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Abstract

protein domain based one.

understand the functionalities of proteins.

Background: Protein synthetic lethal genetic interactions are useful to define functional relationships between
proteins and pathways. However, the molecular mechanism of synthetic lethal genetic interactions remains unclear.

Results: In this study we used the clusters of short polypeptide sequences, which are typically shorter than the
classically defined protein domains, to characterize the functionalities of proteins. We developed a framework to
identify significant short polypeptide clusters from yeast protein sequences, and then used these short polypeptide
clusters as features to predict yeast synthetic lethal genetic interactions. The short polypeptide clusters based
approach provides much higher coverage for predicting yeast synthetic lethal genetic interactions. Evaluation using
experimental data sets showed that the short polypeptide clusters based approach is superior to the previous

Conclusion: We were able to achieve higher performance in yeast synthetic lethal genetic interactions prediction
using short polypeptide clusters as features. Our study suggests that the short polypeptide cluster may help better

Background

Defining the functional relationships between proteins is
essential to understand many aspects of biology. A clas-
sical approach of understanding gene functional rela-
tionships is to produce phenotype of combination
mutant in two genes [1]; such relationships are called
genetic interactions. Recently, high throughput methods
[2-4] have been developed to generate large scale
genetic interactions in model organisms, such as yeast
(5], Schizosaccharomyces pombe [6] and E. coli. [7]. The
large scale genetic interactions have attracted much
attention as they are capable of defining the genome-
wide functional relationships among proteins and are
fundamental to comprehensive understanding of the
organization of biological systems [5,8,9]. However, even
with high throughput methods [2-4], experimental
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mapping of genetic interactions is still extremely labor
intensive and one cannot screen genome-wide combina-
tions in multiple cell organisms with ten thousands of
genes as of now [10]. Thus, it is imperative to develop
computational approaches to predict genome-wide
genetic interactions and help complement and enhance
wet-lab studies.

In extreme cases, mutation of two nonessential genes
can lead to lethal phenotype; this kind of genetic inter-
action is called synthetic lethal genetic interaction
(SLGI). Figure 1 illustrates one such synthetic lethal
genetic interaction. The SLGIs are of interest because
they are able to reveal functional relationships between
proteins, pathways and complexes [11-13]. Two syn-
thetic lethal genes have high probability of occurrence
in compensatory pathways [14] or compensatory com-
plexes [15]. Furthermore, the SLGIs are potentially use-
ful in finding drug targets or drug combinations [16].
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Figure 1 lllustration of synthetic lethal genetic interaction. A) and B) the cell is still alive after knocking out one gene; C) the cell died after
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Prediction of SLGIs is impeded by the limit of under-
standing of genetic interactions. Unlike protein-protein
interactions that are known as physical dockings among
proteins, the molecular mechanism under genetic inter-
actions has not been fully understood. Thus, it is diffi-
cult to select features and understand how features are
related to SLGIs. Several computational approaches
have been proposed for prediction of SLGIs, and many
features, such as protein interactions, gene expression,
functional annotation, gene location, protein network
characteristics, and genetic phenotype, have been used
by these approaches [10,17-20]. However, those methods
depend on other genome-wide experimental results.

It is known as a virtual axiom in biology that the
“sequence specifies structure and structure determines
functionality” [21]. We hypothesize that it is possible to
predict the SLGIs using the characteristics of protein
sequence alone. Recently, we demonstrated that the
yeast synthetic lethal genetic interactions can be
explained by the genetic interactions between domains
of those proteins [22]. Representing the structures and
function of proteins, protein domains are usually
regarded as building blocks of proteins and are con-
served during evolution. Our studies showed that the
domain genetic interactions are new type of relationship
between protein domains. Moreover, we found that dif-
ferent domains in multi-domain yeast proteins contri-
bute to their genetic interactions differently. The

domain genetic interactions help define more precisely
the function related to the synthetic lethal genetic inter-
actions, and then help understand how domains contri-
bute to different functionalities of multi-domain
proteins. Using the probabilities of domain genetic inter-
actions, we were able to predict novel yeast synthetic
lethal genetic interactions.

However, the feasibility of domain based prediction is
limited by the coverage of protein domains. For exam-
ple, only 4480 of more than 6700 yeast proteins contain
PfamA domains. In this study, we used the short poly-
peptide sequences, which are typically shorter than the
classically defined protein domains, to characterize the
functionalities of proteins. We demonstrated that the
genetic interaction between a pair of proteins can be
determined by the genetic interactions between the
short polypeptide clusters of those proteins. Using short
polypeptide clusters as features, we can not only
increase the prediction coverage, but also improve the
prediction performance.

