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Abstract

Background: A contemporary view of the cancer genome reveals extensive rearrangement compared to normal
cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the
hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein
expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in
these models associated with the hallmarks of cancer.

Results: A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474
and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A
total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed
by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched
pathways in the tumor cell lines. We observed “protein ubiquitination” and “apoptosis signaling” pathways were
both enriched in the two breast cancer models while “IGF signaling” and “cell motility” pathways were enriched in
BT474 and “amino acid metabolism” were enriched in the SKBR3 cell line.

Conclusion: While “protein ubiquitination” and “apoptosis signaling” pathways were common to both the cell
lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell
line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in
SKBR3 via up regulation of Calpain-11 as compared to 184A1.

Keywords: MALDI-TOF MS, Proteomics, Breast cancer, Malignant transformation, Two dimensional gel electrophor-
esis, Ingenuity pathway analysis

Background
Cancer cells exhibit a number of common traits that dif-
ferentiate themselves from normal cells, including sus-
tained proliferative signaling, resisting cell death, and
evading growth suppressors [1]. Acquiring one of the
hallmarks of cancer is associated with activating/deacti-
vating particular genes, called oncogenes/tumor suppres-
sors. The focus on identifying specific oncogenes or
tumor suppressors that drive malignant transformation
embodies the genomic era in cancer research [2]. How-
ever, a series of recent developments challenge this

oncogene paradigm. Next generation sequencing efforts
have revealed that, instead of a small number of genetic
alteration associated with malignant transformation [3],
genomic landscapes are extensively modified in solid
tumors [4,5]. These massive rearrangements suggest that
there might not be single driver mutations, but that the
quantitative alterations in cellular traits associated with
malignant transformation is distributed among multiple
genetic loci. These quantitative trait loci (QTL) manifest
themselves by altering the flow of intracellular informa-
tion among signaling pathways [6]. In addition, evolu-
tionary theory suggests that cancer cells are alternative
solutions to a multivariate optimization problem where
the tumor microenvironment provides the selective
landscape [7]. Collectively, these findings suggest a more
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global approach towards identifying the molecular
alterations associated with oncogenic transformation.
Gene microarray platforms provide tremendous

breadth in surveying the gene expression landscape
within a cellular system. However, relating gene expres-
sion with the specific role that the corresponding pro-
tein plays in a signaling pathway is complicated by post-
transcriptional control of protein expression [8] and
tight regulation of protein activity [9]. In contrast to
genomic-based assays, proteomics provides an attractive
platform to profile this regulatory layer of protein activ-
ity and differences in the level of protein expression
[10]. Similar to QTL analysis [11], differences in proteo-
mic patterns across biological systems that exhibit quan-
titative differences in traits provide an unbiased
perspective to identify molecular mechanism that under-
pin these differences in phenotype. In contrast to QTL
analysis, the direct relationship between proteomic pro-
files and cellular traits implies that a smaller sample size
can still yield meaningful insight. High-throughput
quantitative proteomic analysis has previously been used
to identify differentially expressed proteins and pathways
associated with breast tumor phenotypes [12]. Also net-
works derived from the differences in expression of key
specific biochemical molecules between normal and
transformed hepatocytes uncovered profound differences
in the immune response between these cells [13]. More
generally, knowledge of molecular mechanisms that
associate with cellular traits may lead to new therapeutic
strategies or new fundamental understanding of the cor-
responding signaling pathways. Despite this promise, the
proteomic loci, as a manifestation of underlying genetic
alterations that are associated with oncogenic transfor-
mation in breast cancer, remain unclear.
Breast cancer is a clinically heterogeneous disease

with a variety of distinct subgroups of tumors endowed
with different phenotypes and clinical outcomes. Using
profiles of gene expression, breast cancers are divided
into five major subtypes: triple-negative (ER-/PR-/
HER2-), luminal A (ER/PR+,HER2-), luminal B (ER/PR/
HER2+), HER2+/ER-, and normal breast-like (ER/PR/
HER2-, CK5/6,HER1+) [14-16]. Clinical presentation is
distributed among the breast cancer subtypes: 68% were
luminal A, 9.5% were luminal B, 9.5% were HER2+/ER-
and 13% were triple-negative and normal breast-like
[17,18]. Particular subtypes also express unique patterns
of proteins. For instance, HER2 expression is more
common in HER2+/ER- and luminal B subtypes. Ki-67
and TP53 expression is rarely associated with luminal A
subtype as compared to others. While these subtypes
are defined to help tailor treatment options, it is unclear
what pathway alterations occur in concert with ER/PR/
HER2 amplification. In this study, our objective was to
identify proteins that are differentially expressed in two

HER2+ phenotypes of breast cancer (BT474 and
SKBR3) as compared to a cell line that is reflective of
normal mammary epithelium (184A1) using gel-based
proteomics. Differences in protein expression were then
analyzed using systems biology tools to identify the
functionally enriched pathways. Immunoblotting was
used to validate the patterns of protein expression
observed using a proteomics workflow. In summary, we
found that differentially expressed proteins in BT474
were overrepresented by proteins involved in cell prolif-
eration and those in SKBR3 were overrepresented by
proteins involved in amino acid metabolism. Differential
protein expression also suggests that apoptosis signaling,
a functionally enriched pathway that is inhibited in both
the tumor phenotypes might have independent mechan-
isms unique to each tumor phenotype. In BT474, apop-
tosis is regulated by under-expression of Bid in
comparison with 184A1; whereas, it occurs in SKBR3
by over-expression of Calpain-11 as compared to
184A1.

