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Abstract

Background: Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the
poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple
host cellular proteins both internally and externally during their life cycle. To address whether it also occurred
during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain
particles.

Results: In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV
La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton
proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding
proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously
reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras
small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins
(i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was
validated by Western blot or immunogold labeling assays.

Conclusions: The current study presented the first standard proteomic profile of NDV. The results demonstrated the
incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection
and pathogenesis.
Background
Newcastle disease (ND) is a contagious fatal viral disease
affecting most species of birds, which was classified as a
list A infectious disease by the World Organization for
Animal Health. Newcastle disease virus (NDV) as the etio-
logical agent for ND is a nonsegmented single-stranded
negative sense RNA virus that belongs to the genus Avula-
virus within the Paramyxoviridae family [1]. NDV is en-
demic to many countries, most notably in domestic
poultry due to their high susceptibility, and has caused tre-
mendous economic consequences to the poultry industry
throughout the world. NDV virion contains at least six
structural proteins, Haemagglutinin Neuraminidase (HN),
Fusion protein (F), Matrix protein (M), Nucleocapsid pro-
tein (NP), Phosphate protein (P) and Large protein (L)
[2-5]. HN and F are the two surface glycoproteins of viral
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envelope membrane, whereas NP、P、L and membrane-
associated M are inner components of NDV virions [2-5].
F protein, which is considered to be the key virulence de-
terminant of the virus, mediates the fusion process be-
tween viruses and cell membranes [6-8]. HN is a
multifunctional virion protein, which plays roles in helping
membrane fusion, cell tropism determination and viral
pathogenicity [9-11]. M lies beneath the viral membrane
and surrounds the ribonucleoprotein (RNP) complex [12].
The RNP complex consists of the viral RNA coated with
NP and bound by the polymerase complex that contains P
and L [13].
It has been reported that many host proteins might be

packaged into the enveloped virions along with the viral
components during the virus life cycle, but the role of
these cellular proteins in viral infection are not fully under-
stood [14,15]. Identification of the protein composition of
the infectious virions has important implications for
understanding the interaction of viruses with host cells,
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which provides valuable information for elucidating viral
replication, tropism and virulence [16].
Due to enhanced proteomic techniques based on two-di-

mensional gel electrophoresis (2-DE) separation and Mass
spectrometry (MS) combined with database searching for
identification, virion proteomics (the protein composition
of the purified virus particles) becomes a useful tool in glo-
bal evaluation of interaction between viruses and their
hosts through identifying cellular proteins in virions [16].
Numerous host proteins have been found that incorporate
into the membranes or inside the envelopes of the virions
using virion proteomic approaches. Herpes virus, an envel-
oped DNA virus which is a leading cause of human viral
diseases, is currently the best studied virus group. Among
this group are human cytomegalovirus (HCMV) [17], mur-
ine cytomegalovirus (MCMV) [18], Epstein-Barr virus
(EBV) [19], Kaposi’s sarcoma-associated herpesvirus
(KSHV) [20,21], rhesus monkey rhadinovirus (RRV) [22],
Marek’s disease virus (MDV) [23] and murine gammaher-
pesvirus 68 (MHV68) [24]. Moreover, virion proteomics
have been performed for other enveloped DNA viruses,
such as vaccinia virus (VV) [25,26], gigantic mimivirus
[27], White spot syndrome virus (WSSV) [28,29] and
Singapore grouper iridovirus (SGIV) [30].
Compared with enveloped DNA viruses, only a few

enveloped RNA viruses have been analyzed by virion
proteomics, potentially because of the relatively simpler
structures and lower number of proteins encoded by
RNA viruses. The most well studied RNA virus is retro-
virus human immunodeficiency virus (HIV). Proteomic
analysis revealed that HIV virions contain a high number
of host cell proteins [31,32]. Severe acute respiratory
syndrome (SARS) coronavirus has also been analyzed by
virion proteomics [33,34]. In addition, 36 host-encoded
cellular proteins have been found to incorporate into in-
fluenza virus (IV) virions [35]. Other enveloped RNA
viruses which have been proteomically analyzed were ves-
icular stomatitis virus (VSV) [36], infectious bronchitis
virus (IBV) [37] and porcine reproductive and respiratory
syndrome virus (PRRSV) [38]. Virion proteomics have
been used extensively to analyze the composition of a var-
iety of virions, leading to a more complete picture of the
viral particle.
However, to the best of our knowledge there is no