Results

Identifying significant short polypeptide sequence pairs
We constructed the short polypeptide clusters in three
steps. First, we identified significant short polypeptide
sequence pairs from yeast proteins based on the simila-
rities of local alignments. For each yeast protein A, we
chopped its protein sequence into short polypeptides
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with length of L sequentially in a moving window size
w. Then, we used the Smith-Waterman algorithm [23]
to search all local matches with similarity scores beyond
a predefined threshold for each short polypeptide of
protein A against the sequences of all other yeast pro-
teins (Figure 2). We used BLOSUMS62 to score the simi-
larity. A significant local match between a short
polypeptide sequence ai from protein A and a short
polypeptide sequence bj from protein B indicates a poly-
peptide sequence pair ai and bj. In addition, if using bj
from protein B as query can find ai from protein A as a
significant local match, the short polypeptide pair ai and
bj is identified as a significant polypeptide sequence pair.

The significance values of local matching of short
polypeptide sequences are determined using a p-value
threshold. For each short polypeptide, We compared
each short polypeptide to all other short polypeptide
sequences and obtained a series of similarity scores. We
then modeled those scores using an extreme value dis-
tribution. Based on a predefined p-value threshold, we
determined the similarity score threshold for local
matching. A local match is significant if its score beyond
the similarity score threshold. For each short polypep-
tide sequence, with the same p-value, the similarity
score threshold to determine the significant local match-
ing are different.

We considered following parameters to experiment
with our method: 1) size L of the short polypeptide
sequence; 2) moving window size w; 3) penalty for gap
and mismatch in the alignment; 4) p-value for the
threshold of similarity score. In this study, we chose the
size of each short polypeptide sequence L to be 25 and
the window w was set to 5. The penalty for gap and
mismatch was chosen to be 14. And, we have used p-
value equal to 107° for the threshold of similarities. We
eventually obtained 3,353,962 short polypeptide
sequence pairs covering 6711 yeast proteins. And there
are totally 357,256 unique polypeptide sequences
involved in these polypeptide sequence pairs.
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Clustering short polypeptide sequences

After identifying significant polypeptide sequence pairs,
we developed a clustering algorithm to group similar
short polypeptide sequences into clusters. Initially, each
significant polypeptide sequence pair was considered as
a polypeptide sequence cluster. We first align the signifi-
cant polypeptide sequence pair using ClustalW [24].
Then, we built a hidden Markov model (HMM) using
the output of the multiple sequence alignment as the
seed. The HMM model is constructed by the
HMMbuild tool from HMMER [25]. After that, we
searched the similar short polypeptide sequences using
HMM model against all 357,256 short polypeptide
sequences. The HMMsearch in HMMER [25] was used
to screen similar polypeptide sequences with signifi-
cances beyond a threshold. The similar short polypep-
tide sequences were added to the cluster. Then, the
above process was repeated until no new short polypep-
tide sequence was added.

Several stringent thresholds (107%°,107** and 1072°)
for HMMsearch were tested in order to include all simi-
lar short polypeptide sequences and reduce false cluster
members. Due to the large size of the short polypeptide
sequence pairs, we first obtained a cluster using each
short polypeptide sequence pair as the seed. Then, we
post-processed the short polypeptide sequence clusters.
This strategy allowed us to easily run the clustering
algorithm on a computer cluster.

Post-processing short polypeptide clusters

Our goal is to use the short polypeptide clusters to
represent the functionalities of proteins, like the protein
domains were used in [26]. First, we removed the dupli-
cate short polypeptide clusters. Second, we merged two
short polypeptide clusters together under 3 conditions:
if the clusters share: 1) one polypeptide sequence; 2)
10% of polypeptide sequences of smaller cluster; and 3)
20% of polypeptide sequences of smaller cluster.
Although we used a loose merging criterion, the
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]

Figure 2 lllustration of matching between significant short polypeptide sequence pairs.
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stringent thresholds used by HMMsearch still allowed
the short polypeptides in each cluster to have high simi-
larity. Figure 3 shows the multiple sequence alignment
of short polypeptides in a merged cluster with 14 short
polypeptides. We observed that those short polypeptide
sequences in this cluster are highly conserved with sig-
nificant number of identical amino acids.