Results
Identifying proteins differentially expressed in breast
tumor cell lines
2DE and image analysis
Representative pattern of cellular proteome obtained in
the pH range 4-7 after 2DE of total cellular extracts is
shown in Figure 1 with more than 3,500 unique protein
spots resolved in each cell line (Figure 1D). The proteo-
mic pattern for each cell line was highly reproducible
among biological replicates (Additional file 1: Figure S1)
with a dynamic range spanning four orders of magni-
tude and a strong correlation between normalized inten-
sities for matching spots (Figure 1E and 1F).
Considering that there may be some basal differences in
protein expression among these cell lines, a protein was
considered differentially expressed if it was deregulated
by a factor of at least 1.5-fold. Comparing the relative
spot intensities in the 184A1 to BT474 cell lines
revealed a total of 329 spots that showed a significant (p
< 0.05) difference in expression by at least 1.5-fold.
Similar comparison in 184A1 and SKBR3 proteomic
profiles revealed 265 spots to have a significant (p <
0.05) expression change by at least 1.5-fold. Out of
these, 110 well-resolved spots were selected in cell lines
184A1 and BT474 and 109 well-resolved spots were
selected in cell lines 184A1 and SKBR3. An example of
a well-resolved protein spot with its presence in each
gel across both the cell lines is shown for 184A1-BT474
(Figure 2A) and 184A1-SKBR3 (Figure 2B) comparisons.
The normalized volume of the spot in each cell line
with the fold-change and significance is shown for
184A1-BT474 (Figure 2C) and 184A1-SKBR3 (Figure
2D) respectively.
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Peptide mass fingerprinting
The selected protein spots were excised, in-gel digested by
trypsin and analyzed by MALDI-TOF MS to generate a
peptide mass fingerprint. The resulting peptide mass fin-
gerprints were queried against the Swiss-Prot human data-
base using Mascot as a primary database search algorithm.
Expasy Aldente was used as a complementary algorithm
for additional confirmation to reduce the possibility of
false positive identification (Additional file 2: Table S1 and
Additional file 3: Table S2). Agreement between the
apparent Mr and pI observed on the 2-D gel and the

theoretical values of the identified proteins provided addi-
tional support for positive identification. As an example,
peptide mass fingerprints with the tryptic peptide mass
values that contributed towards protein identification are
shown for Probable ribonuclease-11 (RNASE11) in
184A1-BT474 and 3-hydroxy isoburate dehydrogenase
(HIBADH) in 184A1-SKBR3 in Figure 2. From 110 picked
spots, 96 differentially expressed proteins were identified
in the 184A1-BT474 comparison. For the 184A1-SKBR3
comparison, 94 proteins were identified from 109 picked
spots. These differentially expressed proteins that were
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Figure 1 Representative 2-D proteomic profiles of cell lines (A) 184A1, (B) BT474 and (C) SKBR3. The first dimension was resolved on IPG
strip 4-7, 7 cm. The second dimension is a 12% SDS-PAGE spanning molecular weight region 10-250 kDa, stained with coomassie blue and
scanned using Typhoon 9400 scanner. (D) Quantitative image analysis using Ludesi REDFIN reveals the gel reproducibility and protein loading
with no significant difference in the number of identified protein spots on the gel replicates across each cell line. Error bars represent S.E.M.
Scatter plots of average normalized intensities are plotted on a logarithmic scale for matching protein spots showing the dynamic range of spot
detection and correlation for the normal cell line 184A1 versus (E) BT474 and (F) SKBR3.
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identified in BT474 (Figure 3A) and in SKBR3 (Figure 3B)
are encircled red on the proteome map of 184A1. Out of
these, 64 proteins were unique to the 184A1-BT474 data-
set and 69 proteins were unique to the 184A1-SKBR3
dataset. Some of the identified proteins may exist in multi-
ple forms, as they were associated with multiple protein
spots. It is unclear as to whether these proteins exist in
multiple forms due to biological differences or processing
influences such as carbamylation, a common modification
when using urea buffer, that causes shifts in the isoelectric
point of the protein. Different forms of keratins, a com-
mon source of contamination in this method of identifying
proteins by in-gel digestion and PMF, also formed a small
subset of identified proteins and were excluded from all
subsequent analysis. More than 95% of the spots had
sequence coverage exceeding 25%. These differentially
expressed proteins (Table 1) formed the dataset for path-
way analysis and network generation.

Pathway analysis and protein interaction network
generation using IPA
Using the list of differentially expressed proteins for
each pairwise comparison, we annotated those patterns
with biological function by quantifying biological

pathways that were enriched in the data sets. A statisti-
cal test, the Fisher exact test with a Benjamini-Hochberg
correction, was used to assess the conditional probability
of observing multiple patterns associated with a given
pathway by chance alone. This statistical test was
applied to all of the canonical pathways contained
within the IPA library. In addition, the ratio of observed
proteins relative to the total number of proteins in a
pathway provided an additional metric for pathway
enrichment. The results from this pathway analysis are
summarized in Figure 4. Some pathways were found to
be unique to each cell line (Figure 4A) and some were
common to both the cell lines (Figure 4B). The most
significant canonical pathway associated with differen-
tially regulated proteins in BT474 cell line was the “Pro-
tein Ubiquitination Pathway” when ranked by
significance (p < 5.5 × 10-7) with nine molecules
(HSPA5, HSPA9, HSPA1L, HSPB1, HSPD1, PSMB1,
PSMC2, PSMC4, and PSME1) out of a possible 274
associated with the pathway. “Myc Mediated Apoptosis
Signaling” was the most significant pathway (p < 3.62 ×
10-6) when ranked by ratio (0.078) with five focus mole-
cules (BID, CDKN2A, RRAS2, YWHAE, YWHAQ) out
of a possible 64 molecules being associated with the