mention of incorporation of host proteins in the envel-
oped-virus NDV so far. In this study, we selected the
widely used NDV vaccine strain La Sota, utilized 2-DE/
MS approaches to conduct a comprehensive proteomic
analysis of purified NDV particles. Our analysis resulted
in the identification of five virus-encoded structural pro-
teins and thirty incorporated host proteins. Furthermore,
the presence of five selected cellular proteins in the puri-
fied NDV particles was verified by Western blot or
immunogold labeling detection.
Results
Purification of NDV virions
Virion proteomic analysis requires large quantity of vir-
ions for preparation of highly purified virus particles.
Therefore, the choice of host system used for virus
growth is an important consideration. Since specific
pathogen free (SPF) embryonated chicken eggs are the
preferred host system for growth of NDV and the
chicken genome is already well annotated which would
benefit the identification of cellular proteins, the 9-day-
old SPF embryonated chicken eggs were selected as the
host system for NDV propagation in this study.
The allantoic fluid (AF) with enrichment of NDV vir-

ions harvested at 108 h post-infection was clarified by
differential centrifugation in order to remove the con-
tamination of nuclei, mitochondria, lysosomes, peroxi-
somes from the chicken embryo. The virus was
concentrated and firstly purified through a 20% (W/V)
sucrose cushion before further purified over a non-linear
20%-60% sucrose-TNE (Tris-buffered saline including
50 mM Tris, 100 mM NaCl, 1 mM EDTA, pH 7.4) gradi-
ent. The high density opalescent virus band was
observed at 40%–50% sucrose-TNE gradients.
The purity of NDV La Sota was confirmed by electron

microscopy analysis following negative staining. An abun-
dance of intact virions was observed without obvious con-
tamination from host cellular materials (Figure 1A). For
further identification of the virions protein composition,
the purified NDV particles were separated by sodium dode-
cylsulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and stained with coomassie brilliant blue (Figure 1B). Five
major viral proteins (HN, F, M, NP and P) were evident but
L protein was not visible. There were also some lighter
bands visible which may represent cellular proteins incor-
porated into the NDV particles. Taken together, the highly
purified NDV La Sota particles were obtained.

Proteomic analysis of purified NDV particles
To obtain a detailed protein composition of NDV virions,
viral proteins of purified NDV particles were extracted for
2-DE analysis with 150 μg of protein loaded on 18 cm gel
strip (pI 3–10). To minimize inter-gel and inter-sample
variation, three repeats of independent sample preparations
and three repeats of independent 2-DE were performed
under the identical conditions. After the electrophoresis
separation, gels were stained with silver and processed for
image analysis. A total of 45 protein spots were detected on
the silver stained gel (Figure 2).

Identification and functional classification of NDV-
associated proteins
To identify the 45 protein spots obtained from the 2-DE
separation, all protein spots were picked out from the
stained gels, subjected to in-gel tryptic digestion and



Figure 1 Analysis of purified NDV particles.(A) Electron micrograph of negatively stained with 2% potassium phosphotungstate (pH 6.5),
sucrose density gradients purified NDV La Sota virus at 50,000 ×magnification. (B) SDS-PAGE separation of proteins in purified NDV particles.
15 μg total proteins were separated on a 5-15% polyacrylamide gel and stained with coomassie blue. The positions of the viral proteins identified
by their predicted molecular weights were indicated. M: protein marker, V: purified NDV, HN: Haemagglutinin Neuraminidase, F: Fusion protein,
NP: Nucleocapsid protein, P: Phosphate protein, M: Matrix protein.
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subsequently to identification by Matrix-assisted laser
desorption/ionizationtime of flight mass spectrometry
(MALDI-TOF/TOF) analysis. Database searching identi-
fied all NDV structural proteins except L protein, and
revealed thirty cellular proteins as well. A complete list
Figure 2 Representative 2-DE gel images of purified NDV
paricles. Proteins (150 μg) were separated on the first dimensional
pI 3–10 non linear IPG gels and second dimensional 5–15%
continuous gradient vertical gels. Number 1–30 represent thirty host
cellular proteins, A-E represent the structural proteins of NDV. The
identified spots are numbered according to Table 1.
of all identified proteins with detailed information is
shown in Table 1.
To better understand the implications of cellular pro-

teins identified in NDV particles, these proteins were
functionally categorized with biological processes accord-
ing to Uniprot knowledgebase (Swiss-Prot/TrEMBL) and
Gene Ontology Database. The identified thirty cellular
proteins were composed of nine cytoskeletal proteins,
two molecular chaperones, four chromatin modifying
proteins, three enzymes-binding proteins, two calcium-
binding proteins, two metabolism proteins, two signal
transduction-associated proteins, two tumor-associated
proteins (also characterized as calcium-binding proteins)
and four uncharacterized proteins (Table 1). We firstly
identified two signal transduction-associated proteins
(syntenin and Ras small GTPase) and one tumor-asso-
ciated protein (tumor protein D52) from the purified
NDV particles.
Validation of cellular proteins by western blot
Western blot analysis was carried out for confirming the
presence of host proteins associated with purified NDV
particles. The proteins extracted from normal 13-day-old
SPF embryonated eggs were included as a positive con-
trol; for negative control, AF from 13-day-old SPF
embryonated eggs were performed with the same proto-
col as the purification of NDV virions. As shown in
Figure 3, HN protein was only identified in purified



