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Abstract

Background: Under conditions of salt stress, plants respond by initiating phosphorylation
cascades. Many key phosphorylation events occur at the membrane. However, to date only limited
sites have been identified that are phosphorylated in response to salt stress in plants.

Results: Membrane fractions from three-day and 200 mM salt-treated Arabidopsis suspension
plants were isolated, followed by protease shaving and enrichment using Zirconium ion-charged
magnetic beads, and tandem mass spectrometry analyses. From this isolation, |8 phosphorylation
sites from |5 Arabidopsis proteins were identified. A unique phosphorylation site in 14-3-3-
interacting protein AHAI was predominately identified in 200 mM salt-treated plants. We also
identified some phosphorylation sites in aquaporins. A doubly phosphorylated peptide of PIP2;| as
well as a phosphopeptide containing a single phosphorylation site (Ser-283) and a phosphopeptide
containing another site (Ser-286) of aquaporin PIP2;4 were identified respectively. These two sites
appeared to be novel of which were not reported before. In addition, quantitative analyses of
protein phosphorylation with either label-free or stable-isotope labeling were also employed in this
study. The results indicated that level of phosphopeptides on five membrane proteins such as
AHAI, STPI, Patellin-2, probable inactive receptor kinase (At3g02880), and probable purine
permease |8 showed at least two-fold increase in comparison to control in response to 200 mM
salt-stress.

Conclusion: In this study, we successfully identified novel salt stress-responsive protein
phosphorylation sites from membrane isolates of abiotic-stressed plants by membrane shaving
followed by Zr#*-IMAC enrichment. The identified phosphorylation sites can be important in the
salt stress response in plants.
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Background

Under conditions of salt stress, plants respond by activat-
ing phosphorylation cascades. For example, the salt overly
sensitive (SOS) signaling pathway is known to be
involved in stress tolerance in plants [1]. Microarray has
long been utilized in transcriptome-based studies to iden-
tify salt-induced genes in plants [2-6]. In addition, mass
spectrometry-based proteomic studies have also identi-
fied salt-induced proteins in plants [7-11]. Both tools pro-
vide efficient ways to identify genes or proteins responsive
to salt stress. However, the unique protein phosphoryla-
tion sites required for the plant response to salt stress have
not been well characterized.

Mass spectrometry (MS) is widely used to identify protein
phosphorylation sites [12]. Although mass spectrometry
coupled with database mining has become a commonly
used tool for protein identification, its application to
analysis of protein phosphorylation site identification is
still far from routine work. Characterization of phosphor-
ylation sites has proven difficult due to both the low
abundance of phosphoproteins in living organisms and
the suppression phenomenon of phosphopeptides that
occurs during MS analysis. Enrichment of phosphopep-
tides that are low in abundance can circumvent the signal
suppression effect caused by nonphosphorylated pep-
tides, allowing for enhanced detection of phosphopep-
tides by MS. Immobilized metal ion affinity
chromatography (IMAC) is a common separation plat-
form used prior to MS analysis for large scale identifica-
tion of protein phosphorylation sites from complex
samples [13]. Typically, phosphopeptides are bound by
immobilized metal ions through metal-phosphate affin-
ity interactions, and nonphosphorylated peptides are
removed by washing. The phosphopeptides can then be
released from the solid support by phosphate or alkaline
elution.

Several metal ions have been employed for IMAC, and
each metal ion has distinct strengths and weaknesses [14-
17]. Among these metal ions, Fe3+ is the most common
metal ion used in the IMAC approach; however, its specif-
icity is insufficient for comprehensive phosphoproteome
analysis. Recently, Feng et al. utilized immobilized zirco-
nium ion affinity chromatography on a polymer-based
support to enrich phosphopeptides from mouse liver
[18]. According to their previous studies, Zr*+ exhibits
higher specificity toward phosphopeptides than Fe3+[19].
Furthermore, Li et al. successfully utilized nitrilotriacetic
acid (NTA)-coated magnetic nanoparticles to immobilize
Zr4+for enrichment of histidine-tagged proteins and phos-
phorylated peptides [20]. In this study, Zr4+-IMAC mag-
netic beads were wused to enrich abundant
phosphopeptides from milk digest.

http://www.proteomesci.com/content/7/1/42

Through the use of a metal ion affinity column, phospho-
rylated peptides can be enriched for phosphorylation site
mapping at the proteome level [21]. For example, this
strategy was utilized to identify unique phosphorylation
sites from elicitor-treated Arabidopsis plants [22]. Many
groups have also utilized membrane shaving followed by
metal ion affinity chromatography and MS analysis to
identify phosphorylation sites [15,23-26]. In 2008, the
Santoni group utilized MS and identified novel phospho-
rylation sites in Arabidopsis aquaporin PIP2;1 following
salt stress [27]. However, the phosphorylation sites of
other membrane proteins under the abiotic stress condi-
tion are still not well characterized.

To explore the application of Zr**-IMAC magnetic beads
to phosphopeptide isolation in a complex sample, we
used Zr4*-IMAC magnetic beads to enrich phosphopep-
tides from the membrane fraction of 3-d salt-stressed Ara-
bidopsis. To isolate membrane phosphopeptides, we
utilized membrane shaving followed by phosphopeptide
enrichment. We identified 18 phosphorylation sites, nine
of which were from membrane proteins. Label-free and
labeling quantitative analyses provided quantitative evi-
dences to support our identification of at least two-fold
differential-expressed phosphorylated peptides of mem-
brane proteins. These data suggest that these phosphoryla-
tion sites may be important in the salt-stress response in
plants.