184A1

BT474

Gel1 Gel2 Gel3

184A1

SKBR3

Gel1 Gel2 Gel3

A C E

B D F

Figure 2 Montage showing differential expression of (A) Rnase11 and (B) Hibadh on each gel across both comparisons (identified
spot border is in red and neighboring spot borders are in blue). Densitometric quantitation of the normalized volume of the spot on each
gel with the associated fold-change and corresponding p-value is shown for (C) Rnase 11 and (D) Hibadh. Mass spectra for each peptide digest
was acquired between mass values of 800 and 3000, deisotoped using PLGS2.1 and submitted for peptide mass fingerprinting. The mass spectra
is shown for (D) Rnase11 and (E) Hibadh with the peptide mass values that contributed towards successful identification of the protein indicated
in bold and numbered on the spectrum.
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pathway. Similarly, in the SKBR3 cell line, the most sig-
nificant pathway was “Purine Metabolism” when ranked
by significance (p < 5.2 × 10-7) with ten molecules
(ATP5B, HSPD1, MPP2, NME5, NME7, POLI, PRPS1,
PRPSAP2, SEPT1, and TRAP1) out of a possible 439
being associated with the pathway. “EIF2 Signaling” was
the most significant pathway (p < 2.91 × 10-5) when
ranked by ratio with five focus molecules (AKT2,
EIF2S1, EIF2S2, EIF3I, and PPP1CC) out of a possible
104 being associated with the pathway. Additionally,
“Protein Ubiquitination Pathway” was also ranked high
in SKBR3 both by significance (p < 1.13 × 10-5), as well
as ratio with eight molecules (HSP90B1, HSPA4,
HSPA5, HSPB1, HSPD1, PSMA3, PSMB8, UCHL5) out
of a possible 274 associated with the pathway. In gen-
eral, pathways associated with proteins differentially
expressed in BT474 were found to be predominantly
associated with cell motility and proliferation (ERK5,
FAK, IGF-1, Integrin, and Actin cytoskeleton signaling).
On the other hand, metabolic pathways (Glutathione,
Histidine, Phenylalanine, Pyrimidine, and Purine Meta-
bolism) formed a predominant group of canonical path-
ways associated with differentially expressed proteins in
SKBR3.
Information obtained from IPA analysis relates cano-

nical pathways to a group of genes, but lacks the ability
to predict how a pathway is regulated differently. For
instance, “apoptosis signaling” was a significant pathway

in both the tumor cell lines, it remained unclear if this
pathway was up- or down-regulated. Additional func-
tional annotation was obtained using DAVID [19],
which clusters highly related genes and their corre-
sponding functional gene ontology annotation to gener-
ate a gene-term 2D heat map view (Figure 4C).
Differentially expressed proteins from BT474 and
SKBR3 were seen to be involved in negative regulation
of apoptosis and programmed cell death.
To overcome the limitation of pathway-based analysis

where not all human genes have been assigned to a defi-
nitive pathway; we also tried to interpret the dataset of
differentially expressed proteins in terms of a protein-
interaction network. The differentially expressed pro-
teins were uploaded and mapped to corresponding
“gene objects” in the Ingenuity Pathways Knowledge
Base (IPKB) in which curated prior information used is
a master gene interaction network. Using the BT474
data set, ten protein interaction networks were found to
be statistically significant (p < 0.01). Six of the ten gen-
erated networks were discarded as they had only one
focus molecule in the network. Similarly, six interaction
networks were generated using SKBR3 data set, out of
which one network was discarded on similar grounds.
The remaining networks are summarized in Additional
file 4: Table S3 with the list of all proteins associated
with the focus genes of the network. The most signifi-
cant network with the highest number of focus

4 7 4 7pI pI
10

250

kD

A B

Figure 3 Proteome map for 184A1 with red circles indicating protein spots differentially expressed by at least 1.5-fold (p < 0.05) that
were identified in (A) BT474 and (B) SKBR3. Identified proteins are shown in Additional File 2: Table S1 (184A1-BT474) and Table S2 (184A1-
SKBR3).
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Table 1 List of unique proteins that were differentially expressed and formed the dataset for IPA analysis are listed
along with the associated fold-change and p-value.

BT-474 versus 184A1 SKBR3 versus 184A1

Gene Symbol Fold changea Gene Symbol Fold Changea Gene Symbol Fold changea Gene Symbol Fold changea

