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Abstract

Background: Proteins are essential biological molecules which play vital roles in nearly all biological processes. It is
the tertiary structure of a protein that determines its functions. Therefore the prediction of a protein’s tertiary
structure based on its primary amino acid sequence has long been the most important and challenging subject in
biochemistry, molecular biology and biophysics. In the past, the HP lattice model was one of the ab initio
methods that many researchers used to forecast the protein structure. Although these kinds of simplified methods
could not achieve high resolution, they provided a macrocosm-optimized protein structure. The model has been
employed to investigate general principles of protein folding, and plays an important role in the prediction of
protein structures.

Methods: In this paper, we present an improved evolutionary algorithm for the protein folding problem. We study
the problem on the 3D FCC lattice HP model which has been widely used in previous research. Our focus is to
develop evolutionary algorithms (EA) which are robust, easy to implement and can handle various energy
functions. We propose to combine three different local search methods, including lattice rotation for crossover, K-
site move for mutation, and generalized pull move; these form our key components to improve previous EA-based
approaches.

Results: We have carried out experiments over several data sets which were used in previous research. The results
of the experiments show that our approach is able to find optimal conformations which were not found by
previous EA-based approaches.

Conclusions: We have investigated the geometric properties of the 3D FCC lattice and developed several local
search techniques to improve traditional EA-based approaches to the protein folding problem. It is known that
EA-based approaches are robust and can handle arbitrary energy functions. Our results further show that by
extensive development of local searches, EA can also be very effective for finding optimal conformations on the
3D FCC HP model. Furthermore, the local searches developed in this paper can be integrated with other
approaches such as the Monte Carlo and Tabu searches to improve their performance.
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Background

Proteins are essential biological molecules which play
vital roles in nearly all biological processes. It is the ter-
tiary structure of a protein that determines its functions
[1-3]. Therefore the prediction of a protein’s tertiary
structure based on its primary amino acid sequence has
long been the most important and challenging subject
in biochemistry, molecular biology and biophysics.
Although the interaction between individual atoms can
be calculated to model the folding of a protein in a
search of the tertiary structure at the lowest free energy,
the massive degree of computational complexity makes
this approach infeasible. As a result, researchers have
proposed to develop simplified models to reduce the
computational complexity in modelling protein 3D
structure.

Lau and Dill [4] proposed a simple Hydrophobic-Polar
model (HP model) based on the hydrophobic interaction
between amino acids which has greatly reduced the
complexity involved in protein structure prediction. The
HP model has thus been used by many researchers and
has been applied in various lattice algorithms [5] such
as 2D Square [4,6-14], 2D Triangular [15-18], 3D Cubic
[13,19,20], 3D Triangular [21] and 3D Face-Centered
Cubic (FCC) [22-28] lattices. Although algorithms on
simplified HP lattice methods did not achieve high reso-
lution, they provided a macrocosm-optimized protein
structure. The model has been employed to investigate
general principles of protein folding as well as to predict
protein tertiary and quaternary structure.

Although the HP lattice model has greatly reduced the
complexity of the protein folding problem, it is still NP-
hard [29-31]. The evolutionary algorithm is one of the
major methods used to investigate protein folding. It is
so far the most widely used approach in protein folding
simulation [32]. Unger and Moult [14] presented a pio-
neering work which proposed the first Genetic Algo-
rithm (GA) developed from Evolutionary Programming
to solve protein folding problem in the 2D HP model.
Their work has had a wide impact in the early progress
of computational protein folding. Later, Jiang et al., [11]
combined GA with the Tabu search and demonstrated
that combinatorial genetic algorithms performs better
than a single GA. Recently, Hoque et al., [7,22] pro-
posed a twin-removal strategy to maintain the diversity
of chromosomes to improve the performance of GA.

Various local search methods have been proposed to
improve the search performance of evolutionary algo-
rithms. Most of them are based on the concept of Move
Set [7,10,11,15,20,22,33]. Dill et al. [34] proposed Three-
Bead and End Flip for single-point move and Crankshaft
for double-point move. Lesh et al., [12] developed Pull
Move, and showed that Pull Move is a very effective
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local search method. Thachuk et al., [20] proposed End
Move, Corner Move [35] and Crankshaft Move [36] to
compensate for the disadvantages of Pull Move. It was
shown that their approach performed better than the
most advanced Ant Colony Optimisation (ACO) [13]
and pruned-enriched Rosenbluth method (PERM) [37]
on 2D square and 3D cubic models. Hoque et al., [7,22]
also used similar local search strategies in GA such as
Pull Move, Diagonal Move and Tile Move. Sali et al.
[38] and Mann et al., [39] proposed a K-local move that
can give sufficient structural changes within a successive
interval of fixed length K. Huang et al. [10] proposed a
Genetic algorithm based on optimal secondary struc-
tures (GAOSS) in which the authors designed three
types of 2D structural motifs in the 2D square lattice
model to improve the efficiency and increase the search
capacity. The approach of Huang et al., involves a move
set method based on special motifs.

Rotation is another transformation which has been
proposed by Unger and Moult [14] to increase the suc-
cessful rate of crossovers and mutations. However, rota-
tion has been mainly applied to structures such as
square and Triangular [17] lattices, but less explored in
other lattice structures, including FCC lattices. This may
be partly because how to perform rotation in them is
not as clear as in cubic lattices.

In this paper, we propose to study the effect of lattice
rotation in search of optimal conformations on lattice
models. We focus on 3D FCC lattice which gives higher
degree of freedom and does not involve the parity pro-
blem appearing in cubic lattice [21]. This model has the
highest packing density [40] and can render conforma-
tions closer to the real or high resolution folding [41].
We aim to develop effective EA-based approaches which
combine lattice rotations and move set operations. We
have proposed three different local search methods,
including lattice rotation for crossover, K-site move for
mutation, and generalized Pull Move. These three meth-
ods form our key components to improve EA-based
approaches. Experiment shows that our approach per-
forms better than previous EA-based approaches. In
addition, our approach does not rely on any specific
form of mathematical optimization so that it is robust
and can handle arbitrary energy functions and be inte-
grated with other approaches such as Monte Carlo and
Tabu search to improve their performance.

