-
Cons are 0.1 or 0.2, we could observe a pattern such
that the average f-score is very low when minCss is
lower than 0.3. It is readily understood that naively mer-
ging two clusters results in low accuracy. As minCov
and minCons increase, we have consistent average f-
scores regardless of minCss values. If two clusters have
a very large overlapping region, then their union set

would be similar to their overlap. In the tests of CFinder
and DPClus, the average f-scores were not affected by
changing minCss when minCov and minCons are 0.6.
For the modified entropy-based method, we attained the
consistent average f-score when assigning 0.4 to both
minCov and minCons. Considering all plots in Figure 2,
we chose as the optimal value of minCss 0.7 for CFinder
and DPClus and 0.8 for the modified entropy-based
method.
Next, we used the selected minCss values to find the

optimal combination of minCov and minCons. Figure 3
shows the effect of different parameter settings for min-
Cov and minCons on the accuracy of the clusters
refined. Figure 3(a), (b) and 3(c) show the results from
CFinder, DPClus and the modified entropy-based
method, respectively. In the tests of CFinder and the
modified entropy-based method, we achieved the best
average f-scores of refined clusters when using the low-
est values of minCov and minCons. This trend was
already observed in the previous experiment for the
modified entropy-based method in Figure 2(c). However,
for DPClus, the best accuracy was captured in the
ranges between 0.2 and 0.5 for minCov and between 0
and 0.2 for minCons, as shown in Figure 3(c).
We analyzed statistically the improvement on protein

complex detection by refining cluster overlaps. Figure

Figure 1 Distribution of occurrences of any protein over all clusters. We counted how many times each protein occurs in different clusters.
Each plot describes the exponential decrease of the number of proteins with respect to the number of occurrences. All four clustering
algorithms have a similar trend of protein occurrences in overlapping clusters.
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4 displays in box plots two distributions of f-scores of
the clusters before and after overlap refinement for
each of the three clustering algorithms. Figure 4(a)
obviously demonstrates that the overall accuracy of the
clusters produced by CFinder has been improved by
refining overlaps because of more than 15% increase of
the median point and more than 20% increase of the
3rd quartile (the upper quartile) point in the f-score
distribution. Because the clusters which have the over-
lap coverage and overlapping consistency below the
selected thresholds remain intact during the refine-
ment, it is feasible that the 1st quartile (the lower
quartile) or the minimum point does not alter in the
distribution. As shown in Figure 4(b), the accuracy of
the clusters produced by DPClus has been slightly
improved by refining overlaps. However, the refine-
ment approach has improved substantially the clusters
produced by the modified entropy-based method. Fig-
ure 4(c) shows the increments of both the 1st and 3rd

quartile points. These results in Figure 4 justify the
effectiveness of the proposed overlap refinement
approach. They also address that the extent of
improvements varies depending on the clustering algo-
rithms and their preliminary clusters.

Protein complex detection from BioGRID data
We carried out additional experiments of cluster over-
lap refinement with the most recent version of the
protein-protein interaction data set of S. cerevisiae
from BioGRID. This BioGRID interaction network is
larger and significantly denser than the DIP network,
2.2 times more distinct proteins and 15 times more
edges. Moreover, it has been considered that it
includes a large number of false interactions which
create extremely complex connectivity. It is thus
expected that the accuracy of protein complex detec-
tion from BioGRID data is lower than the previous
tests with DIP data.

Figure 2 Accuracy change with different parameter settings for minCss on refining cluster overlaps from DIP data. These figures show
how the average f-score of the clusters refined is affected by different parameter values of minCss. We used as input the preliminary clusters
produced by (a) CFinder, (b) DPClus and (c) the modified entropy-based method. We varied the parameter values of minCov and minCons from
0.1 to 0.6. At low values of minCov and minCons, we have a low average f-score when minCss is lower than 0.3. As minCov and minCons
increase, we have consistent average f-scores regardless of minCss values.

Figure 3 Accuracy change with different parameter settings for minCov and minCons on refining cluster overlaps from DIP data.
These figures show the effect of different parameter values for minCov and minCons on the average f-score of the clusters refined. We used as
input the preliminary clusters produced by (a) CFinder, (b) DPClus and (c) the modified entropy-based method. For minCss, we used the optimal
values selected from the experimental results in Figure 2, 0.7 in (a) and (b) and 0.8 in (c). In (a) and (c), the best average f-scores of the refined
clusters are achieved with the lowest values of minCov and minCons. In (b), the best accuracy is captured in the ranges between 0.2 and 0.5 for
minCov and between 0 and 0.2 for minCons.
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We tested five density-based graph clustering
approaches: CFinder, MCODE, DPClus, the entropy-
based method, and the modified entropy-based method.
However, we were not able to obtain clustering results
from CFinder because of its computational inefficiency
on the large and dense network. Same to the previous
test, MCODE did not generate any overlapping clusters.
The entropy-based method produced an extremely large
number of singletons and very few clusters containing
more than 3 proteins. These clusters are also non-over-
lapping. Table 4 shows the clustering results and their
accuracy. As compared to Table 3, all the methods,
except the entropy-based method, generated more clus-
ters with similar overlapping rates. However, as
expected, the average f-scores of the clusters decreased
remarkably on this complex network.
To select the optimal parameter values of minCov,

