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Abstract

Background: Identification of phosphorylation sites by computational methods is becoming increasingly important
because it reduces labor-intensive and costly experiments and can improve our understanding of the common
properties and underlying mechanisms of protein phosphorylation.

Methods: A multitask learning framework for learning four kinase families simultaneously, instead of studying each
kinase family of phosphorylation sites separately, is presented in the study. The framework includes two multitask
classification methods: the Multi-Task Least Squares Support Vector Machines (MTLS-SVMs) and the Multi-Task
Feature Selection (MT-Feat3).

Results: Using the multitask learning framework, we successfully identify 18 common features shared by four
kinase families of phosphorylation sites. The reliability of selected features is demonstrated by the consistent
performance in two multi-task learning methods.

Conclusions: The selected features can be used to build efficient multitask classifiers with good performance,
suggesting they are important to protein phosphorylation across 4 kinase families.

Background
Protein phosphorylation, one of the most important
forms of post-translational modification of proteins,
occurs on several different types of amino acid sub-
strates. Serine (S) phosphorylation is the most common,
followed by threonine (T) and tyrosine (Y). Histidine
and aspartate phosphorylation may also occur, but
mostly in prokaryotes as part of two-component signal-
ling transduction systems [1] or rarely in some eukaryo-
tic signal transduction pathways [2].
Protein kinases, which catalyze phosphorylation, play

critical roles in the regulation of the majority of cellular
pathways, including metabolism, signal transduction,
transcription, translation, cell growth, and cell differen-
tiation. Protein kinases account for approximately 2% of

known human proteins, but they are responsible of
phosphorylating approximate 30% of known human pro-
teins [3]. Moreover, nearly half of human kinases are
located in disease loci (such as asthma and autoimmu-
nity) or cancer amplicons [4]. All protein kinases are
often classified into several categories based on their
substrate specificity. Serine/threonine (S/T) kinases, the
most common category, are further classified into a
number of kinase families, including cyclin-dependent
kinase (CDK), casein kinase 2 (CK2), protein kinase A
(PKA), and protein kinase C (PKC).
In recent years, identification of phosphorylation sites

by computational methods is becoming increasingly
important, with the growing gap between protein
sequences information and annotated phosphorylation
information of proteins with known sequences. That is
due to still lack of high throughput experimental meth-
ods for identifying the phosphorylation sites of proteins
and current technologies are labor-intensive and costly.
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Besides predicting phosphorylation sites, computational
approaches can also be used to discover the common
and specific features of different kinase groups.
A large number of computational tools for predicting

phosphorylation sites have been reported [5]. These
methods can be roughly grouped into two categories:
kinase-specific predictors (e.g. Scansite [6], PredPhospho
[7], PHOSITE [8], NetPhosK [9], GPS[10], KinasePhos
[11], PPSP [12]) and non-specific predictors (e.g. Net-
Phos [13], DISPHOS [14]). Given a protein sequence,
the non-specific methods can only predict whether a
candidate site is a phosphorylation site or not, while
kinase-specific methods can not only predict whether it
is a phosphorylation site but also assign it to a specific
kinase or a specific kinase family. Recently Ji et al.
assessed 15 predictors and combined them to build a
meta-predictor method named MetaPred [3]. The per-
formance of MetaPred exceeded that of all these 15
member predictors in predicting kinase-specific phos-
phorylation sites across 4 kinase families. Like all meta-
predictors, however, the performance of MetaPred
depends on its member primary predictors. Moreover, it
is impossible to evaluate the importance of individual
features since different primary predictors use different
sets of features.
All current kinase-specific phosphorylation prediction

methods are single-task learning methods (STL) because
they are trained independent from each other. Such
methods are optimized on individual training datasets
and thus the commonalities between different datasets
are not considered. In this study, we use Multi-Task
Learning (MTL) methods, instead of STL methods in
previous studies, to investigate the kinase-specific phos-
phorylation sites by learning all STs simultaneously.
Using a shared representation, MTL learns all partici-
pated STs of a problem by a global optimization
approach based on an intuitive idea: the common
knowledge shared by related STs in a specific domain
helps improving the performance [15]. It has been
empirically and theoretically demonstrated that MTL
can improve learning performance, compared to learn-
ing STs separately [16]. In addition, MTL can be used
to find the common knowledge and perform feature
selection to identify significant features shared by mem-
ber STs. MTL is particularly suitable for learning many
STs with scarce data [17], which is currently considered
as a major problem in the bioinformatics field. Recently,
MTL has been successfully applied to study several bio-
logical problems, such as gene expression analysis [18],
subcellular location of proteins [19], and prediction of
siRNA efficacy [20].
In this study, we apply two MTL methods, namely the