It should be noted that, to this date, constraint pro-
gramming (CP) [23,24,27] is the state-of-the-art method
which performs best for protein folding on HP lattice
model [28]. This approach can ensure the solution to be
the global optimum. However, from our experience with
HPstruct [23,24] which is an excellent tool based on
constraint programming, CP-based approaches do not
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always converge to return optimal conformations. In
addition, it is difficult, if not impossible, to modify CP-
based approaches to handle complex energy functions
efficiently, such as energy functions of pairwise interac-
tions among all 20 amino acids [33,42,43]. On the con-
trary, EA-based approaches are robust and not
constrained by any specific form of energy function.
Although experiment shows that CP-based approaches
such as HPstruct achieve the best performance [23,24],
provided they converge, we still need complementary
methods such as EA-based approaches to compensate for
their disadvantages, especially when they fail to converge.

The remainder of this paper is organized as follows.
Section 2 describes preliminaries, and reviews the HP
model and 3D FCC lattice. Section 3 presents the pro-
posed approaches, and gives details for main compo-
nents of our algorithm, including rotation-based
crossover, K-site-move-based mutation and generalized
Pull Move. Section 4 explains the experimental results.
Section 5 concludes and discusses future work.

Preliminaries
In this section, we review the HP model, 3D FCC lattice
and fitness function which are used in our approach.

HP model

The HP lattice model is the most frequently used simpli-
fied model and is based on the observation that the
hydrophobic interaction between the amino acid residues
is the driving force for the protein folding and for the
development of native state in proteins [4]. In this model,
a protein is represented as a linear chain of # amino
acids. Each amino acid is classified based on its hydro-
phobic characteristics as an H (hydrophobic or non-
polar) or a P (hydrophilic or polar). The HP lattice model
allows a chain conformation to be represented as a self-
avoiding walk (SAW) on the lattice path favouring an
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energy-free state due to HH interaction. HH interaction
in this study refers to ‘topological neighbours’ and not to
the ‘connected neighbours’ as in the above mentioned
chain. Figure 1 gives a conformation on a 3D FCC lattice
for protein 1CNL with HP-sequence “PHHPPPPHPHPH”.
The number of HH contacts in Figure 1(b) is 7.

3D FCC lattice

Raghunathan and Jernigan made an effort in 1997 to
find and define a basic unit for the 3D arrangement sur-
rounding one amino acid [40]. Consequently, a 3D FCC
model was proposed and developed as shown in Figure
2. This model can produce a nearly perfect angular dis-
tribution for the amino acids and therefore can be used
directly to generate amino acid chains. In this model
there are 8 cubes with 14 faces and 12 vertices, which is
a unique convex polyhedral containing regular polygons,
triangles and squares. As a result, every lattice point will
have 12 neighbours.

In a FCC lattice, we can define the domain as the set
of points(x, y, z) € Z so that x + y + z is even. Two
FCC points p; = (x; ¥, z;) and p; = (x;, ¥, z;) are adja-
cent if and only if |x; — )| < 1, |y, -yl <1, |zs -z < 1
and |x; - x;| + |y; — 9j| + |z: - zj| = 2 [33]. Each FCC
lattice point is adjacent to 12 neighbouring points, and
three consecutive adjacent points form one of these four
angles 60°, 90°, 120° and 180°. In this paper, the 12
neighbours of each lattice point are labelled as numbers
from 1 to 12, where 1 is for FL(+1,+1,0), 2 for FR(+1,-
1,0), 3 for FU(-1,+1,0), 4 for FD(-1,-1,0), 5 for BL(+1,0,
+1), 6 for BR(+1,0,+1), 7 for BU(-1,0,+1), 8 for BD(-1,
+0,-1), 9 for LU(+0,+1,+1), 10 for LD(+0,+1,-1), 11 for
RU(+0,-1,+1), and 12 for RD(+0,-1,-1). Symbols FL, FR,
FU, FD, BL, BR, BU, BD, LU, LD, RU and RD are used
to denote fold directions with FL for front-left, FR for
front-right, FU for front-up, FD for front-down, BL for
back-left, BR for back-right, BU for back-up, BD for

(b)

Figure 1 A ground-state conformation in the 3D FCC HP model. An example on HP lattice model: (a) The native state of the protein with
PDB id 1CNL, (b) an optimal HP conformation for 1CNL on 3D FCC lattice with 7 HH contacts denoted by dashed blue lines.
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Figure 2 The FCC lattice model: each lattice point has 12 neighbours.
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back-down, LU for left-up, LD for left-down, RU for
right-up and RD for right-down. The vector following
each symbol is its corresponding direction vector.

A conformation is a sequence of adjacent points in the
lattice and can be encoded as a sequence of numbers
from 1 to 12. Two hydrophobic amino acids x; and x;
and in lattice positions p; and p; respectively are said to
be in HH contact, that is contact(p;, p;) = 1, if and only
if they are adjacent in the lattice, but not if they are
adjacent in the primary sequence where x; - x;| + |y; -
¥l + |z — z| =2 and |i - j| > 1. A conformation is valid
if it consists of a self-avoiding walk (SAW) in the lattice:
that is where p; # p; for i # j. Otherwise, it is invalid.

Fitness function

Assume each HH contact contributes energy -1 to the
conformation. The free energy of a protein conforma-
tion is defined as the negative sum of its HH contacts
as follows. Let s=sys5 ... 5, be an HP sequence, and
c=p1p>...p, be a valid conformation for s. Then the free
energy E(c) of c is defined as follows:

n—2 n
E(c) = Zi=1 Z;‘:nz contact(pi, p;) (1)

Hence, the problem of protein folding is formulated as
an optimization problem which aims to find the confor-
mation with minimal free energy. That is to find ¢ € C
(s) such that E(c’) = min{E(c)|c € C}, where C(s) is the
set of all valid conformations for s [13].

The proposed method
In this section we present the proposed EA-based
approach. Figure 3 shows the main step. To improve

the search performance, the proposed approach
enhances crossover by lattice rotation, Pull Move by
generalized Pull Move and mutation by K-site move.
We next explain details of each main step.

Initialization

An initial population was generated randomly from an #
- 1 dimensional space within a fixed range. We apply
Depth-first search [6,8] to generate random conforma-
tions. Each chromosome in the population needs to be
evaluated for its fitness value as defined in equation (1).
Our objective is to minimize the fitness value; that is, to
maximize the number of HH contacts. The evaluated
chromosomes were sorted according to their fitness
values. This sorted population served as the basis of
subsequent reproduction processes.