Table 1 Virus-encoded structural proteins and cellular proteins associated with purified NDV particles identified by
MALDI-TOF/TOF MS

Spot
no.a

Protein
description b

Protein Funtion Accession
no. c

Theoretical
MW d/pI e

Score
f

Pep.
no.g

Reported in other viruses

A NDV NP Viral protein AAC28371 53047/5.29 455 19

B NDV P Viral protein AAC28372 42383/6.01 582 17

C NDV M Viral protein AAC28373 39538/9.58 149 8

D NDV F Viral protein AAC28374 58896/8.56 232 7

E NDV HN Viral protein AAC28376 63213/7.13 105 6

1 S100 calcium-binding
protein A6

Calcium ion binding IPI00572547 10269.3/4.91 125 8 IBV[37]

2 S100 calcium-binding
protein A11

Calcium ion binding IPI00599279 11405.8/6.08 98 6 IV[35], VV[25,26], EBV[19], HCMV[17],
KSHV[20,21], VSV[36], IBV[37]

3 aldolase A Metabolic process IPI00583507 14429.2/6.13 214 4 PRRSV[38]

4 Ras small GTPase Signal transduction IPI00683096 18292.1/4.64 76 7

5 tumor protein,
translationally-controlled 1

Calcium ion binding IPI00821768 19517.6/4.9 95 3

6 tumor protein D52 Calcium ion binding IPI00579134 19848/4.94 114 5

7 YWHAE 14-3-3, zeta
polypeptide

Enzyme binding IPI00820692 23944.1/5.23 211 6 IBV[37]

8 chromatin modifying
protein 5

chromatin modifying IPI00589508 24586.4/4.74 136 4 KSHV[39]

9 chromatin modifying
protein 2A

chromatin modifying IPI00594797 24716.8/5.57 158 5 KSHV[39]

10 chromatin modifying
protein 4B

chromatin modifying IPI00582041 25139.7/4.73 196 6 KSHV[39]

11 chromatin modifying
protein 4 C

chromatin modifying IPI00580681 25145.6/5.5 95 7 KSHV[39]

12 YWHAE 14-3-3, theta
polypeptide

Enzyme binding IPI00577739 27764.7/4.68 89 3 IBV[37]

13 nucleoporin 210kDaaa-like Uncharactered IPI00813608 28743.7/4.69 253 7

14 YWHAE 14-3-3, epsilon
polypeptide

Enzyme binding IPI00579092 28944.4/4.75 162 4 IBV[37]

15 syntenin;syndecan
binding protein

Signal transduction IPI00598186 32037.6/7.01 187 6

16 tropomyosin 1 alpha cytoskeleton IPI00600961 32482.6/4.68 93 5 HIV[31,32], IV[35]

17 capping protein
muscle Z-line, alpha 2

cytoskeleton IPI00683096 32964.7/6.34 86 7 HIV[31,32], IV[35]

18 Annexin A8-like 1 Uncharactered IPI00585409 36709.9/5.24 153 10

19 Annexin A2 cytoskeleton IPI00577039 38615.9/6.92 172 12 HCMV[17], HIV[31,32], SARS [33], IV[35],
IBV[37], PRRSV[38], herpes simplex virus

1[40]

20 KIAA0174 cytoskeleton IPI00581393 39714.6/5.22 106 6 PRRSV[38]

21 Actin, gamma 1
propeptide;

cytoskeleton IPI00572084 41808.8/5.3 453 12 HIV[31,32], SARS [33,34], IV[35], VV
[25,26], EBV[19], HCMV[17], KSHV[20,21],

VSV[36], IBV[37], PRRSV[38]

22 ovalbumin Metabolic process IPI00583974 42853.5/5.19 269 10 IBV[37]

23 ARP2 Actin -related
protein 2 homolog

Uncharactered IPI00585509 44673.3/6.3 219 8

24 ARP3 Actin -related
protein 3

cytoskeleton IPI00587398 47391.1/5.62 206 7 IBV[37]

25 similar to type I hair keratin
KA31

Uncharactered IPI00587107 51130.7/4.78 91 4

26 Ezrin cytoskeleton IPI00578484 69323.9/5.9 135 6 HIV[31,32], IV[35]
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Table 1 Virus-encoded structural proteins and cellular proteins associated with purified NDV particles identified by
MALDI-TOF/TOF MS (Continued)