Multi-Task Least Squares Support Vector Machines
(MTLS-SVMs) and the Multi-Task Feature Selection

(MT-Feat3) to the data of 4 kinase families with phos-
phorylation sites using datasets collected by Ji et al [3].
MT-Feat3 is used to efficiently select features and
MTLS-SVMs is then used to build classifiers to do cross
validation.
As results, we identify 18 non-redundant common fea-

tures, which are deemed as important to protein phos-
phorylation across 4 kinase families. Compared to the
initial set of 560 features, the number of features used
in the new predictor is reduced by more than 96% with-
out deteriorating the performance. Based on those
selected features, future work can be done to reveal
some common mechanisms of phosphorylation by dif-
ferent kinase groups.

Methods
Dataset
The dataset MetaPS06 used in this study was down-
loaded [3]. It consists of 4 kinase family datasets includ-
ing CDK, CK2, PKA, and PKC. For each kinase family
dataset, positive samples are known phosphorylation
sites, identified by experiments and belong to that
family, while negative samples are non-phosphorylation
sites or phosphorylation sites belonging to other
families. Furthermore, multi-kinases phosphorylation
sites were excluded in all datasets [3]. The numbers of
positives/negatives in the final kinase family datasets are
294/441 (CDK), 229/343 (CK2), 360/540 (PKA), and
348/522(PKC).

Feature extraction and peptide encoding
In this study, we use 560 features (physicochemical
properties) of twenty amino acid residues. Among them,
544 features were obtained from AAindex database [21]
and the remaining 16 features were collected from pub-
lished literatures. All features are normalized to a range
from 0 to 1.
A fixed length window is applied to scan a peptide

sequence. The window size is optimized using odd num-
bers from 3 to 21. The average of features of all amino
acids in a fixed window is assigned to the middle amino
acid of the window. Thus the ith peptide is represented
by N features in the form �xi = (xi1, xi2, . . . xij . . . xiN),
where N is 560.

SVMs, RF and LS-SVMs
Support vector machines (SVMs) derive parameters of
the maximum-margin to construct an optimized separ-
ating hyperplane. The optimization of SVM classifiers
includes the selection of kernel, optimization of the ker-
nel’s parameters and soft margin parameter C.
Random Forest (RF) is an ensemble machine learning

method that utilizes many independent decision trees to
perform classification or regression. Each of member
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trees is built on a bootstrap sample from the training
data by a random subset of available variables.
LS-SVMs can be considered as a variant of classical

SVMs. LS-SVMs realize the optimization by solving a
set of linear equations instead of a convex quadratic
programming for SVMs. LS-SVMs perform training fas-
ter than SVMs without sacrificing generalization perfor-
mance [22]. The LS-SVMs classifier is obtained by
solving a restricted optimization problem as below (For-
mula 1).

min
w,e

1
2

∥∥�w∥∥2 +
1
2

γ

N∑
i=1

ei2

s.t. yi[< �w,φ(�xi) > +b] = 1 − ei, i = 1, 2, . . .N

(1)

where �xi is the sample, yi is its corresponding label, N
is the sample number, ei is the error, �w is the vector of
weights, j() is the non-linear mapping function, g and b
are parameters to be fitted.

MTLS-SVMs
MTLS-SVMs is developed based on the mechanism of
data amplification. An MTLS-SVMs classifier learns
common parameters by integrating the sub datasets. It
is obtained by solving a restricted optimization problem
as below (Formula 2), and then the optimization pro-
blem can also be solved by solving linear equations.
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w,e
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−→x ti) > +bt] = 1 − eti, i ∈ Nt, t = 1, 2, · · · T

(2)

where T is the task number, Nt is the sample number
of the tth task, �w0 is the common weights shared by T
single tasks, �wt is the weights for the tth task, �xti is the
ith sample of the tth task, yti is its corresponding label, j
() is the non-linear mapping function, l, g and b are
parameters to be fitted.