ACTB 1.9 ± 0.1 LYN 1.62 AKT2 -3.14 LMNA -2.6

ACTN4 -3.54 MCF2L 2 ALDH2 -1.72 LMNB1 1.98

ACTRT1 -3.75 NDE1 2.33 ANXA5 -6.5 MAP3K7 -4.95

ADSL -2.58 P4HB 2.9 ± 1.1 ANXA6 1.73 MPP2 2.37

ALCAM -21.5 PCYT1B -3.45 APOA1 -2.71 MRPS35 5.18

ALDH2 -2.63 PDE4D 2.45 ATP5B 3.03 NME5 -6.4

ANXA5 -20.5 ± 141 PDE4D -2.94 ATP5B -3.2 ± 0.6 NME7 -6.4

ANXA8L2 -4.24 PHB -2 BPNT1 -2.59 NQO2 -5.83

BCAR3 4.25 PIH1D1 -2.46 CAPN11 3.52 OPA1 -3.06

BID -3.19 PMM2 2.74 CMPK1 -2.56 P4HB 2.55

C10orf88 -3.28 POLR3E -2.12 CTNNA3 -3.46 PAF1 -1.97

CAPZB -2.05 PPFIBP1 2.23 EEF2K 6.03 POLI -2.11

CDKN2A 3.22 PPM1B 2.99 EIF2S1 -3.89 PPFIBP1 4.18

CSK -9.11 PRDX2 -5.03 EIF2S2 4.32 PPP1CC 8.87

DPYSL4 1.66 PRPSAP2 -2.87 EIF3I -3.89 PRDX6 3.21

EEFIG -2.73 PSMB1 1.76 EVC 10.12 PRKAR2A -19.47

EIF2B3 -3.95 PSMC2 -5.3 ± 2.5 FAM102B 2.08 PRPS1 -5.46

FSTL1 -7.6 PSMC4 -7.19 GDI2 -2.31 PRPSAP2 -2.31

GNA14 -3.1 PSME1 -2.2 ± 0.6 GNB1L -6.1 PSMA3 -3.25

GSTP1 -45.37 PTER -6.49 GOLGA8F 4.17 PSMB8 -3.7

HIBADH -2.86 RAB27B -1.83 GRK4 -2.8 ± 0.4 RAB37 -2.17

HORMAD1 -1.63 RAB37 -2.9 ± 0.4 GSTP1 -22.92 RABIL1 -3.01

HSPA1L -3.53 RAB3A 3.45 GTF3C4 3.69 RMND1 -3.13

HSPA5 2.21 RGN -1.62 HIBADH -1.54 RNASE11 -9.38

HSPA9 5.0 ± 3.2 RNASE11 1.64 HNRNPF 2.63 SEMG2 -5.53

HSPB1 -2.48 RNPEPL1 -1.93 HSP90B1 1.57 SEPT1 -3.58

HSPD1 3.4 ± 0.9 RRAS2 -10.1 HSPA4 -2.48 SERPINB5 -6.06

IFT74 1.9 ± 0.2 SACM1L 3.23 HSPA5 2.14 SIKE1 -3.3 ± 1.3

IGBP1 -5.6 SERPINB5 -3.59 HSPB1 -3.42 ST3GAL4 -2.79

KRT1 -2.42 SRSF9 2.37 HSPD1 4.31 TBCC -3.7 ± 1.5

KRT13 -4.38 TBCC -12.07 ILI2A -2.6 TFB1M -4.55

KRT15 -6.2 ± 1.4 TPRG1 -2.02 KIAA1524 11.9 TRAP1 2.73

KRT17 -2.37 YWHAE -3.29 KRT15 -9.1 ± 2.5 TUBA1B 2.51

KRT18 4.0 ± 1.3 YWHAQ -2.97 KRT17 -7.7 ± 1.8 TUBA1B -2.11

KRT5 -11.6 ± 3.0 KRT2 -5.14 TUBBA2A 3.28

KRT6A -1.86 KRT24 -3.75 UCHL5 -2.68

KRT6B -3.5 ± 0.3 KRT5 -5.35 VPS39 -1.97

KRT83 -2.5 KRT6A -4.0 ± 1.7 YWHAZ -4.5 ± 0.5

LRPPRC 6.2 ± 1.2 LCMT1 -1.58

Fold-change of proteins identified multiple times is indicated with the S.E.M. and the highest p-value associated with any of the spots. Proteins indicated in bold
are up-regulated in 184A1 in comparison with both tumor cell lines. Proteins indicated in bold and italicized are up-regulated in both tumor cell lines in
comparison with 184A1
a A positive fold change indicates greater expression in the cancer cells line while a negative fold change indicates a greater expression in 184A1
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molecules in BT474 had a p-value < 10-48 with 23 focus
genes mapped onto a network of 35 molecules as shown
in Figure 5A and had functions associated with “Cell
Death” and “Protein Synthesis”. The most significant
network in SKBR3 (p < 10-57) had 24 focus molecules
mapped onto the protein interaction network consisting
of 35 molecules (Figure 5B) and had functions asso-
ciated with “Cell Morphology” and “Protein Degrada-
tion”. NF-�B complex formed a major hub at the centre
of the network in BT474 as well as SKBR3, with a num-
ber of direct and indirect interactions with the focus
molecules in the network. The intensity of the node
color represents the degree of up- (red) or down-(green)
regulation in tumor cell lines. Validation of these nodes

is an important step as they are major gene regulators
and deletion of any of these nodes may influence the
inferred network.

Validation of proteomics results using immunoblotting
We confirmed the differential expression of proteins
inferred from the proteomics results using immunoblot-
ting. Some of the proteins that were involved in the
most significant pathways of both the cell lines were
selected for validation. These proteins were HSPA5 and
HSPD1, which are both involved in “Protein Ubiquitina-
tion Pathway”, for BT474, and HSPD1 and TRAP1,
which are both part of “Purine Metabolism” pathway,
for SKBR3 cell line. “Apoptosis Signaling”, a hallmark of
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and the black region indicates the GO association not reported as yet. Gene symbols colored red are down-regulated and colored green are up-
regulated in tumor cell lines in comparison with 184A1.
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cancer and a significant pathway in BT474 (p < 0.04)
and SKBR3 (p < 0.05) was also selected for validation.
Interestingly, different proteins were involved in apopto-
sis signaling in both the cell lines. In BT474, BH3
domain interacting death agonist (Bid) and RRAS2 were
involved in apoptosis signaling. On the other hand, Cal-
pain-11 (CAPN11) and LMNA were a part of apoptosis
signaling pathway in SKBR3. Of these, BID and
CAPN11 were selected to validate the differential
expression.
As summarized in Figure 6, western blotting analysis

provided consistent results as compared to the gel-
based proteomics results. HSPD1 (Figure 6A) was
detected in three locations in the 184A1-BT474 pro-
teomic analysis, possibly due to processing influences,
and was upregulated in BT474 by 3.88 (p < 4.2 × 10-
4), 1.6 (p < 0.04), and 4.6 (p < 0.02) -fold respectively.

In SKBR3, HSPD1 was upregulated by a factor of 4.3
(p < 0.03). HSPA5 (Figure 6B) was upregulated in
BT474 by 2.2-fold (p < 0.02) as well as in SKBR3 by
2.1-fold (p < 0.03). BID (Figure 6C) was found to be
downregulated in BT474 by 3.1-fold (p < 0.05) and
proteomic analysis found the 80kD isoform of
CAPN11 (Figure 6D) was upregulated in SKBR3 by
3.5-fold (p < 0.01) in comparison with 184A1. How-
ever, the up regulation of HSP90 (Figure 6E) in
SKBR3 inferred from proteomic analysis was inconsis-
tent with immunoblotting, which revealed the protein
to be upregulated in 184A1. This inconsistent observa-
tion might be a cause of antibody specificity or the
semi-quantitative nature of immunoblotting given the
differences in dynamic ranges of photographic quanti-
fication of chemiluminiscence and coomassie based
detection methods.