27 Heat shock protein 70 Molecular chaperone IPI00818704 70955.3/5.43 140 4 HIV[31,32], SARS [33,34], IV[35], VSV[36],
IBV[37], PRRSV[38], Adenovirus[41],
enterovirus[42], vaccinia virus[43],

hantaan virus[44]

28 CAP-GLY containing linker
protein 2

cytoskeleton IPI00579643 116233.3/6.45 81 3 IBV[37]

29 Tubulin, alpha-1 cytoskeleton IPI00591483 49639/4.78 259 6 HIV[31,32], SARS [33,34], IV[35], VV
[25,26], EBV[19], HCMV[17], KSHV[20,21],

VSV[36], IBV[37], PRRSV[38]

30 heat shock 90 kDa aa protein
1, alpha

Molecular chaperone IPI00596586 84006.5/5.01 130 7 IBV[37]

a Protein spot numbers on 2-DE gel.
b Alternative names are provided in parentheses.
c Accession numbers ford NCBI database (accessible at http://www.ncbi.nlm.nih.gov/).
d Theoretical molecular mass.
e Theoretical pI.
f MASCOT protein score (based on combined MS and MS/MS spectra) of greater than 64 (p ≤ 0.05) or the total ion score (based on MS/MS spectra) of greater than
30 (p ≤ 0.05).
g Observed peptides that differ either by sequence, modification or charge.
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NDV particles. HSP90, with low abundance in unstressed
cells, was only detected associated with purified particles
but not in cell extracts from 13-day-old SPF embryo-
nated eggs. Actin, tubulin and annexin A2 were both
found in the purified particles and positive control. It
was expected that we also detected actin and tubulin in
the AF extracts from uninfected SPF embryonated eggs,
which resulted from their high concentrations in all
eukaryotic cells and subcellular fractions.
Figure 3 Confirmation of host proteins incorporated into purified ND
fluid (AF) (lane 1) and 15 μg of proteins extracted either from the normal 1
from the AF of the uninfected 13-day-old specific pathogen free (SPF) chick
antibodies against the following proteins: (A) HN, (B) Hsp90, (C) Actin, (D) T
weight markers (M).
Validation of cellular proteins by electron microscopy and
immunogold labeling
To provide additional evidence for the incorporation of
host cellular proteins in NDV virions, immunogold label-
ing was performed. To remove the microvesicles from
NDV virions, virions were subjected to digestion with
bromelain and were then incubated with antibodies
against HN protein of NDV La Sota strain, Actin,
HSP90, Ezrin and normal mouse IgG with a gold-
V particles by Western blot. 8 μg of purified virions from allantoic
3-day-old specific pathogen free (SPF) chicken embryo (CEL) (lane 2) or
en embryo eggs (lane 3) were subjected to western blot analysis with
ubulin alpha-1, (E) Annexin A2. Numbers to the left are molecular

http://www.ncbi.nlm.nih.gov/
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conjugated secondary antibody followed by negative
staining (Figure 4). A couple of gold particles with
HSP90 and Ezrin staining were found on the surface of a
virion, which was significantly less than Actin and HN
labeling. The result was consistent with the fact that
there is far more HN present on the virions than HSP90
and ezrin. In addition, the abundance of Actin detected
in the 2-DE gels is much higher than that of HSP90 and
ezrin. These results indicated that the number of gold
particles was consistent with the protein abundance in
the gels.

Discussion
There is compelling evidence that enveloped virions carry
multiple host proteins both internally and externally during
infection [15]. To date, no studies have been carried out on
the incorporation of cellular proteins in NDV virions. In this
study, we obtained highly purified NDV particles by sucrose
gradients ultracentrifugation. Virion-associated proteins
were identified by 2-DE/MS proteomic analysis followed by
Western blot and electron microscopy. A total of five viral
proteins and thirty host proteins were successfully detected.
Our study provided strong evidence that cellular proteins
were incorporated into the enveloped viruses.
The present study identified all the structural constitutes

of NDV virions except L protein. F and HN are two major
glycosidoproteins located on the surface of membrane,
which are easy to detect in intact virions. M protein is also
easy to identify because it is the most abundant structural
Figure 4 Immunogold labeling of host proteins in purified NDV partic
with antibodies against (A) normal mouse IgG, (B) Actin, (C) HN, (D) Hsp90
sodium phosphotungstate and visualized by electron microscopy (30,000×
quantity of gold particles per virion while numbers shown inside the blank
protein produced throughout the process of the virus in-
fection. The RNP complex of NDV particle contains three
inner protein components, the major structural subunit
(NP) and two associated proteins (P and L) binding to-
gether to RNA genome. Both P and NP protein were suc-
cessfully obtained due to their comparatively higher
expression level and smaller molecular weight; whereas
the identification of L protein by MS was a difficult task,
possibly due to its low-abundant in the virion and large
molecular weight (about 220 kD).
Of the thirty host cellular proteins associated with puri-