Results and discussion

Mapping of phosphorylation sites from membrane
fractions of Arabidopsis through membrane shaving and
Zr#*-IMAC bead enrichment

In order to identify phosphorylation sites in a model
organism, Arabidopsis thaliana was chosen as a source of
plant material. After crude isolation of total proteins, a
further purification was performed using an ultracentri-
fuge to pellet cellular membranes. Due to their hydropho-
bicity, membrane proteins are difficult to solubilize for
further sample preparation and analysis. Solubilization of
membrane proteins using surfactants followed by enzy-
matic or chemical fragmentation prior to LC-MS/MS anal-
ysis is a common approach in the identification of
membrane proteins. However, the use of detergents often
interferes with chromatographic separation and/or elec-
trospray ionization [28]. According to previous studies,
60% methanol can both promote the solubilization and
enhance the proteolysis of membrane proteins [29].

To avoid surfactant interference with phosphopeptide
enrichment on Zr*+-IMAC beads as well as with liquid
chromatography separation, we utilized the organic sol-
vent-assisted approach to shave membranes, followed
subsequently by trypsin digestion in mixed organic-aque-
ous solvent systems. The resulting tryptic digest was then

Page 2 of 16

(page number not for citation purposes)



Proteome Science 2009, 7:42

acidified, and the phosphopeptides purified using Zr#+-
IMAC magnetic beads. Phosphopeptides isolated from
membranes of Arabidopsis plants treated with varying salt
concentrations (0 and 200 mM) were enriched individu-
ally within five min of treatment. The IMAC elution frac-
tions from control and salt-treated samples were further
analyzed by LC-MS/MS. A summary of all phosphopep-
tides identified is listed in the Additional file 1.

Overall, 18 phosphorylation sites were identified from 15
proteins in either control (0 mM salt) or salt-treated sam-
ple (200 mM salt) in three independent biological repli-
cates R1, R2, and R3 (Table 1, Additional file 2). Table 1
shows sites differentially phosphorylated to salt treat-
ment. Mascot score 38 was used as a cut-off for phos-
phopeptide identification. To further confirm the
identified result, a decoy database search was performed
and the FDR was determined to be 0 using Mascot soft-
ware (the search result were shown in Additional file 1).
Salt-treated and salt-free sample were treated and ana-
lyzed in parallel. Three independent biological experi-
ments were carried out from sample treatment, sample
preparation, and sample analysis. The result showed that
some phosphopeptides were identified in each individual
experiment but some were identified twice or only once.

According to the MS-based analysis, we identified phos-
phorylation sites from three membrane proteins in both
salt-free samples (control) and salt-stressed samples.
These membrane proteins, PIP2;2, PUP18 and Y3288,
were identified in three independent experiments and
regarded as highly abundant phospho-membrane pro-
teins in Arabidopsis. Their MS/MS spectra are shown in
Additional file 3. In Additional file 3, the doubly phos-
phorylated peptide, SLGpSFRpSAANV (derived from
PIP22_ARATH), was confirmed by the observation of y,-
196, y,-98 and b,-98 ions. In Additional file 3, a mixture
of two phosphopeptides was observed in MS/MS spectra
of samples with different salt treatments. The detection of
y,'-98 and y, ions in Additional file 3 indicates that the
specific phosphorylation sites of both phosphopeptides
(LIEEVSHSSGpSPNPVSD and LIEEVSHSSGSPNPVpSD)
were not unambiguously resolved by the LC separation.

Identification of phosphorylation sites in salt-stressed
plants

In this study, phosphorylation sites from the membrane
protein AtPIP2;4 were observed in either salt-treated or
salt-free conditions (Table 1, Additional file 2). In Figure
1A, a phosphorylated peptide from AtPIP2;4 was identi-
fied as ALGSFGpSFGSEFR due to the observed y,-98 and y-
ions, which indicated the phosphorylation site was on
Ser-283. Another co-eluted phosphorylated peptide from
AtPIP2;4 was identified as ALGSFGSFGpSFR due to the
clear assignment of y;-98 and y, ions shown in Figure 1B,
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which indicated the phosphorylation site was on Ser-286..
In addition, a doubly phosphorylated peptide ALGSFGpS-
FGpSFR was identified (Table 1, Figure 1C).

In addition to phosphorylation sites in AtPIP2;4, we also
identified a phosphorylation site in membrane protein
AtSTP1 (GVDDVpPSQEFDDLVAASK) (Table 1, Figure 2)
predominately in 200 salt-treated plants. A well character-
ized phosphorylation site from the C-terminus of mem-
brane protein AHA1 (GLDIDTAGHHYpTV-COOH) was
also predominately identified in 200 mM salt-treated Ara-
bidopsis plants (Table 1, Figure 3).

The MS/MS spectra of PATL2, PMA1, and Y1515 corre-
sponding phosphopeptides are shown in Additional file
3, respectively. All phosphorylation sites were confirmed
by manual interpretation. These sites were further com-
pared with sites reported in the database, and all were well
documented.

Quantitative analysis of phosphopeptides enriched by the IMAC
magnetic beads

In order to quantify the phosphorylation of membrane
proteins under salt-stressed conditions, label-free quanti-
tative analyses were carried out. The label-free quantita-
tive analysis was performed as described in Materials and
methods section. All ratios obtained on either MS chro-
matograms or on MS spectra were summarized in Addi-
tional file 4, the peak areas and signal counts were
summarized in Additional file 5, and their raw data were
also shown in Additional file 1. Among these quantitative
data, some phosphopeptides bearing large standard errors
may be caused by inconsistent efficiency of phosphopep-
tide enrichment between individual experiments. When
the quantitation data with large standard errors and the
data of peptides identified less than twice were neglected,
some trends can still be observed. First, all phosphor-
ylated peptides of ribosomal proteins of salt-stressed
plants showed reduced level compared to control. How-
ever, the reduced level of ribosomal proteins phosphor-
ylation may not conclude to any biological significance
due to the possible discordant adsorption toward mem-
brane proteins. Second, most of the identified phosphor-
ylated peptides of membrane proteins showed differential
level in responsive to salt stress (Table 1, Additional file
2), such as Patellin-2 and probable purine permease 18.