minCons and minCss for this data set, we applied the
same procedure as discussed in the previous section.
We dropped testing MCODE and the entropy-based
method because of the overlapping rate of 0. We also
failed testing the modified entropy-based method
because it generated the clusters with lower overlapping

consistency, which can be verified by its lower average
overlap rate, but extremely higher overlap coverage than
the other methods. As a result, the overlap refinement
process terminated with merging all output clusters into
a single cluster. We thus used the set of clusters pro-
duced by DPClus only. First, we changed the values of
minCov and minCons to find the best minCss, as shown
in Figure 5. The general changing pattern of the average
f-score was similar to that in Figure 2(b). As minCov
and minCons increase, we have consistent average f-
scores regardless of minCss values. At low values of
minCov and minCons, the average f-score is very low
when minCss is lower than 0.1. This plot shows that the
optimal minCss value should be selected in the range
between 0.4 and 0.5, which is lower than the optimal
value chosen in the previous section. We next used the
minCss value of 0.4 to find the optimal combination of
minCov and minCons. Figure 6 shows the average f-
score change by different parameter settings of minCov
and minCons. From this result, minCov of 0.2 and min-
Cons of 0 should be chosen as the best combination.
Figure 7 shows statistical analysis for the improvement
on protein complex detection by overlap refinement.
The 3rd quartile (the upper quartile) and the maximum
points significantly increased after refining overlaps.
This result also indicates that the proposed overlap
refinement approach works effectively on large-size
complex networks.

Conclusion
The generation of the genome-wide protein-protein
interactions in model organisms is proceeding rapidly,
heightening the demand for advances in the computa-
tional techniques to provide systematic mapping and
analyze the protein interaction networks. Advanced
computational approaches have been applied to uncover
functional patterns hidden in the complex systems. In

Figure 4 Statistical analysis of accuracy improvement on protein complex detection by refining cluster overlaps from DIP data. For
each method, two distributions of f-scores of the clusters before and after refining overlaps are exhibited. The box plots in (a) and (c) show a
substantial increase of the 1st quartile, the median and the 3rd quartile points after refining overlaps. The box plots in (b) also show a slight
increment of the median and the 3rd quartile points after refining overlaps. These figures justify the effectiveness of the proposed overlap
refinement approach.

Table 4 Clustering results of four density-based
approaches and their accuracy on BioGRID data

method number of
clusters

average overlap
rate

average f-
score

MCODE 301 0.000 0.229

DPClus 696 0.167 0.331

Entropy 47 0.000 0.169

Modified-
Entropy

243 0.094 0.175

We tested four density-based graph-clustering approaches on the yeast
protein-protein interaction data from BioGRID. Their clustering results and the
average overlap rates are shown. As accuracy of each method on predicting
protein complexes, we measured the average f-score of the clusters
comparing to protein complexes experimentally determined.
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Figure 5 Accuracy change with different parameter settings for minCss on refining cluster overlaps from BioGRID data. This figure
shows how the average f-score of the clusters refined is affected by different parameter values of minCss. We used as input the preliminary
clusters produced by DPClus. At low values of minCov and minCons, we have a low average f-score when minCss is lower than 0.2. As minCov
and minCons increase, we have consistent average f-scores regardless of minCss values.

Figure 6 Accuracy change with different parameter settings for minCov and minCons on refining cluster overlaps from BioGRID data.
This figure shows the effect of different parameter values for minCov and minCons on the average f-score of the clusters refined. We used as
input the preliminary clusters produced by DPClus. We used minCss of 0.4. The parameter values, minCov of 0.2 and minCons of 0, can be
chosen as the best combination.
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particular, various graph-clustering algorithms have
identified potential functional organizations from pro-
tein interaction networks.
We have designed a novel approach of analyzing clus-

ter overlaps systematically. Our approach refines the
overlapping clusters, generated by any commonly-used
density-based clustering techniques, for the purpose of
increasing accuracy on protein complex prediction from
protein interaction networks. Through a series of newly
defined overlap formulas such as overlap coverage and
overlapping consistency, the proposed overlap refine-
ment algorithm enhances the quality of the clusters best
matching to known protein complexes.
The proposed approach has been tested with two

yeast protein-protein interaction data sets: BioGRID
which is known as complete interactome and the core
set from DIP which is a reliable subset of full data. The
preliminary clusters as input have been acquired from
several density-based clustering algorithms: CFinder,
MCODE, DPClus and the entropy-based method. We
discussed the process of finding the best parameter set-
tings for minCov, minCons and minCss in the proposed
approach. We finally demonstrated significant improve-
ments on protein complex prediction accuracy after
refining preliminary overlapping clusters. These experi-
mental results eventually led to the conclusion that this
approach works successfully for any clustering methods

and any protein-protein interaction data sets by optimiz-
ing the parameter values.
Overlapping is one of the key properties of functional

organizations of molecular components. Analyzing the
overlaps of clusters from protein interaction networks is
a critical task for not only detecting protein complexes
but also complete understanding of functional roles of
proteins and topological characteristics of the functional
systems. This study provides a systematic framework for
effective analysis of functional overlap information
inherent in biological networks.
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