A B

Figure 5 Proteins differentially expressed in (A) BT474 and (B) SKBR3 in comparison with 184A1 were overlaid onto a global
molecular network developed from information contained in the Ingenuity Knowledge Base (IKB). Genes or gene products are
represented as nodes, and the biological relationship between two nodes is represented as an edge (line). Solid lines indicate a direct
relationship and dashed lines indicate an indirect relationship between nodes. The intensity of the node color represents the degree of up- (red)
or down- (green) regulation. White nodes represent the IKB molecules associated with focus genes. Network reflects (A) Cellular Function and
Maintenance, Cell Death, and Protein Synthesis (p < 10-48) and (B) Cell Morphology, Cellular Function and Maintenance, and Protein Degradation
(p < 10-57).
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Discussion
The HER2+ cancer cell lines were selected to represent
different features of breast cancer phenotypes including
variations in receptor status. One of the cell lines,
BT474, is derived from ER+/PR + solid invasive ductal
carcinoma in the breast with a high in vitro invasion
capability [20]. SKBR3, on the other hand is derived
from pleural effusion adenocarcinoma, is negative for
both, ER and PR, and exhibits a low in vitro invasion
capability [21]. The non-tumorigenic cell line selected as
a reference for comparison of differential protein
expression was 184A1 as it has a lower proliferation rate
as compared to other non-tumorigenic epithelial cell
line, such as MCF10A [22]. The 184A1 cell line was
established from a normal mammary tissue, transform-
ing it by exposure to benzo(a)pyrene, thereby making it
immortal but not malignant. In the Biology of Cancer,
Robert Weinberg states that normal and cancer cells
“utilize control circuitry that is almost identical. Cancer
cells discover ways of making relatively minor

modifications of the control machinery operating inside
cells. They tweak existing controls ...” (emphasis added
pg 159) [23]. Identifying these subtle differences in sig-
naling circuitry will help understand the mechanistic
basis for cancer. By focusing on a small subset of cancer
cell lines, we aimed to identify these subtle differences
that are lost when averaged across many different cell
lines. Here we assume that the observed proteomes
reflect intrinsic differences in the genetic regulatory
structure that is altered in cancer. Thinking of cancer as
an evolutionary process, the BT474 and SKBR3 cell lines
reflect two genetic solutions to a survival problem physi-
cally encoded as the tumor microenvironment. We used
proteomics to explore the characteristics of these
genetic solutions. By setting a higher threshold for
inclusion in the study (i.e., greater than 1.5-fold differ-
ence), we tried to focus our functional annotation on
proteins that may play a role in malignant transforma-
tion. In the following paragraphs, we will highlight some
of the intriguing aspects associated with differential
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regulation of IGF, protein ubiquitination, and apoptosis
signaling pathways within these three cell models.
The pathway enrichment results suggest that flux

through the IGF signaling pathway is enhanced in the
BT474 relative to 184A1. Previously, we found that IGF
signaling and IGF1R expression were enhanced in the
BT474 relative to SKBR3 [24]. IGF signaling has been
implicated in regulating epithelial-to-mesenchymal tran-
sition [25], a phenomenon associated with increased cell
motility and poor treatment outcome [26,27]. The IGF
signaling pathway shares common effector pathways
with the insulin signaling pathway [28]. Here, the 184A1
cell line should have a higher level of insulin signaling
based upon the concentration of insulin used in the tis-
sue culture media. This is interesting as model-based
inference suggests that the BT474 cell line, in contrast
to both the SKBR3 and 184A1 cell lines, exhibits non-
canonical activation of the IGF pathway following acti-
vation of the EGF receptor [29]. Over-expression of
HER2 increases the potential for autocrine activation of
the EGF receptor [30]. Validating the mechanistic expla-
nation for these observed differences in insulin/insulin
growth factor signaling is on-going.
Protein ubiquitination pathway was a highly significant

pathway associated with both BT474 and SKBR3 cell
lines and involved mainly proteasome subunits and heat
shock proteins. As shown in Table 1, most of the pro-
teasome subunits were downregulated (PSMA3, PSMB8,
PSMC2, PSMC4, UCHL5) and heat shock proteins were
upregulated (HSP90B1, HSPA5, HSPB1, HSPA9) as
compared to 184A1. Down-regulation of proteasome
subunits might indicate weakening of the ubiquitin-pro-
teasome system thereby accumulating abnormal proteins
that in turn might confer growth and malignant poten-
tial in these tumor cells. This might be leading to an
increased turnover of heat shock proteins, which func-
tion as chaperones, to prevent the accumulation of
aggregated proteins resulting from proteasome inhibi-
tion [31,32]. Heat shock proteins (HSP’s) are a family of
stress response proteins that play an important role in
protein folding and translocation. Elevated levels of
HSP’s have been reported in breast cancer cells [33,34].
Overexpression of HSPA5 has been demonstrated in ER
+ as well as ER- tissues compared to normal tissues ran-
ging from 1.8- to 20-fold [35]. In this study, HSPA5 was
overexpressed by a factor of 2.2-fold (p < 0.02) in
BT474 (ER+) and 2.1-fold (p < 0.03) in SKBR3 (ER-).
Barazi et al. [36] have shown that HSPD1 can directly
activate the function of a3b1 integrin, which plays an
important role in tumorigenesis and metastasis of breast
cancer. Additionally, Li et al. [37] have demonstrated
the presence of HSPD1 at higher levels in MDA-MB-
435HM (highly metastatic) cells compared to the paren-
tal cell line. They conclude that HSPD1 could be one of

the potential biomarkers for breast cancer progression
and metastasis.
Apoptosis signaling, another pathway common to both