In addition to label-free quantitative analysis, stable-iso-
tope labeling was applied in this study [29]. The simple
and efficient dimethyl labeling was incorporated in the
peptide level after the membrane proteins were digested
by trypsin. Peptides derived from Control sample was
labeled with H form and peptides derived from 200 mM
salt-treated sample were labeled with D form then the two
pools of sample were combined and purified with Zr4+-

Page 3 of 16

(page number not for citation purposes)



Proteome Science 2009, 7:42

http://www.proteomesci.com/content/7/1/42

Table I: Phosphorylated peptides identified from membrane fractions shaved by protease.

Protein GO ATG TMD Label-free Label-free ratio  D/H ratio D/H ratio Phosphopeptide
name annotation number ratio (chromatogram) (spectrum) (chromatogram) sequence and
(spectrum) phosphorylation
site
Membrane
protein
ATPase |, ATPase At2g1896 10 5.62 + 3.0l 6.92 +3.83 GLDIDTAGHHYp
plasma 0 TV
membrane-
type
Sugar Transporter Atlgl126 4.36 7.95 GVDDVpSQEF
transport 0 DDLVAASK
protein |
Patellin-2 Transporter  Atlg2253 291 +0.24 8.37 +4.03 EILQSEpSFKEEGY
0 LASELQEAEK
Aquaporin Water At3g5342 6 033 +0.10 0.35+0.13 0.46 0.49 SLGpSFRpSAANV
PIP2;1, channel 0
PIP2;2;
PIP2;3
At2g3717
0
At2g3718
0
Probable Water At5g6066 6 1.22 + 0.05 1.24 + 0.55 ALGSFGpSFGSFR
aquaporin channel 0
PIP2;4
Probable Water At5g6066 6 1.22 + 0.05 1.24 + 0.55 ALGSFGSFGpSFR
aquaporin channel 0
PIP2;4
Probable Water At5g6066 6 337 +1.22 238 +0.15 0.52 0.6l ALGSFGpSFGpSF
aquaporin channel 0 R
PIP2;4
Probable kinase At3g0288 2 2.07 +0.31 3.99 + 1.94 1.68 1.6l LIEEVSHSS
inactive 0 GSPNPVpSD
receptor
kinase
Probable Transporter  Atlg5799 10 7.84 + 0.47 531+ 1.03 QTTAEGSANP
purine 0 EPDQILpSPR
permease
18
Non-
membrane
protein
Mitogen- Kinase At4g298| 1.08 0.61 IISQLEPEVLpSPIK
activated 0 PA
protein DDQLSLSDLDMV
kinase K
kinase 2
Uncharacte ~ Unknown  Atlg0515 2.82 4.28 DNDVPVpSY
rized TPR 0 SGSGGPTK
repeat-
containing
protein
FAMI0 Binding At4g2267 0.45 + 0.37 0.63 + 0.36 0.54 0.56 VEEEEEEDEIVEpPS
family 0 DVEL
protein EGDTVEPDNDPP
QK
FAMIO Binding At4g2267 0.20 0.17 SFVVEEpSDDD
family 0 MDETEEVKPK
protein
60S Translation ~ At3g4901 .61 +0.53 1.28 + 0.41 AGDSpTPEELAN
ribosomal 0 A
protein TQVQGDYLPIVR
LI3-1
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Table I: Phosphorylated peptides identified from membrane fractions shaved by protease. (Continued)

60S acidic Translation  Atlg0110 0.14 +0.02 0.24 + 0.02 0.29 0.11 KKDEPAEEpS
ribosomal 0 DGDLGFGLFD
protein P1-
I, PI-2, Pl-
3
At5g4770
0
At4g008|
0
60S acidic Translation  At3g4459 0.26 + 0.05 0.24 + 0.02 KEEKEEpSD
ribosomal 0 DDMGFSLFE
protein P2-
I, P2-2, P2-
4
At2g2771
0
At2g2772
0
60S acidic Translation ~ At5g5729 0.44 +0.14 0.68 + 0.27 0.29 0.37 KEEpSEEEE
ribosomal 0 GDFGFDLFG
protein P3-
I, P3-2
At4g2589
0
60S acidic Translation  At3gl 125 0.12 + 0.04 0.13 + 0.05 0.21 0.27 VEEKKEEpSDEED
ribosomal 0 YEGGFGLFDEE
protein PO-
3

I. AGI code: the accession number refers to Arabidopsis Gene Idenfier code.

2. TMD: predicted transmembrane domain number.

3. Label-free ratio represents fold difference of peptide level between 200 mM-sample versus control.

4. FDR is calculated 0 based on decoy database search.

5. D/H ratio represents fold difference of peptide level between 200 mM-sample versus control. D: 200 mM; H: control.
6. Each peptide was corroborated by Scaffold using 95% confidence interval as the cut-off.

IMAC magnetic beads. The enriched stable-isotope
labeled phosphpeptides were further identified and quan-
tified through LC-MS/MS experiment. This method may
eliminate possible system error caused by inconsistent
IMAC efficiency in label-free analysis, however, the iden-
tified phosphopeptides shown few overlapping to the
identified phosphopeptides by label-free approach. This
may be due to the reason that stable-isotope labeled pep-
tides shown different chromatographic properties from
unlabeled peptides on IMAC and reverse phase (RP) chro-
matography. Indeed, phosphopeptides which have not
been identified label-free approach were identified in this
stable-isotope labeling approach, as shown in Additional
file 6. In addition, the labeling approach pooled salt-
treated sample and salt-free sample together, the overall
peptides including common and uncommon peptides
will be supposedly more complicated than the individual
label-free one, therefore, the enrichment of labeled phos-
phopeptides on IMAC beads and the separation of labeled
phosphopeptides on RP column were supposedly less effi-
cient compared those in label-free analysis. The ratios of
either identified phosphopeptides or non-phosphopep-
tides were summarized in Additional file 6. In Table 1, the
quantitation result of labeling approach (D/H ratio)
showed similar trends as labele-free approach with an

exception of a doubly phosphorylated peptide of PIP2;4
which can be due to the complexity of the multiple phos-
phorylation sites in a single peptide.