MT-Feat3
MT-Feats (Multi-Task Feature Learning and Selection)
algorithm was derived from a MTL framework, which
was designed to learn sparse representation shared cross
STs from the training data [23]. MT-Feats algorithm
originally includes two algorithms to solve the regres-
sion problems. The first one was developed for feature
learning and the second was for feature selection.
We modify MT-Feats algorithms to solve classification

problems, by using LS-SVMs as element classifiers. MT-
Feat1 was developed for feature learning and MT-Feat3
was for feature selection. Both feature learning and fea-
ture selection learn common parameters by jointly regu-
larizing a common term (Formula 3).

min
A,U

1
2

γ

T∑
t=1

< �wt,D−1 �wt > +
T∑
t=1

Nt∑
i=1

1
2T

eti2

s.t. yti[< �wt,φ(�xti) > bt] = 1 − eti, i ∈ Nt, t = 1, 2, · · · T
(3)

Where W = UA, other symbols have the same mean-
ing as those in formula 2. If the U is set as identity
matrix, the “Feature learning” problem (MT-Feat1) is
reduced to a “Feature selection” problem (MT-Feat3).
Thus, MT-Feat3 is a special case of MT-Feat1 algorithm
(See Formula 4). In this study, we only use MT-Feat3
for feature selection.

min
A,U

T∑
t=1

Nt∑
i=1

L(yti,< �at,UT�xti >) + γ ‖A‖22,1

s.t. U ∈ OD,A ∈ RD×T

(4)

Performance measures
Performance is measured by average accuracy (aveAc)
which is described in formula 5.

aveAc =
TP + TN

TP + TN + FP + FN
(5)

Where TP and TN denote the total number of cor-
rectly classified positive and negative samples across all
the STs. FP and FN denote the total number of incor-
rect classified positive and negative samples across all
the STs. Since the datasets are relatively balanced, the
average accuracy is sufficient to measure the perfor-
mance of various predictors.

Results
Classification of family-specific phosphorylation sites by
two MTL methods
We use MTLS-SVMs and MT-Feat3 methods to build
classifiers for predicting phosphorylation sites on 4
kinase family datasets. To compare the performance of
MTLS-SVMs and MT-Feat3 methods with that of the
STL method, LS-SVMs classifiers are also built using
the save datasets. Five-fold cross validation and grid-fit-
ting of parameters are used to estimate the performance
of all classifiers with window size from 3 to 21 (Table
1). It can be seen in Table 1 that in general there is an
agreement on the average classification accuracy (aveAc)
of all three methods on different window sizes and the
window size of 7 delivers the best performance for both
STL and MTL classifiers. However, apparently the per-
formance of MTL methods (MTLS-SVMs and MT-
Feat3) is inferior to the STL (LS-SVM) method. We
hypothesize that a uniform window size may be not a
good choice for all four kinase family datasets because
of the specificity of each kinase. Secondly, there are
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many redundant or irrelevant features that may decrease
the performance. Therefore, in the following work we
attempt to improve the performance of MTL classifiers
by optimizing window sizes and performing feature
selection.

Optimized window sizes for 4 kinase family
For local window based methods, a proper window size
reflects the optimized physical or chemical effects on
the central amino acid from local surroundings. Differ-
ent window sizes have been used in previous studies.
For example, GPS [10], KinasePhos [11], PPSP [12] used
a symmetrical window of 7 consecutive amino acid resi-
dues (7-mer), and NetPhosK [9] used 15-mer and 17
mer. Instead of assuming a uniform window size for all
kinase families, we build classifiers based on Support
Vector Machines (SVMs) and Random Forest (RF) algo-
rithms to optimize the window size for each of the
kinase family dataset. We use ten-fold cross validation
and grid fitting of parameters to estimate the

performance of all classifiers with 560 features (Table
2). The results clearly show that the performance of
both SVMs and RF has very similarly tendency for dif-
ferent window sizes and optimized window sizes are
insensitive to the classification algorithms. Generally,
SVM models using the linear kernel deliver better per-
formance than SVM models with the rbf kernel and RF
models. Using the optimized window sizes respectively
presented in Table 2 (3, 17, 7 and 9 for CDK, CK2,
PKA and PKC datasets), we build respective models and
compare the results with the models using uniform win-
dow sizes (Table 1). It is clear that the optimized win-
dow sizes significantly improve the performance of LS-
SVMs (aveAc = 0.7939), MTLS-SVMs (aveAc = 0.7936),
and MT-Feat3 (aveAc = 0.791). In the following parts,
window sizes with 3, 17, 7 and 9 for CDK, CK2, PKA
and PKC datasets respectively are referred as optimized
window sizes.