BT474 and SKBR3 inferred from the differential protein
expression, is a process whereby cells commit to a pro-
gram of organized cell death in response to external
cues, such as TRAIL, or internal triggers such as DNA
damage or aberrant cell cycling [38-40]. Initiation of
apoptosis is regulated by the balance between pro-apop-
totic proteins; such as Bax, Bak, Bad or Bid; and pro-
teins that inhibit apoptosis, such as Bcl-2 or Bcl-XL.
The balance among these proteins that promote or inhi-
bit apoptosis determines ultimate cell fate. Quantifying
gene expression is one alternative approach; however
many of these apoptosis related proteins are post-trans-
lationally regulated in cancer cell lines. Bid (BH3-inter-
acting domain death agonist) is an apoptosis inducing
protein [41], which upon activation engages the pro-sur-
vival Bcl-2-like proteins via the BH3 domain and inacti-
vates their function [42]. Given the BH3-only proteins’
ability to induce apoptosis, there has been an increasing
interest in the field of cancer therapeutics to create
‘BH3 mimetics’ as novel anti-cancer agents [43,44].
Downregulating expression of Bid has been shown to
make cells resistant to Fas-mediated apoptosis [45].
BT474 cells have also been shown to be resistant to
TRA-8, an agonistic antibody to death receptor 5 that
induces apoptosis in various cancer cells [46]. Preclinical
studies in mouse xenografts have shown that in the pre-
sence of ispinesib, a chemotherapeutic, expression of
proapoptotic proteins Bax and Bid was lower in BT474
as compared to MDA-MB-468, whereas antiapoptotic
protein Bcl-XL was higher [47]. Bid, which is downregu-
lated in BT474 cell line and involved in the apoptosis
signaling pathway, might suggest that this tumor cell
line acquires the hallmark of evasion of apoptosis by
downregulating Bid expression.
Calpain (calcium-activated neutral protease) is another

protein that plays a role in apoptosis and was differen-
tially expressed in the SKBR3 cell line relative to 184A1.
Calpain exists in two isoforms: m- and μ-calpain as 80
kDa and 30 kDa isoforms, where the prefix refers to the
concentration of calcium required for activation [48].
We observed higher levels of 80 kDa isoform in the
nontumorigenic 184A1 cell line and the 30 kDa isoform
in the SKBR3 tumor cell line. The large and small iso-
forms have distinct expression patterns in human breast
cancer. The larger subunit was observed at low expres-
sion levels in high grade tumors whereas the smaller
subunit was observed at a high level in tumors derived
from breast cancer patients with a poor prognosis and
high risk for metastasis [49]. Though the exact function
of calpain still remains unclear, evidence suggests a role
in apoptosis because of its ability to cleave p53 [50] and
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mediate I�Ba proteolysis [51]. Calpain is known to reg-
ulate survival mechanisms in drug resistant cancer cells.
Inhibiting the catalytic activity of calpain helps over-
come resistance to TRAIL in colon cancer [52] and cis-
platin in melanoma [53]. Kulkarni et al. [54] have
demonstrated that calpain confers resistance to trastuzu-
mab and apoptosis in HER2-positive breast cancer cells
(SKBR3), deregulating calpain in turn deregulates activa-
tion of HER2 and PTEN/AKT1, and inversely inhibiting
calpain helps in overcoming resistance to trastuzumab.
It has been shown that calpains degrade Bid thereby
dampening apoptotic signaling; and inversely calpain
inhibition partially restores Bid levels and in turn cells
sensitivity to apoptotic signaling [55]. Calpain overex-
pression in the SKBR3 cell line might indicate that this
particular phenotype of breast cancer acquires the hall-
mark of apoptosis evasion via calpain mediated Bid
degradation. This inference of inhibition of apoptosis is
further supported by NF-�B, which forms a central
inferred node in the IPA network for both cell lines.
Implication of NF-�B in inhibition of apoptosis and as a
therapeutic target in cancer is well known [56-59]. NF-
�B was also an inferred hub of a network in another
global proteomic analysis of three breast cancer cell
lines (MCF7, SKBR3, MDA-MB-23) in comparison with
non-transformed mammary cells (MCF10A) [60].

Conclusion
In summary, we have inferred that multiple pathways
are altered upon malignant transformation by compar-
ing protein expression patterns of two HER2 positive
breast cancer models with a transformed normal mam-
mary cell line. These differences in functional traits
reflect the genetic loci that are altered upon malignant
transformation. Our data also suggest that a hallmark of
cancer, evasion of apoptosis, even though common to
both the HER2+ tumor models, might have different
mechanisms of action. These data also motivate follow-
on hypothesis-driven studies to understand how Bid and
Calpain collectively regulate apoptosis, how malignant
transformation alters the sensitivity of the insulin related
signaling pathway to extracellular signals, and how addi-
tional signaling pathways modulate HER2 dependence.
Such studies might open new perspectives for improving
the efficacy of personalized medicine.