Then, we filtered out the short polypeptide clusters
with only two polypeptide sequences as those cluster
will have no power to predict the SLGIs. We also fil-
tered out short polypeptide clusters that existed in a
large number of proteins. Those common short poly-
peptide clusters exist in both positive and negative data
and also do not provide prediction power.

Next, we investigated how the choice of thresholds for
HMMsearch and for filtering clusters affects the short
polypeptide clusters. We tested different threshold con-
figurations that combined one of three E-value thresh-
olds for HMMsearch: 107!°, 107>, 1072% and one of
four thresholds for filtering out short polypeptide clus-
ters: 20, 50, 100, and No Filter. Table 1, 2 and 3 list the
number of retrained short polypeptide clusters, the
number of proteins and the number of SLGIs covered
by the short polypeptide clusters, respectively. In three
tables, the first column lists the thresholds for filtering
out short polypeptide clusters; the first row lists the
threshold for cluster merge and the second row lists the
E-value thresholds used by HMMsearch. The results
showed that increasing the cluster merge threshold will
increase the number of covered proteins and number of
short polypeptide clusters. Meanwhile, reducing the E-
value threshold from 107'° to 107! also increases the
number of covered proteins and number of short poly-
peptide clusters.
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However, further reducing the E-value threshold to 10
72 did not change the number of covered proteins and
number of short polypeptide clusters.

The results showed that the short polypeptide clusters
covered more proteins. For example, 5073 proteins are
covered by the short polypeptide clusters obtained using
107'% as HMMsearch threshold, 10% as cluster merge
threshold and 50 as polypeptide cluster filtering thresh-
old, comparing to 4480 proteins covered by PfamA
domains. The maximum number of polypeptide clusters
contained by a protein is 54 using this parameter config-
uration. The results indicate that the coverage of short
polypeptide clusters in yeast proteins is higher than that
using PfamA domains. The results also showed that the
short polypeptide clusters covered similar number of
SLGIs. For example, compared to 7702 SLGIs covered
by PfamA domains, our polypeptide clusters cover 7681
SLGIs.

Predicting yeast synthetic lethal genetic interactions
using short polypeptide clusters by maximum likelihood
estimation (MLE) approach
In order to demonstrate the superiority of using short
polypeptide clusters to predict SLGIs, we first obtained
the probabilities of genetic interactions between short
polypeptide clusters, and then used them to predict the
probabilities of yeast SLGIs. We assumed that the
genetic interaction between two short polypeptide clus-
ters is independent and applied the Maximum Likeli-
hood estimation (MLE) approach to estimate the
probabilities of short polypeptide clusters.

We compared the MLE methods based on short poly-
peptide clusters, obtained using different HMMsearch,
cluster filtering and cluster merge thresholds, to the
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Figure 3 Multiple sequence alignment of a merged short polypeptide cluster. The stars in the bottom of the figure indicate the conserved
identical amino acids.
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Table 1 The number of short polypeptide clusters obtained with various thresholds for HMMsearch, cluster filtering

and cluster merge.

Threshold Merge with at least one overlap Merge with at least 10% overlap Merge with at least 20% overlap
10—10 10—15 10—20 10—10 10—15 10—20 10—10 10—15 10—20
20 4188 5324 5326 4443 5807 5797 4760 6443 6399
50 4188 5330 5332 4471 5839 5822 4793 6475 6427
100 4188 5330 5332 4479 5848 5831 4803 6485 6432
No Filter 4189 5331 5333 4486 5856 5840 4812 6494 6440

MLE method based on protein domains. We trained
those MLE methods using all SLGIs covered by features.
The MLE based on short polypeptide clusters were able
to assign the probabilities of genetic interaction to more
protein pairs. For example, the MLE method based on
short polypeptide clusters using 10™*> as HMMsearch
threshold, 10% as cluster merge threshold and 50 as
polypeptide cluster filtering threshold were able to
assign the probabilities of genetic interaction to
1,060,860 protein pairs while the MLE based protein
domains can only assign probabilities of genetic interac-
tion to 536,175 protein pairs. This result showed that
short polypeptide cluster based approach provides a
much higher coverage to predict SLGIs.