Feature selection and validation
Feature selection can improve the performance of classi-
fiers not only in delivering faster and more effective
classifiers but also in providing better understanding of
relevant biological processes. MT-Feat3 is capable of
selecting common features across multi tasks in addition
to performing classification. We firstly construct a
weight matrix W with a dimension of 560*4 to represent
the significance of 560 features across 4 kinase family
datasets using a uniform windows size of 7. The MT-
Feat3 can significantly reduce the dimension of features
by eliminating rows with zero weights. We then com-

pute the 2-norm weight wi =

√√√√√
4∑
j=1

Wij

2

of each non-

zero row in W and obtain the significance wi which
represents the importance of the ith feature among 4
kinase family datasets. All non-zero features with wi

2

Table 1 Average classification accuracy of different
classifiers with 560 features

window size LS-SVMs MTL-Feat3 MTLS-SVMs

3 0.7381 0.727 0.728

5 0.754 0.7462 0.7459

7 0.7611 0.7595 0.7595

9 0.7498 0.741 0.74

11 0.7504 0.7455 0.7478

13 0.7491 0.7403 0.7416

15 0.7439 0.7355 0.7394

17 0.7439 0.729 0.7316

19 0.7325 0.7251 0.727

21 0.7325 0.7192 0.7176

opt* 0.7939 0.791 0.7936

Five fold cross validation and grid fitting of parameters are used to estimate
the performance of all classifiers. *The optimized window sizes (3, 17, 7 and 9)
for 4 kinase family datasets are used to build classifiers.

Table 2 Classification accuracy of different classifiers with 560 features for 4 kinase datasets

CDK kinase family CK2 kinase family PKA kinase family PKC kinase family

window size SVM-rbf SVM-linear RF SVM -rbf SVM-linear RF SVM-rbf SVM-linear RF SVM-rbf SVM-linear RF

3 0.8598 0.8613* 0.83 0.7783 0.7796 0.7326 0.6656 0.6678 0.6289 0.6723 0.6758 0.6113

5 0.8013 0.8122 0.7579 0.806 0.8112 0.7935 0.7156 0.7178 0.7111 0.7173 0.724 0.7069

7 0.7578 0.7581 0.7455 0.8655 0.8724 0.8599 0.7567 0.7533* 0.7589 0.7242 0.7196 0.7253

9 0.7305 0.7077 0.7171 0.8706 0.8688 0.8548 0.7456 0.7489 0.7622 0.7253 0.7393* 0.7183

11 0.7223 0.724 0.7226 0.8654 0.8617 0.8619 0.7433 0.7478 0.7511 0.7161 0.7298 0.7023

13 0.721 0.7103 0.7049 0.867 0.8705 0.874 0.7367 0.7378 0.7311 0.7287 0.7299 0.7299

15 0.7211 0.7023 0.7049 0.8724 0.8723 0.8792 0.7322 0.7267 0.7156 0.7264 0.7286 0.7253

17 0.7087 0.7038 0.717 0.8812 0.8811* 0.874 0.7211 0.7167 0.7089 0.7253 0.7286 0.7252

19 0.7142 0.6995 0.7049 0.8759 0.8844 0.8757 0.72 0.6978 0.7167 0.7173 0.7194 0.7194

21 0.7263 0.6887 0.72 0.8759 0.8775 0.8739 0.7133 0.7022 0.7044 0.7082 0.7309 0.6999

*Best performance for each kinase family by SVM with linear kernel and the corresponding window size is selected as the final optimized window size for that
kinase family.
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larger than zero are considered as significant common
features and their importance is sorted accordingly. In
addition, the same procedure of feature selection is con-
ducted using the optimized window sizes for 4 kinase
family datasets (Table 2).
Using various numbers of the most important fea-

tures, ranked by the models using either the uniform
window or optimized windows, we develop two series of
MT-Feat3 models accordingly. In addition, we develop
corresponding MTLS-SVM classifiers using the same
sets of features. The average accuracies of all models are
displayed in Figure 1. Based on the Figure 1, we select
20 features for the models using the window size of 7
and 26 features for the models using optimized window
size. The MTLS-SVM models using these sets of fea-
tures achieve average accuracies of 0.7621 and 0.7962,
higher than that (aveAc with 0.7595 and 0.7936) of
MTLS-SVMs before feature selection (Table 3). Thus it
is clear that feature selection by MT-Feat3 can improve

Figure 1 Performance with different feature numbers. *window size 7 across 4 kinase family datasets. # optimized window sizes (3, 17, 7 and
9) across 4 kinase family datasets.

Table 3 Classification Accuracy of different classifiers
with selected features

Methods Window size Feature number aveAc

MetaPred NA NA 0.7997

LS-SVMs 7 560 0.7611

opt 560 0.7939

*MT-Feat3 7 25 0.7605

opt 23 0.7972

MTLS-SVMs 7 560 0.7595

opt 560 0.7936

*MTLS-SVMs 7 20 0.7621

opt 26 0.7962

#MTLS-SVMs 7 12 0.7455

opt 18 0.792

Five fold cross validation and grid fitting of parameters are used to estimate
the performance of all the classifiers.