In summary, the quantitative analysis results indicated
that the level of phosphopeptides on five membrane pro-
teins such as AHA1, STP1, Patellin-2, probable inactive
receptor kinase (At3g02880), and probable purine per-
mease 18 showed at least two-fold increase in comparison
to control in response to 200 mM salt-stress.

Identification of phosphorylation sites by membrane
shaving followed by IMAC enrichment

In this study, membrane proteins were efficiently solubi-
lized in the organic solvent-aqueous system allowing
trypsin digestion to be performed in the same tube.
According to the results acquired using mass spectrome-
try, the majority of identified proteins were membrane-
localized, accompanied by some acidic ribosomal pro-
teins which have been reported to associate with cellular
membranes. These results indicated that organic solvent-
assisted membrane shaving was appropriate for sample
preparation prior to LC-MS/MS analysis. In addition to
phosphate groups, sulfonic acid containing-moieties have
been reported to be good ligands for the immobilized
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GpSFGSFR); B, MS/MS spectra of PIP2;4 singly phosphorylation site (ALGSFSFGpSFR); C, MS/MS spectra of PIP2;4 doubly
phosphorylation sites (ALGSFGpSFGpSFR).
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metal ions used in IMAC approach [30]. By using 60%
methanol to solubilize hydrophobic membrane proteins,
possible interference from sulfate-containing surfactants
was avoided. The use of Zr4+-IMAC magnetic beads pro-
vided a rapid and efficient platform to enrich phos-
phopeptides from membrane samples. Using Zr*+-IMAC
beads, the enrichment process was completed within five
minutes, dramatically reducing sample preparation time
and allowing for high throughput analysis of protein
phosphorylation sites. Therefore, this technique may
prove particularly useful for mapping phosphorylation
sites in studies exploring time course or dosage effects.

Identification of a phosphorylation site in the 14-3-3
binding protein AHAI in 200 mM salt-treated plants
Our study identified a well characterized phosphorylation
site in the plasma membrane protein AHA1. The phos-
phorylated peptide was identified in two of the three bio-
logical replicates (Table 1, Figure 3). The label-free

quantitative analysis shows an average ratio 6.92 (Table
1), which suggests that this site can be responsive to salt
stress. This site is phosphorylated in the C-terminus of
many H+-ATPases [31]. AHA was found to be a 14-3-3
interacting protein in a tandem affinity purified 14-3-3
complex [32]. The phosphorylated residue (YpTV) can
bind 14-3-3 proteins in a phosphorylation-dependent
manner [33,34]. The functional importance of this site in
pollen has been reported; however, this site has not been
characterized in the salt stress response. Although a previ-
ous study addresses the importance of the related ATPase
AHAA4 in salt stress resistance [35], no previous study has
provided in vivo evidence of the importance of this site in
the salt stress response. Our results provide in vivo evi-
dence that the phosphorylation site in the C-terminus of
AHA1 (GLDIDTAGHHYpTV-COOH) is phosphorylated
in 200 mM salt-treated Arabidopsis plants. This evidence
suggests that phosphorylation of AHA1 plays a role in the
salt stress response.
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Identification of a phosphorylation site in a sugar
transporter in 200 mM salt-treated plants

Sugar transporters (STP) are plasma membrane proteins
that play important roles in the uptake and response to
sugar in Arabidopsis [36]. In the Arabidopsis genome, there
are 14 sugar transporter genes. Many of these genes are
involved in Arabidopsis plant growth and development
[37]. For example, the knockout line of the AtSTP1 gene
exhibits a mutant phenotype characterized by decreased
uptake of exogenous monosaccharides by Arabidopsis
seedlings [36]. The AtSTP1 gene is diurnal and light-regu-
lated and is expressed and localized in guard cells [37].
However, no roles for STP in the salt stress response have
been previously reported.

In this study, we identified a phosphorylation site in
AtSTP1 (GVDDVpSQEFDDLVAASK) in 200 mM salt-
treated plants (Table 1, Figure 2). Nevertheless, this phos-
phorylated peptide was identified only once in the three

biological replicates (Table 1). Since the same site was pre-
viously identified in a proteomic study [38], our results
confirm the phosphorylation of this residue. The label-
free quantitative analysis shows a ratio 7.95 (Table 1),
which suggests that this site can be responsive to salt
stress. Based on an alignment analysis, this site is not evo-
lutionarily conserved (data not shown). This observation
suggests that the function of this phosphorylation site in
AtSTP1 in the salt stress response can be unique to Arabi-
dopsis  and other closely related organisms.

Identification of phosphorylation sites in aquaporin PIP2;4
The aquaporin water channels are known to be involved
in water transport in plant cells [39]. They are encoded by
a gene family and can be divided into four subgroups
(MIP, TIP, PIP, NIP) [39]. In Arabidopsis, the phosphoryla-
tion of PIP2;1 has been shown to be regulated by salt [40].
In this study, two phosphorylation sites in PIP2;4 (Ser-
283 and Ser-286) were identified in either salt-treated or
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salt-free samples (Table 1, Figure 1) but the two mono-
phosphorylated peptides, ALGSFGpSFGSFR and ALGS-
FGSFGpSFR were co-eluted during the LC-MS/MS analysis
that the resulting data was contributed by the combina-
tion of two individual phosphopeptides (Table 1). There-
fore, the exact expression ratios of these two individual
sites were not clear. These two sites are novel sites and
were not previously reported.

The doubly phosphorylated peptide, ALGSFGpSFGpSFR,
was also identified in this study. According to label-free
analysis, this doubly phosphorylated peptide was identi-
fied predominately in salt-treated condition. The ratios of
three independent experiments were 2.49, 2.57, and 2.08
respectively. Nevertheless, according to labeling analysis,
the ratio was 0.52. This indicated that this doubly phos-
phorylation was effected by salt stimulation. The incon-
sistent ratios between two independent analysis methods
may be due to the complexity of the multiple phosphor-

http://www.proteomesci.com/content/7/1/42

ylation sites in a single peptide. Understanding the func-
tional  significance of  Ser-283 and  Ser-286
phosphorylation in the salt-stress response requires fur-
ther study.