To further evaluate the performance of short polypep-
tide cluster based MLE method, we tested the MLE
methods on an experimentally obtained genetic interac-
tions and non-genetic interactions, which include 3771
SLGIs and 688,045 non- SLGIs [10]. This data have
been used by Wong et al. [10]. So we refer this experi-
mental data as Wong data. We first trained the MLE
method using SLGIs that are not included in the Wong
data. Then, we assigned the probabilities of genetic
interaction to the SLGIs and non SLGIs in Wong data.
Table 4 lists the AUC (area under ROC curve) values
for predicting Wong data of MLE methods based on
short polypeptide clusters obtained using different
HMMsearch, cluster merge and cluster filtering thresh-
olds. The performance of MLE based on short polypep-
tide clusters is slightly better than that of MLE method
based on protein domains. The AUC score for MLE
based on short polypeptide clusters using 107'° as
HMMsearch threshold, 10% as cluster merge threshold
and 50 as polypeptide cluster filtering threshold is

0.6761 while the AUC score for MLE based on protein
domains is 0.6567.

Discussion and conclusions

In this study, we developed a framework to identify sig-
nificant short polypeptide clusters from yeast protein
sequences. We hypothesized that those short polypep-
tide clusters represent the functionalities of proteins,
like the protein domains. We then used these short
polypeptide clusters as features to predict yeast synthetic
lethal genetic interactions. The short polypeptide cluster
based approach provides much higher coverage for pre-
dicting yeast synthetic lethal genetic interactions. Eva-
luation using experimental data sets showed that the
short polypeptide cluster based approach can achieve
higher performance than the previous protein domain
based approach.

In future, we would like to continue improve the iden-
tification of short polypeptide clusters. Moreover, it is
worthwhile to develop methods to understanding those
short polypeptide clusters. Annotating those short poly-
peptide clusters may help better understand the func-
tionalities of protein domains.

Methods

Source of data

We downloaded the yeast synthetic lethal genetic inter-
actions from the Saccharomyces Genome Database
(SGD) [27] (February 2011 version). There were totally
11011 synthetic lethal genetic interactions. We down-
loaded the protein sequences of yeast from GenBank
[28]. There are totally 6717 proteins with sequences.
The minimum and maximum lengths of the protein
sequences in yeast are 16 and 4901 respectively. The

Table 2 The number of proteins covered with various thresholds for HMMsearch, cluster filtering, and cluster merge.

Threshold Merge with at least one overlap Merge with at least 10% overlap Merge with at least 20% overlap
107"° 107" 107%° 107"° 107" 107%° 107"° 107" 107%°
20 4262 4556 4561 4661 4911 4907 4840 5063 5061
50 4262 4585 4590 4858 5073 5058 5050 5201 5216
100 4262 4585 4590 4947 5176 5135 5150 5303 5253
No Filter 5693 5630 5630 5693 5630 5630 5693 5630 5630
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Table 3 The number of SLGIs retained with various thresholds for HMMsearch, cluster filtering, and cluster merge.

Threshold Merge with at least one overlap Merge with at least 10% overlap Merge with at least 20% overlap
10—10 10—15 10—20 10—10 10—15 10—20 10—10 10—15 10—20
20 6143 6648 6650 7110 7386 7408 7289 7820 7873
50 6143 6800 6802 7604 7681 7757 7770 8109 8370
100 6143 6800 6802 7710 7923 7951 8064 8376 8522
No Filter 9592 9427 9427 9592 9427 9427 9592 9427 9427

average length is 450 and the standard deviation of the
protein sequences is 380.

Determination of local alignment similarity score
threshold
The distribution of scores of local alignments between a
short polypeptide and all other short polypeptide
sequences can be described by extreme value distribu-
tion (EVD):
X—

(1)
F(x)=e* p

and the parameters of the EVD can be estimated by:

o6

g

g = ()

w=X—057728 (3)

where X and o are the sample mean and standard
deviation, respectively.

Based on Karlin-Altshcul statistics [29], the expected
number of high-scoring segment pairs (HSPs) with
score higher than S can be obtained by:

(4)

where m and n are the lengths of the two sequences
being compared. The parameter K and A can be
obtained from parameters of the EVD:

E = Kmne™*S

A=1/B (5)
n
K=eﬂ/mn (©)

The p-value of finding at least one HSP with score
higher than S can be obtained by [29]:

P=1-¢F @)

With a given p-value, we can get a corresponding E-
value. The parameter K and A can be estimated by sam-
ple mean and standard deviation of scores. Significant
similarity score can be computed by equation (4).