Experimental procedures
Cell culture and reagents
The human breast cancer cell lines (BT474 and SKBR3)
were kindly provided by Dr. Jia Luo (University of Ken-
tucky; Lexington, KY). The nontumorigenic human
breast epithelial cell line 184A1 was obtained from
ATCC (Manassas, VA). Cells were grown in 75-cm2

plastic tissue culture flasks (Costar Corning; Corning,

NY) in a humidified incubator at 37°C and 5% (v/v)
CO2. The BT474 cells were routinely maintained in
Rosewell Park Memorial Institute (RPMI) 1640 medium
(Mediatech, Inc., Herndon, VA) supplemented with 10%
(v/v) heat inactivated fetal bovine serum (FBS) (Hyclone,
Inc., Logan, UT), 0.3% (w/v) L-glutamine, 1% (v/v) peni-
cillin/streptomycin (BioWhittaker, Walkersville, MD)
and 10 ng/mL insulin (Sigma, St Louis, MO). SKBR3
cells were maintained in Improved Modified Eagle Med-
ium (IMEM) Zn2+ option (Invitrogen) containing 4 mM
L-glutamine, 2 ml/L L-proline, 50 μg/mL gentamicin
sulfate supplemented with 10% FBS (Hyclone) and 1%
penicillin/streptomycin (BioWhittaker). 184A1 cell line
was maintained in DMEM/Ham’s F-12 (1:1) medium
supplemented with 5% (v/v) horse serum (Invitrogen) in
the presence of 20 ng/mL rhEGF, 10 μg/mL insulin and
0.5 μg/mL hydrocortisone (Sigma, St Louis, MO). Media
was changed every 3 days and cells were passaged in a
1:3 dilution at approximately 80% confluence.
Sample preparation for 2-DE
Sample preparation for 2DE was done as we have pre-
viously described [24]. Briefly, cells were incubated in
lysis buffer (7 M Urea, 2 M thiourea, 2% (w/v) CHAPS)
for 30 min on ice and sonicated for five cycles in an
ultrasonic water bath, where each sonication was per-
formed for 30 s followed by 30 s cooling interval on ice.
Cell debris were pelleted by centrifugation at 14,000
rpm for 40 min at 4°C. The supernatant was aliquoted
in fresh tubes and stored at -80°C. The protein concen-
tration was determined using CB-X™ protein assay (G
Biosciences).
2-D electrophoresis
For each cell line, 120 μg of cell lysate was mixed with
rehydration buffer (7 M urea, 2 M thiourea, 2% CHAPS,
1% DTT, 2% IPG buffer, 0.002% bromophenol blue) and
incubated for 1 h at room temperature prior to rehydra-
tion on Immobilized pH Gradient (IPG) strips pH 4-7, 7
cm, (GE Healthcare, Uppsala, Sweden) for 12 h at 25°C.
Isoelectric focusing was done using Ettan IPGphor appa-
ratus (Amersham Biosciences) for a total of 17 kVh at
50 μA per strip at 20°C in the following steps: step-n-
hold at 300 V for 4 h, 1000 V gradient in 30 min, 5000
V gradient in 1 h 30 min, followed by step-n-hold at
5000 V till 17 kVh was reached. Thereafter, IPG strips
were equilibrated in 75 mM Tris-HCl pH 8.8, 6 M urea,
30% (v/v) glycerol, 2% (w/v) SDS, 0.002% (w/v) bromo-
phenol blue and 1% (w/v) DTT for 30 min. A second
equilibration step was done for another 30 min by repla-
cing the DTT with 2.5% iodoacetamide. Equilibrated
strips were transferred onto 12% SDS-polyacrylamide
gel. IPG strips were sealed with 0.5% (w/v) low melting
point agarose in SDS running buffer containing bromo-
phenol blue. Gels were run at 5 mA for 1 h to facilitate
a gradual protein transfer from the strip onto the gel,
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and then at 10 mA until the dye front had run off the
bottom of the gels. The coomassie stained gels were
scanned using Typhoon 9400 scanner (Amersham Bios-
ciences) at 100 μm resolution at normal sensitivity. Data
were saved in .gel format using ImageQuant software
(Amersham Biosciences).
Image analysis
The images were analyzed using REDFIN Solo software
from Ludesi. Gel images were cropped to remove the
boundary region without proteins. The warping was
done by choosing a reference image and spot matching
was facilitated by placing approximately 10 manual vec-
tors in each quadrant of the gel to align cognate spots
at corresponding locations across different gels. Normal-
ized spot volumes were generated from the optical den-
sities for each individual spot to the ratio of the total
spot volume in each gel. Protein spots were considered
to be differentially expressed if the difference between
the averages of spot densities from the nontumorigenic
cell line and the tumor cell lines was 1.5-fold or greater
with p < 0.05. More than 95% of the protein spots in
the analysis were present in all six gels, with few spots
being present in five out of the six gels in the analysis.
In-gel digestion
The manually excised gel spots of interest were
destained in 50-50% acetonitrile/50 mM NH4HCO3

solution, reduced in DTT (100 mM, 57°C, 45 min) and
alkylated with iodoacetamide (500 mM, room tempera-
ture, 45 min) in a dark room. The gel pieces were dehy-
drated in acetonitrile for 10 min, were vacuum dried
and rehydrated with 10 μL of digestion buffer (10 ng/μL
of trypsin (Promega; Madison, WI) in 50 mM
NH4HCO3) and covered with 10 μL of NH4HCO3. The
samples were incubated for 16 h at 37°C to allow for
complete digestion. 5% formic acid was added to stop
the enzymatic digestion and the peptides were extracted
in sequential steps by sonication using acetonitrile and
50% acetonitrile/0.1% TFA.
MALDI-TOF MS analysis
MALDI-TOF-MS system model Micromass MALDI-R
(Waters®) was used to obtain the peptide mass fragment
spectra as recommended by the manufacturer. Protein
digest solutions were mixed at a 1:1 ratio with the
MALDI matrix a-cyano-4-hydroxycinnamic acid
(CHCA) (Sigma-Aldrich Fluka; St. Louis, MO). 2 μL of
tryptic digest was applied to the MALDI plate and
allowed to dry. The MALDI-TOF MS was operated in
the positive ion delayed extraction reflector mode for
highest resolution and mass accuracy. Peptides were
ionized/desorbed with a 337-nm laser and spectra were
acquired at 15 kV accelerating potential with optimized
parameters. The external calibration performed using
ProteoMass Peptide MALDI-MS Calibration Kit (Sigma)
provided mass accuracy of 25-50 ppm. Internal