Parent selection

Parent selection is the process of collecting chromo-
somes to be selected as parents for crossover. We apply
the tournament selection method in which the better of
two randomly selected chromosomes is selected as one
parent.

Rotation-based crossover

Crossover is a process of taking two parent conforma-
tions and producing child conformations from them.
Several different crossover methods have been proposed.
We use the simplest 1-point crossover in which a single
crossover point on both parents’ conformations is
selected, and all data beyond that point in either confor-
mation are swapped between the two parent conforma-
tions. The resulting two conformations are the children.
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Figure 3 Main steps of the proposed EA-based approach.
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However, crossover may fail to produce legal child con-
formations as child conformations may violate the SAW
constraint, i.e. points in a child conformation may over-
lap. In order to increase the successful rate of crossover,
we develop a rotation-based crossover in which parts
from parent conformations are rotated at various angles
to produce child conformations. Notice that rotation-
based crossover was first proposed by Unger and Moult
[14] on 2D square lattice. In this paper, we apply it to
3D FCC lattice model. We investigate the geometric
structure of 3D FCC lattice, and identify several valid

rotations which keep all rotated points fully overlapped
with the original points in the lattice, and can be per-
formed by simple neighbour permutations. In particular,
we identified 17 rotations which are classified into two
types, square-based and triangle-hexagon-based. Thus,
each rotation-based crossover will generate at most 17
new chromosomes. Each rotation is performed by first
partitioning all lattice points into parallel planes, and
then rotating all planes synchronously.

In square-based rotation, the neighbours of the central
point are partitioned into squares. Figure 4 shows 3

Figure 4 Square-Based Rotation: 3 ways to partition the 12 neighbours of the central point into 3 squares.
A\
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different partitionings of the 12 neighbours into 3
squares. For each partitioning, we rotate each square
synchronously. The rotation axis is the line defined by
the centres of the 3 squares, and the rotation angle is
one of 90°, 180° or 270°. We thus can define 9 different
square-based rotations.

In triangle-hexagon-based rotation, the 12 neighbours
of a lattice point are partitioned into two triangles and
one hexagon. Figure 5 shows 4 different partitionings
for triangle-hexagon-based rotation. The rotation axis is
the line defined by the centres of the two triangles and
the hexagon, and the rotation angle is 120° or 240°.
Thus 8 different triangle-hexagon-based rotations are
defined.

Note that, for each above-mentioned rotation, the
representation of a rotated conformation can be com-
puted from its original conformation by label permuta-
tion. Figure 6 gives an illustration of square-based
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rotations and their corresponding label permutations. In
Figure 6(a) and 6(b) give the parent conformations. Fig-
ure 6(c) gives the offspring without rotation. Figure 6(d)
shows the 3 squares in the partitioning of neighbours.
Figure 6(e) gives the corresponding label permutations
for rotation angles90°, 180°and 270° respectively. Figure 6
{f) gives the 4 offspring with the part in red rotated 0°,
90°, 180°and 270° respectively. Note that the label
sequence of the conformation of the red part for each
rotation angle is (1,1,6,4) for 0°, (3,3,10,2) for 90°, (4,4,8,1)
for 180° and (2,2,12,3) for 270°. Each rotated conforma-
tion is computed by its corresponding label permutation
in Figure 6(e). An illustration of triangle-hexagon-based
rotation is given in Figure 6(g), 6(i) and 6(j).

Generalized pull move
Pull Move was first proposed by Lesh et al., [12] and
used as local search on the 2D square HP protein

0. 6

(c)

into two triangles and one hexagon.
A

Figure 5 Triangle-Hexagon-Based Rotations. Triangle-Hexagon-Based Rotations: 4 ways to partition the 12 neighbours of the central point
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Figure 6 Rotation-based crossover operate. lllustration of rotation-based crossover: (a) and (b) are the parent conformations; (c) is the
offspring without rotation; (d) shows the 3 squares in one partitioning of neighbours; (e) shows the corresponding label permutation for
rotation angle 90°, 180° and 270°; (f) shows the 4 offspring with the part in red rotated 0°, 90°, 180° and 270% (g), (i) and (j) illustrate triangle-

(i)

folding problem. Bockenhauer et al., [15] further applied
Pull Move in 2D triangular and 3D FCC lattice models
and demonstrated that this method is reciprocal and
complete.

In Pull Move, the next point is pulled to the original
position of its previous point. In this paper, we propose
a Generalized Pull Move (GPM) in which a point is not
restricted to being moved to the position of its previous
point; instead it can be moved to any common neigh-
bour of the new position of its previous point and its
current position. We thus can have multiple choices to
move the next point. Figure 7 gives an illustration of
GPM on 2D FCC. Figure 7(a) shows the only result

obtained by Pull Move, and Figure 7(b)-(e) demonstrates
the 4 possible results obtained by GPM. It is noted that
in GPM, after the ith point is moved, there are 2 possi-
ble positions to move the (i+1)th point to as there are 2
common neighbours between the new position of the
ith point and the original position of the (i+1)th point.
On 3D FCC, the number of possible positions to move
to the next point is 4.

When GPM initiates, if the number of possible
choices to move the next point to is greater than one,
then a random choice is made. If the free energy of the
newly pull-moved conformation is lower than the origi-
nal conformation, the new conformation will replace the
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shows the 4 possible results obtained by Generalized Pull Move.

Figure 7 Generalized Pull Move. Generalized Pull Move on 3D FCC lattice: (a) shows the result obtained by the traditional Pull Move; (b) to (e)

original conformation. Otherwise, the original conforma-
tion will remain unchanged.

K-site-move-based mutation
Monomer or dimer moves were often used in past
research as methods for local search. In this paper, we
apply K-site move to enhance mutation to search the
best conformation obtained by moving K consecutive
points in the conformation.

However, the searching space increases exponentially
with the increase of K because the number of possible
SAWs in a 3D FCC lattice is given by SAWgcc =
1.26K°'° (10.0364)% [44]. In the implementation, a
lower bounding technique is applied to reduce the
search space. In particular, for each search path, a lower
bound, which is defined as the sum of the path length
and the Euclidean distance between its end point of the
path and the destination point, is estimated and the
path is pruned in the search process if the estimated
lower bound is larger than K+1. Note that a small value
of K may limit the search space and degrade the effec-
tiveness of the search process. On the other hand, a
large value of K can enlarge the search space but, at the
same time, increase the search time exponentially. The
value of K is set as 3 in this paper.