Algorithm to cluster short polypeptide sequences
The short polypeptide sequence clustering method
implemented is summarized as follows:

Input: a pair of short polypeptide sequences

Initialization: add the short polypeptide sequence pair
into cluster

Step 1. Conduct multiple sequence alignment (MSA)
for the sequences in the cluster using ClustalW;

Step 2. Build a HMM model using HMMbuild from
the output of MSA in step 1;

Step 3. Search all similar short polypeptide sequences
using HMMsearch and add them to the cluster. If no
new short polypeptide sequence is added, stop. Else, go
back to step 1.

Estimation of probabilities and significances of domain
genetic interactions

We treated the protein SLGIs L,,,, and short polypep-
tide cluster genetic interactions C;; as random variables.
L,,,=1 if two proteins i and j genetically interact and
L,,,» =0 otherwise. C; ;=1 if two short polypeptide clus-
ters i and j genetically interact and C;;=0 otherwise. We
estimated the probabilities of potential short polypeptide
cluster interactions Pr(C;;=1) by maximizing the likeli-
hood of observed genetic interactions using the Expecta-
tion-Maximization (EM) algorithm [30-32]. The EM
algorithm iteratively estimates the maximum likelihood

Table 4 The AUC values for the predictions of Wong data using different short polypeptide clusters obtained with
various thresholds for HMMsearch cluster filters, and cluster merges.

Threshold Merge with at least one overlap Merge with at least 10% overlap Merge with at least 20% overlap
10—10 10—15 10—20 10—10 10—15 10720 10710 10715 10720
20 0.630 0.639 0.636 0.644 0.647 0.642 0.627 0.665 0.627
50 0.630 0.638 0.634 0.669 0.676 0.644 0.662 0.671 0.633
100 0.630 0.659 0.634 0.644 0.628 0.645 0.624 0.628 0.636
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of the ‘complete data’ that combine the observed data
and unobserved data. Here, the protein genetic interac-
tions and the short polypeptide cluster information of
proteins are our observed data and the short polypeptide
cluster genetic interactions are our unobserved data.

Assuming short polypeptide cluster genetic interac-
tions are independent, the likelihood of observed protein
genetic interactions based on short polypeptide cluster
genetic interactions can be obtained as:

L=[]Pr(Cij = 1)M(1 = Pr(C;j = 1))NorKire? ®)
ij

where M;; is the number of genetic interacting pairs
between short polypeptide clusters i and j in all protein
genetic interactions; N;; is the number of non genetic
interacting short polypeptide cluster pairs between i and
j in protein genetic interactions; and K;; is the number
of non genetic interacting protein pairs including i in
one protein and j in the other one. The value of K;; is
computed by counting all possible protein pairs with i
in one protein and j in the other one with excluding the
known genetic interacting protein pairs. The Kj; will
remain unchanged during EM computation. The con-
stants a and b are pseudo counts to avoid the Pr(C;; =1)
or Pr(C;; =0) to be zero when instances of domains i
and j are rare. We set both a and b to 1 in our
calculation.

Initially, M;; was set to the number of genetic interac-
tions between domain i and j in experimental genetic
interactions; Nj; is set to 0. And Pr(C;; =1) was initia-
lized as following:

Mi,j

Pr(Cii=1) =
( Y ) M;; + N;j + K

&)

In each Expectation step of EM algorithm, we first
estimated the expected values of E[M;;] and E[N;;] [31]
using the current Pr(C;; =1):

1 PI‘(C,‘I]' = 1)
E[M;;] = an: [1 — Iiccgm)jccm) (1 — Pr(Cij = 1))] (10)
Pr(Ci,- = 1)
E[Nij = mZm(l I Hicoumeco (1 — Pr(Gy = 1) A1)

Then, we calculate the Pr(C;; =1) using the E[M;;] and
E[N;;] as following (Maximization step):

E[Mi'j] +a

Pr(Cij=1) =
I( " ) E[Mi,j] + E[Nl‘,j] + Ki,j +a+b

(12)

The EM algorithm was over the Expectation and Max-
imization steps until the change of likelihood L is less
than a pre-defined small value.
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We assumed that two proteins genetically interact (L,,,
» =1) if and only if at least one domain pair from the
two proteins genetically interact (C;; _;). Then, we cal-
culated the probability of two proteins genetically inter-
acting Pr(L,,, =1) as following:

Pr(Lmn=1)=1.0— [] (1-Pr(Cij=1))
ieC(m)
jeCtn)

(13)

A pair of proteins was predicted to be SLGI only if its
probability is higher than a predefined threshold.
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