Identification of a phosphorylation site in a MAPKK in 400
mM salt-treated plants

The MAPK signaling pathway has been reported to be
involved in the osmotic stress response [41]. In Arabidopsis
a MAPKK, AtMKK2, has been shown to be involved in salt
stress signaling [42]. The same kinase was also found to
play a role in disease resistance [43]. AtMKK2 is activated
by Arabidopsis MEKK1 [42]. However, the phosphoryla-
tion sites of these kinases have not been well character-
ized. In this study, we identified a phosphorylation site
(IISQLEPEVLpSPIKPADDQLSLSDLDMVK) in the salt-
regulated MAPKK, MKK2, predominately in 400 mM salt-
treated Arabidopsis plants (Figure 4). The label-free ratio is
4.43 in comparison to control (data not shown).
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MS/MS profile of phosphorylated peptide AtMPKK2. MS/MS spectrum of AtMPKK2 phosphorylation site (IISQLEPEV-

LpSPIKPADDQLSLSDLDMVK).
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Although a putative phosphorylation site in Arabidopsis
MKK?2 has previously been reported [44], the site we iden-
tified is in a different position and has not been previously
documented.

Based on an alignment analysis, this site is conserved
among different plant species (data not shown). Although
the MAPKK (SIMK kinase) of a salt-induced MAPK [45]
has also been identified in alfalfa [46], the phosphoryla-
tion site is not conserved between the two, suggesting that
these two proteins may participate in independent salt sig-
naling pathways. Since this site was identified only in the
400 mM salt-treated plants, this phosphorylation event
may be regulated selectively by high salt conditions.

Identification of a phosphorylation site in a calcium-
binding protein

A salt-treatment specific phosphopeptide was identified
from a novel Arabidopsis protein (At1g05150) containing
two conserved motifs: the TPR motif and the EF-hand.
This phosphorylated peptide was identified in all three
biological replicates (Table 1). The TPR motif is known to
be involved in protein-protein interactions [47]. This pro-
tein also has two predicted EF-hands, which are generally
involved in calcium binding. The phosphorylation site is
novel and has not previously been shown. The identifica-
tion of the phosphorylation site of this protein suggests
the possible involvement of both calcium and phosphor-
ylation in regulation of salt stress signaling.

Phosphorylation sites identified in both control and salt-
treated Arabidopsis plants

Phosphorylation sites in aquaporins were recently
broadly characterized. These sites are generally found at
the C-terminus of the protein [39]. In our study, phospho-
rylation sites in PIP2;1, PIP2;2 and PIP2;3 were found in
both control and salt-treated plants. In addition to
aquaporin PIP2, the phosphorylation sites of a receptor-
like kinase (At3g02280) and a purine permease
(At1g57990) were also identified in both control and salt-
treated plants. These phosphorylated peptides were iden-
tified in all three biological replicates (Table 1). These
phosphorylation sites have previously been described
[38,48], consistent with our MS data. Santoni group uti-
lized stable isotope labeling to gnantify phosphorylation
site of PIP2;1 and detected reduced phosphorylation level
in the salt-stressed Arabidopsis [39]. In our quantitative
analyses, we observed a quantitative ratio around 0.3. Our
data supported Santoni's results.

Sequence alignment of C-terminus of aquaporin PIP2 in
plants reveals evolutionarily conserved and variable
phosphorylation sites

In order to determine whether the phosphorylation site of
aquaporin AtPIP2;4 is evolutionarily conserved, we car-

http://www.proteomesci.com/content/7/1/42

ried out a sequence alignment of the C-terminus of PIP2s
from Arabidopsis and rice. In addition, the C-terminus of
spinach SoPIP2;1 was also included since its phosphoryla-
tion site was reported. Based on the alignment result, a Ser
phosphorylation site corresponding to Ser274 in spinach
SoPIP2;1 [49] is evolutionarily conserved among all PIP2
proteins (Figure 5). This phosphorylation site was also
found to be phosphorylated in maize PIP2;1 [50], rice
PIP2s [25], and Arabidopsis PIP2s [40]. Calcium-depend-
ent protein kinase (CDPK) was demonstrated to be the
kinase that phosphorylates the site ([51]-[52]).

Based on the sequence alignment, a Ser phosphorylation
site corresponding to Ser277 in spinach SoPIP2;1 [49] is
evolutionarily conserved among some PIP2 proteins (Fig-
ure 5). This site was found to be phosphorylated in spin-
ach SoPIP2;1 [49] and in Arabidopsis AtPIP2;1 [40]. In
this study, we identified a phosphorylation site of
AtPIP2;4 (Ser283) corresponding to Ser277 in spinach
SoPIP2;1 (Figure 5). This site was identified only in the
control sample. Our result shows that this site is also a
conserved site.