fied NDV particles we have identified, a significant number
of proteins have also been reported to be present in virions
of other virus families, such as herpes viruses, poxviruses
and retroviruses [14-16]. Considering that these studies
were performed independently using different cell types
and different mass spectrometry methods, this similarity is
probably not an issue of contamination. The most likely
explanation is that these viruses all share some fundamen-
tal feature and that these host proteins are involved in the
processes associated with that common trait. Enveloped
viruses enter the cell via a membrane fusion manner and
exit by budding. Therefore, one hypothesis would be that
these common incorporated host proteins play a role in
the entry and release stages of the virus life cycle.
Enveloped viruses acquire their membranes through bud-

ding from the host cell, thus cytoskeleton proteins may be
integrated inside the virions because of their propinquity to
viral assembly and budding sites. Our virion proteomics
les. High purified NDV La Sota particles were immunogold labeled
, (E) Ezrin. The labeled virus were then negatively stained by 2%
magnifications). Numbers shown outside the brackets indicate the
et indicate the quantity of virions counted.
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identified 9 host cytoskeleton system proteins in purified
NDV particles, which were the most abundant group of
cellular proteins, including Tropomyosin 1 alpha, actin,
actin -related protein 3 ARP3, tubulin alpha-1, annexin A2,
ezrin, CAP-GLY domain containing linker protein 2, cap-
ping protein (Actin filament) muscle Z-line and KIAA0174.
Numerous viral proteins interact with cytoskeleton ele-
ments. Available evidences indicate that host cytoplasm
cytoskeleton components are involved in virus transport in
cells, especially in the stages of virus entry and release [45].
Several studies have also indicated that cytoskeleton pro-
teins such as Tubulin and Actin are required for viral gene
expression [46,47] and are involved in several virus budding
processes [48]. Interestingly, actin was originally thought as
a cellular contaminant, but later demonstrated to be an in-
ternal component of the measles virus [49,50]. In a number
of viruses, such as HIV and moloney murine leukemia virus
(MMLV), actin is important during their budding [51-53].
For influenza virus, actin plays indispensable roles during
the endocytosis of the virus into polarized epithelia [54].
An association of M with cytoskeleton elements has been
reported [55], which indicates an essential function of actin
in the replication cycle of coronavirus IBV. As for NDV,
early studies have suggested that the cellular cytoskeletal
framework actively participated in the structural and func-
tional assembly of NDV transcriptive complex [56]. There-
fore, cytoplasm cytoskeleton-associated proteins might take
part in the assembly and budding process of newly formed
NDV virions, contribute to the transportation of the virus
to the correct location of host cell, and also participate in
assembling the RNP complex.
Annexins are a well-known multigene family of Ca2+

regulated phospholipid-binding and membrane binding
proteins with diverse functions. The presence of annexin
A2 is thought to support viral binding, fusion and replica-
tion [57-61]. In the present study, cellular annexin A2 was
also identified in purified NDV virions, which has been
found to be endogenously associated with HCMV, HIV, IV
virions, and herpes simplex virus 1 [31,35,40,62]. The exact
role of annexin A2 in NDV life cycle needs to be further
investigated.
Heat-shock proteins (HSP), known as molecular chaper-

ones, has been identified in a number of envelope viruses.
Several viruses require host molecular chaperones for entry,
replication, and assembly, as well as other steps in viral pro-
duction [63,64]. In this study, we identified two molecular
chaperones incorporated into purified NDV particles,
HSP70 and HSP90. HSP70 interacts with various viral pro-
teins and may be involved in the assembly of adenovirus
[41], enterovirus [42], vaccinia virus [43] and hantaan virus
[44]. Virion-associated HSP70 might participate in early
events of infection, uncoating the viral capsid in a manner
similar to its role in the uncoating of clathrin cages[65].
HSP70 and HSP90 have been shown to interact with
hepatitis B virus reverse transcriptase and to facilitate the
initiation of viral DNA synthesis from hepatitis B virus
pregenomic RNA [66,67]. HSP90, which can cooperate with
other proteins such as p23 and HSP70, has 2–4 copies
existing internally in a duck liver virus particle, and might
be related to interaction between virus polymerase [68]. Be-
sides, it has been proposed that HSP90 is a major host fac-
tor for viral replication of many RNA viruses [69], implying
a important role of HSP90 in NDV replication.
In this study, NDV virion proteomic analysis revealed four

chromatin modifying proteins, including chromatin modify-
ing protein 2A, 4B, 4 C and 5. It was reported that they can
be expressed in chicken bursal lymphocytes, and may be
associated with regulating a variety of gene expression in
lymphocytes [70]. Chromatin modifying proteins have also
been found in KSHV by virion proteomics [39], providing a
number of clues and potential links to understanding the
mechanisms regulating the replication, transcription, and
genome maintenance of KSHV. Therefore, NDV virion
might modulate the gene expression of host cells through
binding with chromatin modifying proteins for better
propagation.
According to our investigation, three enzymes-binding