Survivor selection

After generating a set of offspring, only the top fittest
chromosomes are selected to survive into the next
generation.

Termination

The process is repeated a fixed iteration size of times.
When terminated, the best conformation remaining in
the population is returned.

Experimental results

To evaluate the effectiveness of our approach, experiments
over 4 data sets were carried out, including two sets of
short amino acids HP-sequences with lengths from 20 to
64, and two sets of longer amino acids HP-sequences with
lengths from 90 to 200. Tables 1, 2, 3 and 4 summarize
amino acids HP-sequences of the 4 data sets.

Experiment over data set |

Data set I consists of eight peptides of 20-64 amino
acids which have been widely used in previous research
[13-18,20,25,26]. In this experiment, we set the cross-
over rate and mutation rate to be 0.85 and 0.4, respec-
tively. The population size is 10. The iteration size is 30
for sequence 1-5, 100 for sequence 6-7, and 150 for
sequence 8. Table 5 compares our results with the
results reported by several previous approaches, includ-
ing ETS [15] which is proposed by Bockenhauer et al.,
[15] to integrate Tabu search, HGA which is a hybrid
genetic algorithm proposed by Hoque et al. [22], and
MA [18,26] which is a memtic algorithm on 2D triangu-
lar lattice and extended to 3D FCC in this study. The
results show that both our approach and ETS find opti-
mal conformations for all sequences in this data set and
achieve the best performance.
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Table 1 Data Set I: a group of eight HP sequences with 20-64 amino acids.

Seq. Len. Protein Sequence

S1 20 HPHPPHHPHPPHPHHPPHPH

S2 24 HHPPHPPHPPHPPHPPHPPHPPHH

S3 25 PPHPPHHPPPPHHPPPPHHPPPPHH

S4 36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP

S5 48 PPHPHHHPHHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH

S6 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH

S7 60 PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHHHHHHPHHPHH

S8 64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPHPHHHHHHHHHHHH

Experiment over data set Il

Data set II consists of ten peptides of 48 amino acids
each. This set of sequences has been a classical bench-
mark used on the 3D cube lattice model and it was
used on 3D FCC lattice recently by Dotu et al. [28]. In
this experiment the population size is 40 and the itera-
tion size is 150. The crossover rate and mutation rate
are 0.85 and 0.4 respectively. The result is given in
Table 6. We compare our approach and several
approaches proposed by Dotu et al., [28] which combine
Tabu search, constraint programming and large neigh-
bor search (LNS). In Table 6, LS denotes Tabu Search
with random initialization, LS-G denotes Tabu Search
combined with constraint programming, LS-2N
denotes2-Neighborhood Tabu Search with random initi-
alization, LS-2N-G denotes2-Neighborhoods Tabu
Search combined with constraint programming, LNS-
MULT denotes Multiple Sequence Reoptimized LNS,
and LNS-3D denotes 3D Structure Reoptimized
LNS [28]. The results show that only our approach and
LNS-MULT can find optimal conformations for all
sequences in this data set.

Experiment over data set Ill and IV

Data set III consists of 15 sequences of length 90-200
which are used in Dotu et al. [28]. To our knowledge,

Table 2 Data Set Il

no EA-based approaches have been reported for
sequences of such length. We compare our approach
with the LNS-based [28] and HPstruct [23,24]. It should
be pointed out that HPstruct by Will [27] is a sofware
tool for the protein structure prediction on the HP lat-
tice model which implements the constraint program-
ming and hydrophobic threading algorithm developed
by Backofen and Will [27]. Table 7 summarizes the
results. HPstruct finds optimal conformations and out-
performs our method, provided that HPstruct converges.
However, for sequence F180_1 and F180_2, HPstruct
does not return any conformation. As noted in [28] and
experienced in our experioment, HPstruct is limited by
pre-computed H-cores, and no conformation will be
returned if it fails to converge. Our method is able to
find conformations for these 2 sequences with energy
lower than those obtained by LNS-based approaches
[28], including LNS-MULT and LNS-3D which perform
better than our approach for the first 12 sequences, but
worse for the last 3 sequences.

In the comparison, our approach performs best for
sequence F180_1 and F180_2. Figure 8 gives the confor-
mations returned by our approach for sequences
F180_1, F180_2 and F180_3.

We further submit 5 sequences in data set IV, which
are selected from PDB with the ID: 4BP2, 2AAS, 5LYZ,

Seq. Len. Protein Sequence

H1 HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH
H2 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH
H3 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP
H4 PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP
H5 48 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH
H6 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH
H7 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH
H8 PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP
H9 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH

H10 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH
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Table 3 Data Set Il

Seq.

Len.

Sequences

F90_1

F90_2

F90_3

F90_4

F90_5

90

90

90

90

90

PPHHHPPPHHPPPPHHPHHHHHHPHPHPHHPHHHHHPHHHPHPHHHHP
HHPPPPHHHPHPHPPHHHPHHPHPHPPHHHPPPPHHPPHPPP

PHHPPHPHHPHHHPHHHPPHHHHHHPPHPHPPPPHHHPHPPHHHHPHH
HHPHHHPHHPPPPPHHPPPPHPHPHPHPHHPPHHHPPPHHHP

HPHPHHHPHHHHPHHHPPPHPPPHPPPPHHHPPHPPPPHHHPPPPPPPPHP
HHPHHHHPHHHPHPHHPPHHHHHPHHPPHHPHHHHHHPH

PHHHPPHPPHPHPPPPHPPPHPHPPHPHHPHPPPHHHPHHHPPHHHPPHPP
PPHPHHHPPHHPPHHHPPHHHHHHPHHHHHHHPHHHHPH

PPPHPHHHHHHHPPPHPPHHHHHPHHPPHHPPHHHHPHPHPHHPPHHPPP
PHPPPHHHPHPHHHHHHHPHHPHPPHHPPPHHHPHPPHPP

S1

S2

S3

S4

135

162

HHHHPHHHHHHPPHHPHHHHHHHHPHHPHHHHHHHHHHPPHHPPPPPH
HPHHHHHHHHPHPPHHPPPHHHHHHHHPHHHHHHPPHHHHHHHPHPPH
HHHHHHHHPPHHPPPHHHHHHHPHHPHHHHHHHPPHHHH