calibration was performed with the monoisotopic peaks
of Angiotensin II (m/z: 1046.5423), P14R (synthetic pep-
tide) (m/z: 1533.8582) and adrenocorticotropic hormone
(ACTH) (18-39) peptide (m/z: 2465.1989). Mass spectral
analysis for each sample was based on the average of
1000-1200 laser shots. Peptide masses were measured
from m/z: 800 to 3,000. The raw spectra was back-
ground subtracted, smoothed and deisotoped using Pro-
teinLynxGlobalServer (PLGS) v2.1. The peak lists
containing the m/z ratio and corresponding intensity
values were exported to Microsoft Excel for further
processing.
Protein identification using peptide mass fingerprinting
(PMF)
Peptide mass fingerprint’s (PMF) obtained from
MALDI-TOF MS were used to query public protein pri-
mary sequence databases for protein identification.
Monoisotopic peaks resulting from internal calibrants
were removed before submitting the peak lists to the
databases. Mascot database search engine v2.3.02
(http://www.matrixscience.com, Matrix Science Ltd.,
UK) and Expasy Aldente (version 19/03/2010) were
used to query the UniProtKB/Swiss-Prot human data-
base (Release 2010_12, 523151 sequences, 184678199
amino acids) with the following settings: peptide mass
tolerance of 50 ppm, one missed cleavage site, one fixed
modification of carboxymethyl cysteine, one variable
modification of methionine oxidation, minimum of four
peptide matches and no restrictions on protein molecu-
lar mass or isoelectric point. The combined use of two
different algorithms offers an advantage of cross validat-
ing and consolidating the identification through comple-
mentary use of different packages. Aldente, for example,
has an added advantage of identifying protein isoforms,
a feature that is absent in Mascot. A protein was consid-
ered to be positively identified only when it was a hit
using both algorithms.
Ingenuity pathway analysis
Differentially regulated proteins identified by 2DE and
PMF were further analyzed using Ingenuity Pathway
Analysis (IPA; Ingenuity Systems, Mountain View, CA;
http://www.ingenuity.com). IPA was used to interpret
the differentially expressed proteins in terms of an inter-
action network and predominant canonical pathways as
described in detail earlier [24]. Briefly, a dataset contain-
ing the differentially regulated proteins, called the focus
proteins, for a particular cell line was uploaded into the
IPA. These focus proteins were overlaid onto a global
molecular network developed from the information in
the IKB. Networks of these focus proteins were then
algorithmically generated by including as many focus
proteins as possible and other non-focus proteins from
the IKB that are needed to generate the network based
on connectivity. Enriched canonical pathways were
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identified from the IPA library using a Fisher’s exact test
adjusted for multiple hypothesis testing using the Benja-
mini-Hochberg correction [61]. We supplemented the
results of our pathway analysis using DAVID Bioinfor-
matics Resource 6.7 [62,63], a functional annotation tool
that links expression data to their gene ontology (GO)
annotation and identifies clusters of common GO terms.
Western blotting
For western blot analysis, 10-20 μg of total cell lysate
was separated by SDS-PAGE using a 12% Tris polyacry-
lamide gel with a 4% stacking gel at 75 V for 4 h. Pro-
teins were transferred onto Bio Trace PVDF membrane
(PALL Life Sciences; Pensacola, FL) at 42 V for 1.5 h.
Blots were washed in Tris Buffered Saline (TBS) for 5
min at room temperature, blocked for 1 h in TBS +
0.1% Tween 20 (TBS/T) plus 5% dry milk at room tem-
perature and then washed three times in TBS/T. Blots
were incubated overnight at 4°C with primary antibodies
specific for HSPA5 (MAB4846), HSP90 (AF3286), BID
(AF846), HSP60 (AF1800) (all from R&D Systems Inc.,
Minneapolis, MN), and Calpain11 (ab28227) (Abcam
Inc., Cambridge, MA). The next day, blots were washed
three times in TBS/T, incubated for 1 h at room tem-
perature with anti-biotin (Cell Signaling Technology,
Inc., Danvers, MA, 7727) and either an anti-mouse IgG-
HRP (HAF007), anti-rabbit IgG-HRP (HAF008), or anti-
goat IgG-HRP (HAF017) (all from R&D Systems Inc.).
Finally, the blots were washed three times in TBS/T,
developed using LumiGLO reagent (Cell Signaling Tech-
nology, Inc., Danvers, MA, 7003) and bands were visua-
lized on KODAK Biomax light film (Fisher Scientific).
Densitometric analysis was performed using ImageJ soft-
ware (National Institute of Health) and protein levels
were normalized to GAPDH (sc-25778) (Santa Cruz
Biotechnology Inc., Santa Cruz, CA) protein levels for
each sample.
Statistics
Unless otherwise indicated, the comparison between
groups for western blots was performed using a stan-
dard Student’s t-test assuming equal variance among
samples. A p-value of 0.05 was considered significant
and data is expressed as mean ± standard error of inde-
pendent experiments.

Additional material

Additional file 1: Figure S1. Three biological replicates of the cellular
proteome of (A) 184A1, (B) BT474 and (C) SKBR3 resolved on 7 cm IPG
strip 4-7.

Additional file 2: Table S1. Identification summary of the differentially
expressed proteins in 184A1-BT474 comparison showing the rank and
score from two different algorithms used to search the protein database.
Worksheet 2 shows the sequence coverage, peptide matches, number of
mass values searched and the RMS error.

Additional file 3: Table S2. Identification summary of the differentially
expressed proteins in 184A1-SKBR3 comparison showing the rank and
score from two different algorithms used to search the protein database.
Worksheet 2 shows the sequence coverage, peptide matches, number of
mass values searched and the RMS error.

Additional file 4: Table S3. Summary of IPA generated networks for
proteins differentially expressed in BT474 (four networks) and SKBR3 (five
networks). Molecules in bold are the focus molecules associated with the
dataset and the score is the p-value associated with the network.
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