proteins were identified, including tyrosine 3-monooxygen-
ase/tryptophan 5-monooxygenase activation protein, zeta
polypeptide; epsilon polypeptide and theta polypeptide,
which have also been found expressed in chicken bursal
lymphocytes [70], and may be related to the metabolic
pathways during embryo development [71]. Meanwhile,
two calcium-binding proteins, calcium-binding protein A6
and A11 were associated with the purified NDV particles.
The calcium-binding proteins play a vital role in the regula-
tion of cellular growth and signal transduction pathways;
however, their effect on virus infection remains to be inves-
tigated [31,35,38].
Among the indentified cellular proteins in our study,

three have not yet been reported in other viruses, includ-
ing two signal transduction-associated proteins (syntenin
and Ras small GTPase) and one tumor-associated pro-
tein (tumor protein D52), which have not been described
to be present in other virions of quite diverse virus fam-
ilies. Previous work has identified syntenin of the shrimp
Penaeus monodon (Pm) as a dynamic responder to white
spot syndrome virus (WSSV) infection through its inter-
action with alpha-2-macroglobulin (alpha2M), which plays
an important role in the immune defense mechanisms of
viral infections of shrimps [72]. Ras small GTPase is a very
important host signaling mediator, regulating the replica-
tion of viruses [73,74]. The molecular mechanisms of these
two signaling mediators are largely unknown.

Conclusions
Our virion proteomic analysis of purified NDV particles
revealed the presence of five viral structural proteins and
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successfully identified thirty incorporated cellular pro-
teins. It is reasonable to speculate that the incorporated
cellular proteins in NDV virions may play roles in virus
replication and virulence. Future experiments involving
RNAi knockdown of these host proteins coding genes
will help to address these questions. Indeed, a better
understanding of cellular proteins in NDV virions may
provide novel targets for the design of antiviral drugs as
well as vaccines.

Methods
Propagation and purification of NDV
NDV La Sota strain (Beijing Merial Vital Laboratory
Animal Technology Co, Ltd, Beijing, China) were propa-
gated in 9-day-old specific pathogen free (SPF) embryo-
nated eggs (Beijing Merial Vital Laboratory Animal
Technology Co, Ltd, Beijing, China) at 37°C. The allan-
toic fluid (AF) with enrichment of NDV virions har-
vested at 108 h post-infection was clarified by differential
centrifugation at 4°C, first centrifugated at 4,000 × g for
15 min and then the supernatant was centrifugated at
12,000 × g for 30 min. The viral supernatant was concen-
trated and firstly purified at 31,000 rpm through 5.5 ml
of 20% (W/V) sucrose in TNE buffer (50 mM Tris,
100 mM NaCl, 1 mM EDTA, pH 7.4) for 2 h in a 70Ti
rotor (Beckman Coulter, Optima™ L-100XP Preparative
ultracentrifuge) at 4°C. Condensed and firstly purified
virus pellet was then resuspended in TNE buffer and
loaded on a preformed sucrose density gradient (20%,
30%, 40%, 50%, and 60% W/V) in TNE buffer for further
purification. After centrifugation at 24,100 rpm for 2 h at
4°C in a SW41 rotor (Beckman Coulter, Optima™ L-
100XP Preparative ultracentrifuge), the purified virus
band between 40%-50% sucrose gradient was collected,
diluted in approximately 1 ml of TNE buffer, and finally
centrifuged at 24,100 rpm for 2 h at 4°C in a SW41 rotor
to exclude the residuary sucrose. In order to get high
purified NDV particles, the collected banded viruses
were purified for a second time according to the same
purification procedure. The purified virus pellet was
stored at −80°C for further use.

Validation of purified NDV particles by electron
microscope and SDS-PAGE
Highly purified virus (3 μl) was adsorbed to Formavar-sup-
ported, carbon-coated nickel grids (230 mesh) for 2 min at
room temperature (RT). The grids were negatively stained
with 2% phosphotungstic acid and examined under a JEM-
1400 electron microscope (JEM-100CX-II, JEOLLTD,
Japan) operated at 120 kV.
Sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE) was also performed to validate the
purified NDV particles. Proteins from the purified virus
(15 μg) were denatured at 100°C for 10 min in 1× (SDS-
PAGE) sample buffer and were then separated by SDS-
PAGE. Coomassie Blue R250 was used for protein
staining.