By contrast, in this study we identified another phospho-
rylation site of aquaporin AtPIP2;4 (Ser286) which was
found only in salt-treated samples. Based on the sequence
alignment, this site is not conserved among PIP2 family
members (Figure 5). Since this phosphorylation site was
not published before, we therefore concluded that this site
is anovel one. We suspect that the phosphorylation of this
novel site can be regulated by either a CDPK or an

AtPIP2;1 WVGPFIGAAIAAFYHQFVLRASGSKSLGSFRSAANV-———
AtPIP2;2 WVGPFIGAAIAAFYHQFVLRASGSKSLGSFRSAANV-———
AtPIP2;3 WVGPFIGATIAAFYHQFVLRASGSKSLGSFRSAANV-———
AtPIP2;5 WVGPFAGAATIAAFYHQFVLRAGAIKALGSFRSQPHV-———
AtPIP2;6 WVGPFVGAAIAAFYHQFVLRAGAMKAYGSVRSQLHELHA-
OsPIP2;1 WVGPFVGAAIAAFYHQYILRAGAIKALGSFRSNA-—————
ZmPIP2;1 WVGPLVGAATIAAFYHQYILRAGAIKALGSFRSNA-—————
AtPIP2;7 WVGPFLGALAAAAYHQYILRASAIKALGSFRSNAEN————
AtPIP2;8 WVGPFVGALAAAAYHQYILRAAAIKALASFRSNPEN————
SoPIP2;1 WVGPFIGAAVAAAYHQYVLRAAAIKALGSFRSNPEN————
AtPIP2;4 WVGPMIGAAAAAFYHQFILRAAAIKALGSFGSFGEFREFA
OsPIP2;7 WVGPVIGAFLAAAYHKLVLRGEAAKALSSFRSTSVTA-——
OsPIP2;3 WVGPLIGAAIAAAYHQYVLRASAAKLGSSSSFRG——————
OsPIP2;2 WVGPLIGAAIAAAYHQYVALKCRYAYKMAASVQH-—————
OsPIP2;6 WA-PSGATPATELRWPWLLCCCWPGWIWSYRLHVRECV—
Figure 5

Alignment of the amino acid sequences of aquaporin
from different plants. Multiple amino acid sequence align-
ment of aquaporin in Arabidopsis thaliana (At), Oryza sativa
(Os), Spinacia oleracea (So) and Zea mays (Zm). Highly con-
served phosphorylation sites are highlighted in gray; Black
area represents conserved phosphorylation sites.
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unknown kinase since this site does not have a consensus
CDPK phosphorylation motif.

Identification of receptor-like kinase At3g02880

Receptor kinase At3g02880 is a member of receptor-like
kinase family. This gene family is involved in signaling in
plant cells [53]. Nevertheless, little is known about the
functions of the family members. The phosphorylated
peptides of receptor kinase At3g02880 were identified in
control and salt-stressed samples. The average label-free
ratio 3.99 and D/H ratio 1.61 were both higher than 1,
which suggests that the phosphorylation sites can be
involved in salt-stress signaling. Based on the sequence
alignment, the phosphorylation site is conserved among
receptor kinase family members in rice and Arabidopsis
(Figure 6). This suggests these sites may have important
biological functions in plants.

Conclusion

In this study we show that membrane shaving followed by
Zr*+-charged magnetic bead phosphopeptide isolation
can successfully identify phosphorylation sites in mem-
brane and membrane-associated proteins. In particular,
we identified several phosphorylated peptides containing
sites which appear to be regulated by salt. These phospho-
rylation sites may therefore be important in salt-stress
responses in plants.

Materials and methods

Chemicals

Acetonitrile, acetic acid, ammonium bicarbonate, formal-
dehyde (37% in H20), and ammonium hydroxide
(28~30%) were purchased from J. T. Baker (Phillipsburg,
NJ, USA). 1,4-Dithiothreltol (DTT, Cleland's reagent) and

At3g02880 777LKIGMSCTAQFPDSRPSMAEVTRLIEEVSHSSGEPNPVED 777777777777
At5g16590 ***LNIGISCTTQYPDSRPTMPEVTRLIEEVSRSPAEPGPLHD ************
At1g48480 ————QLGLECTSQHPDQRPEMSEVVRKMENLRPYSGEDQVNEAD ———————————
At3gl7840 AEMLQLGIDCTEQHPDKRPVMVEVVRRIQELR-QSGADRVG——————————————
0509923570 ————————— CTEQRPERRPTMAEVAARIEHIVDTVIRNADVDDFDSVSQ——————
0s08g33090 W  ———————m———— HHPDRRPAMAEVEARIERIVEDACRNADSGSTDGSRSMSA-——
0503912250 ————————————— HPDRRPSMSEVAARIDEIRRSSLGDRPAEDSAGEGEEPSL**
0503921510 ——————m——————— PERRPTMAEVIRMIEELRQSASESRDSENENARESNPPSA*
0s07g48310 —————————————— PDRRPSMEDVIRMIEGLRHSASESRASEDEKMKDSNPPSV*
0505940200 —————————————— PDQRPRMEEVVRRIEEIRNSSSGTRLSPEDKLKEEAIQIT-
0s01g60330 ————————————= PPDORPKMDEVIRRIVEIRNSYSGSRTPPEEKQKDESAAP-—
0501912390 ——————————————- DVVRMLEDVRRTDTGTRTSTEASTPVVDVQNKAESSSAAH
At2g26730 @ ——m—mmmmm——— e VNRSETTDDGLRQSSDDPSKGSEGQTPPGESRTPPRSVTP—
0503950450 ————————mmmm—— KKSSERLEGRDPQQQASNLEAGDDQTSKPESAEGLNPFAP—
Figure 6

Alignment of the amino acid sequences of receptor-
like kinase At3g02880 in planta. Amino acid sequence
alignment of C-terminal of membrane proteins in Arabidopsis
thaliana (At) and Oryza sativa (Os). Conserved amino acids
are highlighted in gray. Black area represents the phosphor-
ylation sites.

http://www.proteomesci.com/content/7/1/42

methanol were obtained from Mallinckrodt Baker (NJ,
USA). Formic acid and sodium acetate were purchased
from Riedel-de Haén (Seelze, Germany). lodoacetamide
(IAA), sodium cyanoborohydride and formaldehyde-d,
(20% solution in D,0) were purchased from Sigma (MO,
USA). Zr*+-IMAC magnetic beads were provided by Mass
Solutions Technology Co. Ltd (MST, Taipei, Taiwan).
Sequencing grade trypsin was purchased from Promega
(Madison, WI, USA). The water used in the protein diges-
tion and purification experiments was obtained using the
Direct-Q™ pure water purification system (Millipore, MA,
USA). Formaldehyde is known to the state of California to
cause cancer; special caution was taken including the use
of surgical gloves and fume hood when handling formal-
dehyde.