HHPPHPHHHHHHHHHHPHPPPPHHHPPPHHHHHPPHHHHHPPHHHHPPH
HHHPPHHHHHHPHHHHPPPHHPPPHHHHHHHHPHPPHHHPPPHHHHHPP
HHHHHHHPPPHHPPHHHHHPPPHHHHHHHHHPHPPHHHHHHHPPPHHH
PPHHP

HHHPPPHHPHHPPPPPHHHHHHHHPHPPHHPHHPHHHHHPPPHHHHHHH
HHPPHPHPPHPHPPHHHPHPPHPHPPPHHHHHHPHHHHPPPHHHPPPPHH
PPPHHHPPHHHHPHHHHHPPHHHHHHPPPHHHHHHPPPHPPHHHHPHHH
HHHHPPHHPPHHH

HHPPHPHHHHHHHPPHPHPPHPHPPPPHHHPPPHHPHPHHPPHHHHHPPH
HHHPPHHHHPPHHHHHHPHHHHPPPHHPPPHHHHHHHHPHPPHHHPPPH
HHHHPPHHHHHHPHPPPHHPPHHHPHHPPPHPHHHHHHHPHPPHPPHHH
HHHPHPPPHHHPPHHP

R1

R2

R3

200

200

200

PPPHPHHPHHPPPHPHPPPPHPHHPPHPHHHHHPPHHPPHHHHHHPPHPPH
HPPHPHPHHHHHPHHPHHHPPPHHHPHHPPHPHPPHPPPHPPHPPHPPHH
HPHHHPHPPHPHHPHHHHPHPHHHPHHHPPPPPPHHHHHHPPPPPPPPHH
HPPHPHPPPHPHPHPHHPPHHPPPPHHHHHHPPPHHPPPPPHPPPHHPP

HPHHPPHPPPPPHHPHPHPHHPPHPPPPHHHHHHPPPHPPHHHPPHPPPPHH
PPHHHPHPHHHPPHPHHPPHPHHPPPPHHPPHPPHHHHPPPPPHHHPPPPHP
PPPPPHPPHHPHHHHPHHHHHHHHPPHHPPPHPHHHPHHHHHPHHPHHHP
HPHHPPPPHPHHPHHHPHPPPPHPPPPPPHPHHHHHPHHPPPHPPH

HPHHHPHHPHPHPPPHHHHHPHPHPHHHHPPPHHPPPPPPHHPPPPHPHHH

PPPPHPPPHHPHHPPPHPPHPPPHHHHPHHPHPPPPHHPPPHHPPHPPPHPPH
HHPHHHPHPPHPHHHHPPHHPPPPHHHPHHPPHPPHHHHPPHPHPPHPHPP

PPPHPHPHHHHHHHPHPHHHHHHPHHPPPPHPPPPHPPPHHHPHH

F180_1

F180_2

F180_3

HHPPHHHHHPHHHPPPHHHPPHHHPHPPHHHHHPPPHHHPPPHPHHPPPP
PHHPPHHPHHPHPHHPPPPPHHHPPPPHPHHHPPHPPPHHHPHHHHPPHH

PHPHHHHPHHHHPPHHPHHPHHPHHHPHPPHPHHPHPHHPHHHPHHPPH
PPPHPPPPPPPHHHPHHHHHPHHHHHPPHPP

PHHPHPPPHPPHHPHHHPHPHHPHHHPHHHPPPHHPPHPHPHHPHHHHP
PHHPHPHHHHHPHHPPPPHPHPHPPHHHHPHHHHPHHHHHPPHPHHHP
PPHPHPPHHPPPHHPHPHPPPPPHPHHPHHHPHPPPPHHPHHHHHPPPHH
HHHHHHPHHPPPPPHPPPHPPHPPPHHPHHHHH

HHHPHPPHHPPPHPPPHPHPHPPHHHHPPHHHHHHPHPHHPPPPPHPPHH
PHHHHHHHHHHHPPHPPHPPHHHHHHHHPPPPHPPHHHHHPPHHHPPH
HPPHHHHHPPPHHHHHHPHHHPPPHHPPHPPPHPPHPPPHPPPPHHHPPH
HPHPPHHHPHHPPHHPHHPHPHPHPHPHPHHP

9WGA, and IRBP, and used in [45] to study the effect
of disulfide bonds in protein structure prediction.
HPstruct fails to return any conformation for all
5 sequences. Figure 9 shows the conformations by
our approach. The results for data sets III and IV sug-
gest that, although HPstruct performs the best,

our approach is more robust than HPstruct and can
be used as complemenntary to HPstruct, especially
when it fails to converge. In this case, our approach
may perform better than the LNS-based approach as
shown in the experiments for sequences F180_1 and
F180_2.
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Table 4 Data Set IV: the amino acid sequences and the corresponding HP sequences.
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PDB ID.

Len.

Sequences (original and HP transform)

4BP2

123

ALWQFNGMIKCKIPSSEPLLDFNNYGCYCGLGGSGTPYDDLDRCCQTH
DNCYKQAKKLDSCKVLYDNPYTNNYSYSCSNNEITCSSENNACEAFIC
NCDRNAAICFSKVPYNKEHKNLDKKNC

PHHPHPPHHPHPHPPPPPHHPHPPHPHHHPHPPPPPPHPPHPPHHPPPPPH
HPPPPPHPPHPHHHPPPHPPPHPHPHPPPPHPHPPPPPPHPPHHHPHPPPP PHHHPPHPHPPPPPPHPPPPH

2AAS

124

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPYNTFVH
ESLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAY
KTTQANKHIIVACEGNPYVPVHFDASV

PPPPPPPHPPPPHPPPPPPPPPPPHHPPHHPPPPHPPPPHPPHPPHHPPPHPP
HPPHHPPPPHPHPPPPPPHHPPHPPHPHPPHPPPPPPPHPPHPHPPPPPPPP HHHPHPPPPHHPHPHPPPH

5LYZ

129

KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNT
DGSTDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKK
[VSDGNGMNAWVAWRNRCKGTDVOQAWIRGCRL