Two-dimensional gel electrophoresis (2-DE) separation of
proteins of purified NDV particles
The purified NDV particles were dissolved in 500 μl
virus lysis buffer (7 M Urea, 2 M thiourea, 2% Triton X-
100, 100 mM DTT, 0.2% IPG buffer pH 3–10) and incu-
bated at 4°C for 1 h. After lysing by sonication (pulse
durations of 2 s on and 3 s off ) in an ice bath for 5 min,
the lysates were clarified by centrifugation at 12,000 × g
for 30 min at 4°C. The supernatant was collected and the
concentration was determined by 2-DE Quant kit
(Amersham, USA). The viral protein samples were then
aliquoted and stored at −80°C for further analysis.
The first-dimension separation was performed using

18 cm Ready Strip IPG strips (non-linear, pI 3–10, GE
Healthcare) for isoelectric focusing (IEF). The IPG strips
were rehydrated with 400 μl rehydration buffer (7 M
urea, 2 M thiourea, 2% (w/v) CHAPS, 65 mM DTT, 0.2%
IPG buffer pH 3–10) containing 150 μg protein for 12 h
at 20°C by a passive rehydration method. IEF was carried
out at 20°C on an Ettan IPGphor III electrophoresis unit
(GE Healthcare), and performed as follows: 100 V, linear,
100 Volt-Hours (Vhs); 200 V, Gradient, 200 Vhs; 500 V,
linear, 500 Vhs; 1,000 V, linear, 1000 Vhs; 4,000 V, Gradi-
ent, 4,000 Vhs; 8,000 V, linear, 32,000 Vhs. The IPG
strips were incubated for 15 min with gentle shaking in
an equilibration buffer (6 M urea, 30% glycerol, 2% SDS
and 0.375 M Tris–HCl, pH 8.8) with 1% (w/v) DL-
Dithiothreitol (DTT) followed by additional equilibration
for 15 min in SDS equilibration buffer containing 2.5%
iodoacetamide (IAA).
The second-dimensional separation was carried out by

using 5%-15% continuous gradient SDS-PAGE in Tris: gly-
cine buffer (192 mM glycine, 25 mM Tris, 0.1% SDS, pH
8.3) at 140 V for about 10 h. The gels were stained by the
modified silver staining method compatible with MS [75]
and scanned at a resolution of 600 dpi using the Image
scanner (Amersham Pharmacia Biotech). Spot detection,
spot matching, and quantitative intensity analysis were
performed using Image Master 2D Platinum 5.0 according
to the manufacture’s protocol (GE Healthcare).

In-gel tryptic digestion
The protein spots on the silver-stained gels were excised
and transferred into 0.5 ml Eppendorf tubes, washed three
times with ddH2O, destained with 15 mM potassium ferri-
cyanide (K3Fe(CN)6, Amresco) and 50 mM sodium thio-
sulfate (NaS2O3, Amresco) in 50 mM NH4HCO3. After
hydrating with 100% acetonitrile (ACN, Wako) and drying
in a SpeedVac concentrator (Thermo Savant, USA) for
20 min, the gels were incubated with 12.5 ng/μl trypsin
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(Sequenceing grade, Promega) at 37°C overnight. The
supernatant was collected and transferred into a 200 μl
microcentrifuge tube, while the gels were extracted once
with extraction buffer (67% ACN containing 5% trifluoroa-
cetic acid (TFA, Wako)) at 37°C for 1 h. The supernatant
of the gel spots were combined and then completely dried
thoroughly in SpeedVac.

MALDI-TOF/TOF MS, MS/MS analysis and database
searching
Protein digestion extracts were resuspended with 5 μl of
0.1% TFA, and then the peptide samples were mixed
(1:1) with a matrix consisting of a saturated solution of
α-cyano-4-hydroxy-trans-cinnamic acid (α-CCA, Sigma)
in 50% ACN containing 0.1% TFA. Digested proteins
(0.8 μl) of each sample were spotted onto stainless steel
target plates and allowed to air-dry at RT. Peptide mass
spectra were obtained on an Applied Biosystem Sciex
4800 MALDI-TOF/TOF Plus mass spectrometer (Ap-
plied Biosystems, Foster City, CA). Data were acquired
in positive MS reflector using a CalMix5 standard to
calibrate the instrument (ABI 4800 Calibration Mixture).
Mass spectra were obtained from each sample spot by
accumulation of 900 laser shots in an 800–3500 mass
range. For MS/MS spectra, the 5–10 most abundant pre-
cursor ions per sample were selected for subsequent
fragmentation and 1200 laser shots were accumulated
per precursor ion.
Combined MS and MS/MS spectra were submitted to

MASCOT searching engine (V2.1, Matrix Science, Lon-
don, UK) by GPS Explorer software (V3.6, Applied Bio-
systems) for proteins identification. Parameters for
searches were as follows: trypsin as the digestion enzyme,
one missed cleavage site, partial modification of cysteine
carboamidomethylated and methionine oxidized, none
fixed modifications, MS tolerance of 60 ppm, MS/MS
tolerance of 0.25 Da. MASCOT protein score in IPI_-
CHICKEN (V3.49) database (based on combined MS
and MS/MS spectra) of greater than 57 (p ≤ 0.05) or in
NCBInr database of greater than 67 (p ≤ 0.05) was
accepted.