Seed sterilization and germination

Arabidopsis thaliana (ecotype Columbia) seeds were steri-
lized in a chamber with Cl, gas which was created by add-
ing 3 ml 12N HCI to the beaker containing 100 ml 12%
NaOCI. After 3 hours, the chamber cap was opened for 0.5
hour. After closing the cap of the microfuge tube, the
chamber was exposed to laminar flow for 0.5 hour to clear
the Cl, gas. Finally, the cap was closed and the sterilized
seeds were stored at 4°C. Sterilized seeds were planted on
plates containing 0.5 x Murashige and Skoog (MS)
medium supplemented with 0.5% sucrose, pH 5.7. After
sealing the plates with ventilative adhesive tape, seeds
were incubated at 4°C in the dark. One week later, seeds
were transferred to the growth chamber (22°C/16-h pho-
toperiod, 100 pE m-2 s light) for germination.

Seedling suspension culture and salt treatment

After seed germination, seedlings were transferred to a
500 ml flask containing 200 ml suspension culture media
(0.5 x Murashige and Skoog medium supplemented with
0.5% sucrose, pH 5.7). The seedlings were incubated at
twilight (25°C/16-h photoperiod, 10 pE m2 s light) in
suspension cultures (100 rpm) to enrich root growth.
After 4 weeks, the suspension culture media was renewed
by laminar flow. Plants were treated with either no salt
(Control) or 200 mM NaCl (Figure 7) for three days.

Membrane protein purification

After three-day salt treatment, plants were harvested and
washed three times with Reverse Osmosis water. After dry-
ing the plants, the weights of the plants were recorded.
Liquid nitrogen was use to pre-cool the mortar, and plant
tissue was ground to a fine powder. Two ml extraction
buffer [20 mM Tris, pH 7.5; 100 mM NaCl; 10% glycerol;
1x protease inhibitor cocktail (Complete with EDTA,
Roche)] was added to the mortar containing 1 mg of plant
tissue in the presence of continued grinding to increase
extraction efficiency. The crude extract was filtered using
Miracloth at 4°C. The crude extract was then centrifuged
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Suspension culture of Arabidopsis plants and protein purification. Arabidopsis seedlings were suspension cultured
followed by a 3-d salt (0, 200 mM NaCl) treatment. Membrane proteins were harvested by pellet total proteins using ultracen-

trifugation.

(Beckman J2-MC) for 30 min at 4°C to collect the super-
natant. The supernatant was centrifuged again in an ultra-
centrifuge (Beckman L8-M) for 75 min at 4°C to collect
the membrane fractions (Figure 7). Concentrations of
membrane proteins were measured using the Bradford
assay. Three independent biological replicates (R1, R2,
and R3) of membrane fractions for control and salt-
treated plants were prepared and analyzed.

Membrane shaving by trypsin digestion

Membrane samples treated with different salt concentra-
tions were resuspended and digested individually using
trypsin as previously reported [54]. Briefly, samples (each
approximately 200 pg) were resuspended individually in
50 mM ammonium bicarbonate, pH 8.0, via vortexing
and sonication. The proteins were thermally denatured at
90°C for 20 min, then cooled to room temperature and
diluted with methanol to produce a composition of 60%
organic solvent. Sequencing grade trypsin (5 pg) was
added to the organic-aqueous buffer, and the mixture was
incubated at 37 °C overnight. The proteolysis reaction was
quenched by rapid freezing and stored at -80°C prior to
Zr4+-IMAC enrichment.

Enrichment of phosphopeptides by Zr**-IMAC magnetic
beads

The enrichment of phosphopeptides was carried out using
Zr*+-IMAC beads according to the manufacturer's instruc-

tions. Briefly, the tryptic digested membrane fraction was
diluted in 100 pL of incubation buffer (200 mM NaCl/
10% HOAC/20% ACN) and added to 20 pL of Zr-IMAC
bead suspension. The suspension was vigorously mixed
by pipetting in and out of a sample vial for 30 sec. The
beads were then concentrated using a magnet, and the
supernatant was removed. The magnetic beads were
washed in 100 pL of incubation buffer (200 mM NaCl/
10% HOAC/20% ACN) to remove most nonphos-
phopeptides. After vigorous mixing by pipetting for 30
sec, the beads were concentrated using a magnet, and the
supernatant was removed by pipetting. The wash was
repeated twice. The magnetic beads were then rinsed with
20 pL of 1% ammonium hydroxide in 50 mM ammo-
nium bicarbonate to elute bound phosphopeptides. After
vigorous mixing for 30 sec, the supernatant was collected
by magnetic separation, and the aliquot was further ana-
lyzed by LC-MS/MS.

LC-MSIMS analysis

The resulting peptide mixture was subjected to the CapLC
system (Waters, Milford, MA) utilizing a capillary column
(75 pm i.d., 10 cm in length, MST, Taiwan) with a linear
gradient from 5% to 50% acetonitrile containing 0.1%
formic acid over 46 min. The separated peptides were on-
line analyzed under positive survey scan mode on a nano-
ESI Q-TOF (Micromass, UK) instrument. The scan range
was from m/z 400 to 1600 for MS and m/z 50 to 2000 for
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MS/MS. The raw data was processed into a PKL text file
format using MassLynx 4.0 (subtract 30%, smooth 3/2
Savitzky Golay and center three channels in 80% cen-
troid).