PHHPPHPHPPPHPPPPHPPHPPHPHPPHHHPPPHPPPHPPPPPPPPPPPPPPH
PHHPHPPPHHHPPPPPPPPPPHHPHPHPPHHPPPHPPPHPHPPPHHPPPPPH PPHHPHPPPHPPPPHPPHHPPHPH

IWGA

170

RCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGS

QAGGATCPNNHCCSQYGHCGFGAEYCGAGCQGGPCRADIKCGSQSGGK LCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNN

YCCSKWGSCGIGPGYCGAGCQSGGCDA

PHPPPPPPHPHPPPHHHPPHPHHPHPPPHHPPPHPPPPHHPPPPHPPPPPPPP
HPPPPHHPPHPPHPHPPPHHPPPHPPPPHPPPHPHPPPPPPPHHPPPHHHPPH
PHHPHPPPHHPPPHPPPPHPPPPPHPPPPPPPHHPPPHHHPPHPPHPHPPPHH PPPHPPPPHPP

1RBP

174

ERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDE

TGQMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASF LOKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADSYSFVFSRDPNGLP

PEAQKIVRQRQEELCLARQYRLIVHNGYC

PPPHPHPPHPHPPPHPPPPHPPPHHPHPPPPPPPHHHPPPHHPPHPHPPPPPHP
PPPPPPHPHHPPHPHHPPHHPPHPPPPPPPPHPHPHHPHPPHHPPPPPPPHHH
PPPHPPHPHPHPHPHHPHPPPHPPPHPHHHPPPPPPHPPPPPPHHPPPPPPHH HPPPHPHHHPPPHH

Table 5 Result for Data Set | and Comparison with ETS, HGA, and MA.

Seq. Native E (HPstruct) Len ETS[15] HGA[22] MA[26] Our Method
S1 23 20 23 29 3 (2253) 3 (22.30)
S2 23 24 23 28 3 (22.63) 3 (22.10)
S3 17 25 17 25 17 (17.00) 7 (17. OO)
S4 38 36 38 50 8 (36.70) 8 (36.57)
S5 74 48 74 65 2 (68.50) 4 (71.70)
S6 73 50 - 59 9 (62.73) 3 (66.60)
S7 130 60 130 114 122 (115.87) 130 (124.80)
S8 132 64 132 98 115 (107.00) 132 (126.40)
Table 6 Result for Data Set Il and Comparison with LNS-based approaches [28].

Seq.  Native E (HPstruct)  Len LS LS-G LS-2N LS-2N-G  LNS-MULT LNS-3D Our Method
H1 69 48 5 (57.50) 1(47.17) 68 (64.70) 8 (64.61) 9 (66.77) 69 (67.68) 69 (67.37)
H2 69 48 4 (56.59) 5(46.79) 9 (64.32) 8 (62.51) 9 (66.60) 9 (66.73) 9 (66.97)
H3 72 48 6 (56.69) 8 (54.38) 8 (62.08) 7 (62.51) 2 (68.02) 1 (68.06) 2 (68.80)
H4 71 48 5 (58.08) 6 (49.26) 7 (63.15) 8 (63.10) 1(67.31) 1(67.61) 1 (68.10)
H5 70 48 4 (57.01) 7 (42.95) 7 (63.38) (63 79) 0 (66.98) 0 (67.04) (67 77)
Heé 70 48 3 (56.52) 40 (34.35) 9 (63.38) 8 (64.91) 0 (67.49) 0 (6743) 0 (66.93)
H7 70 48 3 (58.15) 9 (41.10) 68 (63.36) 7 (63.75) 0 (66.55) 9 (66.68) 0 (67.57)
H8 69 48 3 (55. 31) 4 (50.27) 7 (62.20) 6 (62.56) 9 (65.80) 9 (65.81) 9 (66.37)
H9 71 48 7 (58.91) 4 (46.77) 9 (64.90) 9 (64.40) 1 (67.95) 1(67.92) 1 (69.10)
H10 68 48 4 (57.47) 5(30.03) 7 (63.96) 7 (63.61) 8 (65.76) 8 (65.67) 8 (66.47)
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Table 7 Result for Data Set Ill and Comparison with LNS-based approaches [28].

Seq. Native E HPstruct Len LS LS-G LS-2N LS-2N-G LNS-MULT LNS-3D Our Method
Fo0_1 168 90 143 (125.75) 104 (10297) 154 (142.25) 3 (142.77) 164 (156.83) 165 (157.39) 161 (151.77)
Fo0_2 168 90 142 (123.68) 117 (112.05) 156 (141.45) 7 (141.89) 163 (155.05) 163 (155.81) 1(153.77)
F90_3 167 90 138 (121.80) 110 (101.70) 157 (143.79) 9 (145.24) 163 (156.23) 163 (157.20) 164 (153.13)
Fo0_4 168 90 144 (124.35) 4 (92.74) 162 (144.17) 158 (139.26) 164 (156.20) 3 (156.54) 9 (152.67)
F90_5 167 90 138 (121.59) 110 (107.65) 157 (143.32) 154 (145.00) 163 (155.77) 164 (157.46) 0 (152.60)
S1 357 135 296 (271.03) 276 (27099) 343 (320.55) 345 (323.81) 349 (332.37) 351 (336.74) 330 (311.53)
S2 360 151 304 (26843) 250 (244.23) 339 (31830) 339 (316.60) 349 (32898) 353 (334.17) 325 (303.80)
S3 367 162 293 (259.55) 234 (228.71)  332(310.02) 337 (306.03) 351 (323.77) 353 (329 80) 324 (299.33)
S4 370 164 294 (263.73) 226 (222.99) 337 (307.77) 329 (300.92) 346 (323.98) 354 (334.22) 325 (300.50)
R1 384 200 287 (240.85) 212 (20558) 292 (254.69) 1(26453) 313 (287.98) 330 (305.54) 302 (283.90)
R2 383 200 290 (239.12) 209 (205.60) 294 (262.74) 296 (267.75) 331 (289.83) 333 (308.31) 299 (284.30)
R3 385 200 260 (230. 57) 228 (212.12) 305 (260.70) 299 (267.05) 325 (28849) 334 (307.76) 302 (284.60)
F180_1 ? 180 244 (204.28) 201 (188.06) 261 (232.30) 265 (240.88) 289 (264.06) 293 (269.07) 320 (28841)
F180_2 ? 180 240 (22240) 228 (211.07) 279 (255.24) 278 (254.11) 302 (280.84) 2 (287.21) 321 (295.50)
F180_3 378 180 256 (227.69) 195 (19191) 292 (262.86) 287 (261 55) 306 (286.78) 3(295.31) 316 (294.67)

-

Length=180 E,=-320 Pop=100 Inteation=300 Length=180 E,,=-321 Pop=100 Inteation=300 Length=180 E,,j=-316 Pop=100 Inteation=300
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Figure 8 Configurations for F180_1, F180_2 and F180_3 obtained by our approach.