*Using features selected by the MT-Feat3 method.

#Using features filtered by the Metric multi-dimensional scaling method.
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the performance and the performance of MT-Feat3 and
MTLS-SVMs is quite consistent. In addition, using opti-
mized windows results in better performance than using
a uniform window size of 7 (Table 3). The performance
of MTLS-SVM model using the 26 selected features
with the optimized window sizes achieves comparable
performance to MetaPred (0.7962 vs 0.7997).

Analysis of selected features
The selected features subset 1 (20 features) and subset 2
(26 features) using the uniform window size of 7 or the
optimized window sizes, respectively, are listed in Table
4. There are 14 common features appear in both subset
1 and subset 2. These common 14 features can be
grouped into 6 categories, including backbone electro-
static interactions ("AVBF000101”, “AVBF000102”,
“AVBF000104”, “AVBF000105”, “AVBF000106”,
“AVBF000107”, “AVBF000108”, “AVBF000109”), hydro-
phobicity ("ROSM880104”, “ROSM880105”), apparent
partition energies ("GUYH850103”), negative charge
("FAUJ880112”), fractional occurrence in left helix

regions ("RACS820103”) and side chain conformation
("YANJ020101”).
To investigate the relationship between selected fea-

tures, we cluster features in the subset 1 (Figure 2A)
and subset 2 (Figure 2B) by Pearson correlation coeffi-
cients distances and constructed a two-dimensional map
(Figure 2A) by the metric multi-dimensional scaling
method [24]. All features with high correlation coeffi-
cients with other features (labelled by # in Table 4) are
removed from the subset 1 and 2 respectively, resulted
in the subset 3 (12 features) and subset 4 (18 features).
The detailed description of the subsets 1, 2, 3 and 4 is
available in Additional file 1.
The best aveAc of MTLS-SVMs with the subset 4 is

0.792, very close to that of MTLS-SVMs with total fea-
tures (0.7936). The best aveAc of MTLS-SVMs with the
subset 3 is 0.7455, which is slightly poorer than that of
MTLS-SVMs with total features (0.7595) (Table 4).
Therefore, those 18 features in subset 4 are considered
as significant properties related with protein
phosphorylation.

Table 4 Selected features by MT-Feat3

Subset 1 (20 features) Subset 2 (26 features)

Backbone electrostatic interactions AVBF000101*# AVBF000101*#

AVBF000102*# AVBF000102*#

AVBF000104*# AVBF000104*#

AVBF000105*# AVBF000105*#

AVBF000106* AVBF000106*

AVBF000107*# AVBF000107*#

AVBF000108*# AVBF000108*#

AVBF000109* AVBF000109*#

Hydrophobicity ROSM880104* ROSM880104*

ROSM880105*# ROSM880105*

Apparent partition energies GUYH850103* GUYH850103*

Negative charge FAUJ880112* FAUJ880112*

Fractional occurrence in left helix regions RACS820103* RACS820103*

Side chain conformation others YANJ020101* YANJ020101*

CHAM830108 SNEP660101

PALJ810113 BUNA790103

WILM950104 CRAJ730101

BURA740101 TANS770102

JOND920102 BULH740101

AVBF000103# GEIM800103

PALJ810107

GEIM800105

VELV850101

COSI940101#

ISOY800107

CHOP780211

Features in Subset 1 are selected by MT-Feat3 with window size 7. Features in Subset 2 are selected by MT-Feat3 with optimized window sizes across 4 kinase
family datasets.

*Common features shared by subset 1 (20 features) and subset 2 (26 features).

# Features filtered by the Metric multi-dimensional scaling method.
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Conclusions
In this study, we use a multi-task learning framework to
investigate phosphorylation sites across 4 kinase family

datasets. In this framework, MT-Feat3 is used to select
some common features, which are then validated by
MTLS-SVMs classifiers. Selected features are further

Figure 2 Two-dimensional map by metric multi-dimensional scaling method. (A) Subset 1 selected by MT-Feat3 with window size 7.
Redundant features (in circles) are removed, leading to subset 3. (B) Subset 2 selected by MT-Feat3 with optimized window sizes. Redundant
features (in circles) are removed, leading to feature subset 4. All the removed features are marked # in Table 4.
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reduced to 18 features after eliminating features with
high correlation coefficients with outer features. These
features are considered as important common features
for further analysis of possible properties and mechan-
isms of protein phosphorylation.

Additional material

Additional file 1: Description of selected features from AAIndex.
Descriptions of AAIndex records corresponding to selected features in
subset 1, 2, 3 and 4.
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