Label-free quantitative analysis

A label-free quantitative analysis was performed using
parallel LC-MS/MS runs. The relative ratio was analyzed
manually through MassLynx 4.0. Briefly, the precursor
ions of the corresponding phosphopeptides were selected
by SIC mode and displayed as BPI chromatograms. Each
peak of the corresponding m/z on MS chromatogram was
correlated with the retention of its precursor on MS/MS
chromatogram. The peaks of phosphopeptides derived
from salt-treated and salt-free conditions were displayed
at a similar retention time in parallel chromatograms. The
relative ratio of phosphopeptide with and without salt
treatment was determined by comparison with peak areas
in different MS chromatograms at an almost the same
retention time. Each chromatogram was processed by sub-
traction and smoothing prior to comparison. Alterna-
tively, the ratio determination also can be achieved on MS
spectrum rather than MS chromatogram. The MS spectra
of salt-treated and salt-free samples were displayed at the
similar retention time interval, and the ratio of the same
precursor was determined by intensity comparison of
each corresponding monoisotopic peak.

Quantitative analyses of phosphorylated peptides by
dimethyl labeling, IMAC enrichment and LC-MSIMS
Quantitative analyses of phosphorylated peptides by
dimethyl labeling were carried out as previously described
[55]. The peptide mixture derived from membrane frac-
tion without salt stress was dissolved in 50 pL of sodium
acetate buffer (100 mM, pH 5-6) and mixed with formal-
dehyde (4% in water, 2 uL), then mixed immediately with
freshly prepared sodium cyanoborohydride (600 mM, 1
pL). The mixture was vortexed again and then allowed to
react for 5 min. If necessary, ammonium hydroxide (4%
in water, 2 uL) was added to consume the excess aldehyde.
The peptide mixture derived from 200 mM salt stressed
membrane fraction was labeled with deuterium form in a
similar manner, but by using formaldehyde-d, (4% in
water, 2 uL). The H-labeled (control) and D-labeled (200
mM salt-treated group) samples were combined and acid-
ified by 10% acetic acid to around pH 3. The stable-iso-
tope labeled phosphopeptides were enriched by Zr#+
IMAC magnetic beads according the protocol mentioned
above. The resulting elute fraction from IMAC enrichment
was then analyzed by LC-MS/MS.

Database and statistical analysis
For protein identification, the PKL files generated from
MS/MS spectra were uploaded to the MASCOT search

engine v2.2 (Matrix Science, UK) http://www.matrix sci-

http://www.proteomesci.com/content/7/1/42

ence.com|56]. The parameters for database searching
were as follows: (1) Protein database was set to be Swiss-
Prot; (2) Taxonomy was set as Arabidopsis thaliana (thale
cress); (3) One trypsin missed cleavage was allowed; (4)
The mass tolerance was set to be 0.4 Da for both precursor
and product ions; (5) Phospho (ST), Phospho (Y), deam-
idated (NQ), oxidation (M), Dimethyl (K), Dimethyl (N-
term), Dimethyl:2H(4) (K), Dimethyl:2H(4) (N-term)
were chosen for variable modifications; (6) Data format
was chosen as Micromass (.pkl) and instrument was cho-
sen as ESI-QUAD-TOF. (7) Proteins with scores above the
significance threshold (p < 0.05) were shown as identified
proteins. All MS/MS spectra of identified phosphopep-
tides were further verified by manual interpretation. Scaf-
fold software was used to provide validation and
confidence level (% probability) of the identification and
95% confidence level was used as the cut-off. The false dis-
covery rate (FDR) was calculated using a decoy database
search [57]. The identification of dimethyl labeled pep-
tides were directly performed on MASCOT search engine
by choosing Dimethyl (K) and Dimethyl (N-term) indi-
cated H-labeling and choosing Dimethyl:2H(4) (K) and
Dimethyl:2H(4) (N-term) indicated D-labeling. The D/H
ratio was calculated from the relative intensities of D-
labeled and H-labeled peptides on mass spectrum. A
label-free quantitative analysis was performed using sev-
eral LC-MS/MS runs. The relative ratio was determined by
comparison with peak intensities in different LC-MS runs
under strict retention time alignment.

Bioinformatic analysis of phosphorylation sites

BLAST searches [58] were performed to identify protein
homologues in plants. To determine the localization of
phosphorylation sites in a membrane protein, results
were used to query the ARAMEMNON database http://
aramemnon.botanik.uni-koeln.de/index.ep[59]. This
step was used to confirm that the identified sites were not
located within transmembrane domains. To discover if
phosphorylation sites had been previously identified,
sites were compared to results from PhosphoPhat http://

phosphat.mpimp-golm.mpg.de/, P3DB http://
www.p3db.org/ and PepBase http://pep

base.iab.keio.ac.jp/phospho/msb/[60-62].

Protein sequence alignment was performed using Clus-
talW software to align phosphoprylation sites http://
align.genome.jp/. Amino acid sequences of Arabidopsis

aquaporin, AtPIP2;1 (At3g53420), AtPIP2;2
(At2g37170),  AtPIP2;3  (At2g37180),  AtPIP2;4
(At5860660),  AtPIP2;5  (At3g54820),  AtPIP2;6
(At2g39010), AtPIP2;7 (At4g35100) and AtPIP2;8
(At2g16850), and rice aquaporin,  OsPIP2;1
(0s07g26690), OsPIP2;2 (0s02g41860), OsPIP2;3

(Os04g44060), OsPIP2;6 (Os04g16450) and OsPIP2;7
(0s09g36930), were retrieved from TAIR database http://
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www.arabidopsis.org/index.jsp and Rice Genome Anno-

tation database http://rice.plantbiology.msu.edu/, and

spinach and maize aquaporin sequences were blasted
against NCBI database http://www.ncbi.nlm.nih.gov/.
According to the identity of amino acid sequence of
At3g02880, other amino acid sequences of Arabidopsis
membrane proteins, At5g16590, At1g48480, At3g17840,
At2g26730, and rice membrane proteins, Os03g12250,
0s03g21510, 0s09g23570, 0s07g48310, Os05g40200,
0Os01g60330, Os08g33090, Os01g12390, Os03g50450,
were blasted using TAIR database http://www.arabidop
sis.org/index.jsp and Rice Genome Annotation database
http://rice.plantbiology.msu.edu/. Amino acid sequence
alignment was retrieved from ClustalW http://

align.genome.jp/.
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