Conclusions

In this paper an effective EA-based approach for protein
folding is presented; the geometry of the 3D FCC lattice
has been investigated and several rotations to enhance
crossover have been identified. The well-known Pull
Move has been generalized, and a lowering bound
method has been developed to reduce the search space
of K-site move which is used for mutation. It is shown
that the combination of rotation, generalized Pull Move
and K-site move can enhance the search performance of
traditional EA-based approaches. The approach pre-
sented is purely EA-based; it does not rely on any opti-
mization library, can be modified to work with any
fitness function, and can be easily integrated with
Monte Carlo and Tabu searches. Experiments were car-
ried out over several data sets. Although the results

show that HPstruct, which is based on constraint pro-
gramming, performs better than our approach, provided
that HPstruct converges, it failed to converge for several
sequences in our experiment. Our approach can be
used as complementary to HPstruct, especially when
HPstruct fails to converge. In the future, further work
can be focussed on experiments to improve the search
capability of our algorithm for more data sets, especially
for long sequences, as well as for more tedious fitness
functions such as 20 amino acid pairwise interaction
energy functions. In addition, future work will include
the combination of more information, such as disulfide
bonds and secondary structures which can be effectively
predicted from primary sequences in the search process
to find structures which are closer to real native
structures.
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Length=123 Eg = -130 Pop=100 Inteation=100

\

Length=124 E, = -102 Pop=100 Inteation=100

Figure 9 Configurations for sequences in Data Set IV obtained by our approach.

Length=129 Egi=-134 Pop=100 Inteation=100

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JJ proposed the study of lattice rotation and participated in designing the
algorithm and writing the manuscript. SC worked out the details,
implemented the algorithm, carried out the experiment and drafted the
manuscript. Both authors read and approved the final manuscript.

Acknowledgements

We would like thank Dr. Lihui Wang at Imperial College London for advice
on writing the manuscript and Dr. Roy Preece at Oxford Brookes University
for proofreading.

Declarations

The publication costs for this article were funded by the authors.

This article has been published as part of Proteome Science Volume 11
Supplement 1, 2013: Selected articles from the IEEE International Conference
on Bioinformatics and Biomedicine 2012: Proteome Science. The full
contents of the supplement are available online at http://www.proteomesci.
com/supplements/11/S1.

Published: 7 November 2013

References

1. Hagerman PJ, Jr IT: From sequence to structure to function. Current
Opinion in Structural Biology 1996, 6(3):277-280.

2. Mirsky AE, Pauling L: On the structure of native, denatured, and
coagulated proteins. Proceedings of the National Academy of Sciences of the
United States of America 1936, 22(7):439-447.

3. Orengo CA, Todd AE, Thornton JM: From protein structure to function.
Current Opinion in Structural Biology 1999, 9(3):374-382.

4. Lau K Dill K= A lattice statistical mechanics model of the conformation
and sequence space of proteins. Macromolecules 1989, 22:3986-3997.

5. Istrail S, Lam F: Combinatorial algorithms for protein folding in lattice
models: a survey of mathematical results. Commun Inf Syst 2009,
9(4):303-346.

Hoque M, Chetty M, Lewis A, Sattar A: DFS based partial pathways in GA
for protein structure prediction. Pattern Recognition in Bioinformatics 2008,
41-53.

Hoque MT, Chetty M, Lewis A, Sattar A: Twin removal in genetic
algorithms for protein structure prediction using low-resolution model.
IEEE/ACM Trans Comput Biol Bioinform 2011, 8(1):234-245.

Hoque MT, Chetty M, Lewis A, Sattar A, Avery VM: DFS-generated
pathways in GA crossover for protein structure prediction.
Neurocomputing 2010, 73(13):2308-2316.

Hsieh SY, Lai DW: A new branch and bound method for the protein
folding problem in the HP model. [EEE Transactions on NanoBioscience
2011, 10(2):69-75.

Huang C, Yang X, He Z: Protein folding simulations of 2D HP model by
the genetic algorithm based on optimal secondary structures.
Computational Biology and Chemistry 2010, 34:137-142.

Jiang T, Cui Q, Shi G, Ma S: Protein folding simulations for the
hydrophobic-hydrophilic model by combining tabu search with genetic
algorithms. Journal of Chemical Physics 2003, 119:4592-4596.

Lesh N, Mitzenmacher M, Whitesides S: A complete and effective move
set for simplified protein folding. Proceedings of the Seventh Annual
International Conference on Research in Computational Molecular Biology;
Berlin, Germany 2003, 188-195.

Shmygelska A, Hoos HH: An ant colony optimisation algorithm for the 2D
and 3D hydrophobic polar protein folding problem. BMC Bioinformatics
2005, 6:30.

Unger R, Moult J: Genetic algorithms for protein folding simulations.
Journal of Molecular Biology 1993, 231(1):75-81.

Bockenhauer HJ, Dayem Ullah A, Kapsokalivas L, Steinhofel K: A local move
set for protein folding in triangular lattice models. Algorithms in
Bioinformatics 2008, 5251:369-381, LNCS.

Hoque M, Chetty M, Dooley L: A hybrid genetic algorithm for 2D FCC
hydrophobic-hydrophilic lattice model to predict protein folding.
Advances in Artificial Intelligence, Lecture Notes in Computer Science 2006,
4304:867-876.