Validation of cellular proteins by western blot
Mouse monoclonal antibodies against actin (MAB1501),
HSP90 (05–594) and NDV (HN14f) were purchased
from Millipore. Rabbit polyclonal antibodies against
annexin A2 (ab40943) and tubulin alpha-1 (ab4074) were
products of Abcam Corparation. The critical challenge
of virion proteomics was to prove that the host proteins
were really an integral part of the virions and are not just
non-specifically attached to the outside of the virions or
derived from the contaminants. To address this question,
we performed control experiment. Extracts from 13-day-
old SPF embryonated eggs were designed as a positive
control; AF from 13-day-old SPF embryonated eggs per-
formed with the same protocol as the purification of
NDV virions was used as a negative control.
The highly purified NDV particles were suspended in

1 × loading buffer (50 mM Tris–HCl pH 6.8, 2% SDS,
0.1% bromophenol blue, 10% glycerol, 100 mM DTT)
and denatured by heating at 100°C for 5 min. The viral
protein samples were then separated at 120 V on linear
5%-15% SDS-PAGE with 5% stacking gels in Tris: glycine
buffer for about 3 h. After separated by SDS-PAGE, the
viral proteins were transferred onto a polyvinylidene
fluoride membrane (PVDF, P/N 66485, BioTrace, Pall
Corporation). The membrane was blocked in freshly pre-
pared 5% bovine serum albumin (BSA) with 0.05%
Tween-20 for 2 h at RT with constant agitation. The
PVDF membrane was washed three times with Tris buf-
fered saline buffer (TBS) plus 0.2% Tween-20 and incu-
bated with properly diluted primary antibodies for 2 h at
RT. Following three washes with TBS, the secondary
antibody conjugated to horseradish peroxidase (HRP)
(00001–14, Proteintech Group, Inc) was added for 1 h at
RT. The chemiluminescence system (AR1022, Boster
Bio-Technology Co. LTD) was used for detection of anti-
body-antigen complexes.

Protease treatment of NDV virions
Purified virus particles equivalent to 50 μg protein was
incubated with bromelain (BB0243, BBI) at 0.2 mg/ml in
50 mM DTT (pH 7.2) in Dulbecco’s phosphate buffered
saline (PBS) at 37°C for 15 min. After incubation, the
samples were directly centrifuged to equilibrium in
11.5 ml non-linear 20%-60% sucrose-TNE gradients at
24,100 rpm for 2 h at 4°C in a SW41 rotor (Beckman
Coulter, Optima™ L-100XP Preparative ultracentrifuge).
Condensed virus was diluted with TNE buffer, followed
by sedimentation at 24,100 rpm for 2 h at 4°C in a SW41
rotor to remove the sucrose and were then subjected to
immunogold labeling and electron microscopy analysis.

Validation of cellular proteins by electron microscopy and
immunogold labeling
Rabbit polyclonal antibody against chicken IgG (15 nm
Gold) (ab41500), goat polyclonal against rabbit IgG (5 nm
Gold) (ab27235) and goat polyclonal against mouse IgG
(10 nm Gold) (ab27241) were purchased from Abcam.
Protease treated NDV particles were suspended in PBS
(pH 7.4) and then were collected onto 230-mesh formwar-
coated nickel grids and adsorbed on the grids for 5 min.
The virus particles were fixed in 2% paraformaldehyde for
5 min at RT, after treating with Triton X-100 (0.2%) in PBS
(pH 7.4) for 5 min; the sample was blocked with 5% BSA
in PBS-Tween 20 (pH 7.4) for 30 min at RT. All grids were
then blocked with blocking buffer (5% BSA, 5% normal
serum, 0.1% cold water skin gelatin, 10 mM phosphate
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buffer, 150 mM NaCl, pH 7.4) for 30 min. After washing
with PBS, immobilized virions were incubated for 1.5 h
with 50 μg/ml primary antibody (in 1% BSA), and washed
three times for 5 min in PBS/1% BSA. Anti-rabbit or anti-
mouse immunoglobulin G coupled to 10 nm colloidal gold
particles was used as the secondary antibody and virions
were incubated in it for 40 min at RT. The unbound anti-
bodies were removed, the grids were thoroughly washed
and negatively stained with 2% sodium phosphotungstate
(pH 6.5) for 1 min. Negatively stained virions were exam-
ined on a scan and transmission electron microscope.
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