Su SC, Lin CJ, Ting CK: An effective hybrid of hill climbing and genetic
algorithm for 2D triangular protein structure prediction. Proteome Science
2011, 9(Suppl 1):519.


http://www.proteomesci.com/supplements/11/S1
http://www.proteomesci.com/supplements/11/S1
http://www.ncbi.nlm.nih.gov/pubmed/8805487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16577722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16577722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10361094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21742572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21742572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8496967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22166054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22166054?dopt=Abstract

Tsay and Su Proteome Science 2013, 11(Suppl 1):519
http://www.proteomesci.com/content/11/51/519

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Tsay JJ, Su SC: A memetic algorithm for protein structure prediction
based on 2D triangular lattice model. Bioinformatics Feb.1-4; Algarve,
Portugal 2012, 131-136.

Lin CJ, Su SC: Protein 3D HP model folding simulation using a hybrid of
genetic algorithm and particle swarm optimization. International Journal
of Fuzzy Systems 2011, 13(2):140-147.

Thachuk C, Shmygelska A, Hoos HH: A replica exchange Monte Carlo
algorithm for protein folding in the HP model. BMC Bioinformatics 2007,
8:342.

Decatur S, Batzoglou S: Protein folding in the hydrophobic-polar model
on the 3D triangular lattice. 6th Annual MIT Laboratory for Computer
Science Student Workshop on Computing Technologies 1996.

Hoque MT, Chetty M, Sattar A: Protein folding prediction in 3D FCC HP
lattice model using genetic algorithm. IEEE Congress on Evolutionary
Computation: 25-28 Sept. 2007, 4138-4145.

Mann M, Smith C, Rabbath M, Edwards M, Will S, Backofen R: CPSP-web-
tools: a server for 3D lattice protein studies. Bioinformatics 2009,
25(5):676-677.

Mann M, Will S, Backofen R: CPSP-tools-exact and complete algorithms
for high-throughput 3D lattice protein studies. BMC Bioinformatics 2008,
9:230.

Su SC, Tsay JJ: Rotation crossover and K-site move mutation for
evolutionary protein folding in 3D FCC HP model (preliminary version).
IEEE International Conference on Bioinformatics and Biomedicine 2012, 1-4.
Tsay JJ, Su SC: Ab initio protein structure prediction based on memetic
algorithm and 3D FCC lattice model. IEEE International Conference on
Bioinformatics and Biomedicine Workshops 2011, 315-318.

Backofen R, Will S: A constraint-based approach to fast and exact
structure prediction in three-dimensional protein models. Constraints
2006, 11(1):5-30.

Dotu |, Cebrian M, Van Hentenryck P, Clote P: On lattice protein structure
prediction revisited. IEEE/ACM Trans Comput Biol Bioinform 2011,
8(6):1620-1632.

Hart WE, Istrail S: Robust proofs of NP-hardness for protein folding:
general lattices and energy potentials. Journal of Computational Biology :
a Journal of Computational Molecular Cell Biology 1997, 4(1):1-22.

Berger B, Leighton T: Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology : a Journal of
Computational Molecular Cell Biology 1998, 5(1):27-40.

Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M: On
the complexity of protein folding. Journal of Computational Biology 1998,
5:423-465.

Custédio FL, Barbosa HIC, Dardenne LE: Full-atom ab initio protein
structure prediction with a genetic algorithm using a similarity-based
surrogate model. [EEE Congress on Evolutionary Computation 2010, 1-8.
Ullah AD, Steinhofel K: A hybrid approach to protein folding problem
integrating constraint programming with local search. BMC Bioinformatics
2010, 11(Suppl 1):S39.

Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS:
Principles of protein folding-a perspective from simple exact models.
Protein Science : a publication of the Protein Society 1995, 4(4):561-602.
Verdier PH, Stockmayer WH: Monte Carlo calculations on the dynamics of
polymers in dilute solution. The Journal of Chemical Physics 1962,
36(1):227-235.

Gurler MT, Crabb CC, Dahlin DM, Kovac J: Effect of bead movement rules
on the relaxation of cubic lattice models of polymer chains.
Macromolecules 1983, 16(3):398-403.

Hsu H-P, Mehra V, Nadler W, Grassberger P: Growth-based optimization
algorithm for lattice heteropolymers. Physical Review £ 2003, 68(2):021113.
Sali A, Shakhnovich E, Karplus M: Kinetics of protein folding. A lattice
model study of the requirements for folding to the native state. Journal
of Molecular Biology 1994, 235(5):1614-1636.

Mann M, Hamra MA, Steinhofel K, Backofen R: Constraint-based local
move definitions for lattice protein models including side chains.
Proceedings of the Fifth Workshop on Constraint Based Methods for
Bioinformatics 2009, 51-59.

Raghunathan G, Jernigan RL: Ideal architecture of residue packing and its
observation in protein structures. Protein Science : a publication of the
Protein Society 1997, 6(10):2072-2083.

42.

43.

45.

Page 14 of 14

Yue K, Dill KA: Forces of tertiary structural organization in globular
proteins. Proceedings of the National Academy of Sciences of the United
States of America 1995, 92(1):146-150.

Hoque T, Chetty M, Sattar A: Extended HP model for protein structure
prediction. Journal of Computational Biology : a journal of Computational
Molecular Cell Biology 2009, 16(1):85-103.

Ullah AD, Kapsokalivas L, Mann M, Steinhéfel K: Protein folding simulation
by two-stage optimization. Computational Intelligence and Intelligent
Systems 2009, 138-145.

Schuster P, Stadler PF: Discrete models of biopolymers., In Handbook of
Computional Chemistry 2000.

Su SC, Tsay JJ: Evolutionary algorithm in hpc model for protein structure
prediction. In Proceedings of the 30th Workshop on Combinatorial
Mathematics and Computation Theory 2013 .

doi:10.1186/1477-5956-11-S1-S19

Cite this article as: Tsay and Su: An effective evolutionary algorithm for
protein folding on 3D FCC HP model by lattice rotation and
generalized move sets. Proteome Science 2013 11(Suppl 1):S19.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/17875212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17875212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18462492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21358007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21358007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9109034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9109034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9541869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9541869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122212?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7613459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8107095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8107095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9336831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9336831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7816806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7816806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19119994?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Preliminaries
	HP model
	3D FCC lattice
	Fitness function

	The proposed method
	Initialization
	Parent selection
	Rotation-based crossover
	Generalized pull move
	K-site-move-based mutation
	Survivor selection
	Termination

	Experimental results
	Experiment over data set I
	Experiment over data set II
	Experiment over data set III and IV

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

