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Abstract

Background: Today large scale genome sequencing technologies are uncovering an increasing amount of new
genes and proteins, which remain uncharacterized. Experimental procedures for protein function prediction are low
throughput by nature and thus can't be used to keep up with the rate at which new proteins are discovered. On
the other hand, proteins are the prominent stakeholders in almost all biological processes, and therefore the need
to precisely know their functions for a better understanding of the underlying biological mechanism is inevitable.
The challenge of annotating uncharacterized proteins in functional genomics and biology in general motivates the

functional terms based on Gene Ontology (GO).

use of computational techniques well orchestrated to accurately predict their functions.

Methods: We propose a computational flow for the functional annotation of a protein able to assign the most
probable functions to a protein by aggregating heterogeneous information. Considered information include:
protein motifs, protein sequence similarity, and protein homology data gathered from interacting proteins,
combined with data from highly similar non-interacting proteins (hereinafter called Similactors). Moreover, to
increase the predictive power of our model we also compute and integrate term specific relationships among

Results: We tested our method on Saccharomyces Cerevisiae and Homo sapiens species proteins. The aggregation
of different structural and functional evidence with GO relationships outperforms, in terms of precision and
accuracy of prediction than the other methods reported in literature. The predicted precision and accuracy is 100%
for more than half of the input set for both species; overall, we obtained 85.38% precision and 81.95% accuracy for
Homo sapiens and 79.73% precision and 80.06% accuracy for Saccharomyces Cerevisiae species proteins.

Background

Proteins are macromolecules that serve as building blocks
and functional components of a cell, and account for the
second largest fraction of the cellular weight after water.
Proteins are responsible for some of the most important
functions in an organism and the knowledge of their func-
tions is a crucial link in the development of new drugs,
better crops, and even the development of synthetic bio-
chemicals such as biofuels. However, rapid advances in
genome sequencing technologies are revealing new
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proteins at a rate that have resulted in a continually
expanding sequence-function gap for the discovered pro-
teins [1]. For example, in Homo sapiens more than half of
the total proteins are uncharacterized, likewise about one-
third of the proteins in the Saccharomyces Cerevisiae,
which is arguably one of the most well characterized
model organisms, remain functionally unknown.

This large set of conserved proteins whose function is
still unknown, represents one of the main challenges for
a deep comprehension of an organism as a biological
system. Moreover, better understanding of protein func-
tions can help biologists to successfully investigate new
lines of attack against different diseases. Due to their
enzymatic nature, proteins are generally among the
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preferred targets in drug and vaccine manufacturing
processes. This makes the knowledge of their functions
a critical step in any drug target discovery effort, and
fully justifies the necessity of effective computational
techniques for the precise annotation of uncharacterized
proteins.

Until recently, numerous high-throughput experimen-
tal procedures have been developed to investigate the
mechanisms leading to the accomplishment of a pro-
tein’s function. Different information sources including
sequence similarity, protein 3D structure, phylogenetic
profiles, protein-protein interactions (PPI), gene expres-
sion profiles, protein complexes, etc., represent the
ground for the development of these techniques [2].
The most widespread approaches utilize proteome-scale
PPI networks that have been retrieved for several organ-
isms including yeast and human [3], [4], [5], [6]. Interac-
tions among proteins are mapped into graphs where
each node signifies a protein and the edges between
nodes represent associated molecular interactions of
proteins. An interaction in the network is either a direct
physical association between the proteins (typically
retrieved via two hybrid analysis [7]), or a functional
association in which the two interacting proteins are
part of the same multi-protein complex, and cooperate
for the same functional goal [8].

Protein function prediction methods that utilize pro-
tein interaction networks information can be categorized
into three main groups: 1- Module-assisted, 2- Direct
methods, and 3- Probabilistic methods [9]. Nevertheless,
all methods share the common approach that tries to
propagate protein annotations from functionally known
proteins of a network to uncharacterized proteins [4].

Module-assisted methods search for protein modules of
a network that are involved in a particular biological
activity (i.e., versatile protein domains that are frequently
used as building blocks in the construction of diverse
multidomain proteins). Protein functional annotations are
then assigned based on the presence of a protein in a
specific module. Instead, direct methods are based on the
fact that close proteins in the network are involved in
related functional activity. Both direct neighbours [5] and
indirect neighbours [10], try to establish functional links
in the network by considering first or higher level inter-
acting neighbor proteins.

Module-assisted and direct methods assume that pro-
teins with similar functions are always close to each
other in the network. However, this assumption can’t be
applied to every protein in the network [11]. To model
such nature of proteins in the network, methods utilizing
probabilistic frameworks based on Markov Random
Fields (MRFs) are presented [12], [13], [14]. The funda-
mental supposition for such methods is that a protein’s
function is independent of all other proteins in the
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network given its neighboring proteins [9]. The techni-
ques of this category, in general, estimate prior and con-
ditional probabilities of all functions in the network and
then approximate the joint probability of an unannotated
protein to these functions.

The elusive nature of protein functions necessitates the
use of appropriate function taxonomies to properly iden-
tify the set of activities a protein performs. Approaches
that utilize PPI data coupled with a standard taxonomy
of functions have demonstrated better results compared
to those exploiting direct annotation transfers, as shown
in [15], [16], [17], [18], and [19]. Most of these techni-
ques use the Gene Ontology (GO) [20] as a functional
classification scheme. GO is a structured and controlled
vocabulary of terms providing consistency in annotating
how a protein behaves in a cellular context. It is arranged
in Directed Acyclic Graph (DAG) of nodes, associated in
parent child relationships; with each node indicating a
functional term. Nodes are connected with “is_a” (special
case of the parent node/term) or “part_of” (sub-process
of the parent node/term) relationships. Functionally
known proteins are related to one or more nodes of the
GO hierarchy; and because of parent/child associations if
a protein is known to a child term it is also known to all
of its parent terms in the hierarchy.

Several techniques have been proposed to use GO
term relationships to functionally characterize proteins,
e.g., [16], [21], [22] and [23]. Mitrofanova et al. [17] pro-
pose a Markov Random Field (MRF) based approach
that integrates PPI networks with protein inter-species
homology information considering a fixed size ontology.
Unfortunately, while the fixed size ontology strongly
reduces the computational complexity of the prediction
process, it also represents one of the main limitations of
this technique. This simplification limits the application
of the methodology only to proteins annotated with the
same fixed and specific set of GO terms. In fact, a
method able to consider all functions of a protein along
with their corresponding annotations in the whole GO
would provide a more precise picture of the protein’s
cellular activity enabling for higher predictive power
especially in the case of very large data sets of proteins.

Combining functional information from heterogeneous
biological sources has also been proven to increase the
overall predictive power of automated protein function
annotation techniques [15], [19]. For a large set of
uncharacterized proteins it is difficult to find enough
biological information in PPI network databases for
their functional association with other proteins. More-
over, existing interaction information is often unreliable,
including a high rate of false positives. Heterogeneous
information sources may provide additional functional
links between uncharacterized proteins and annotated
proteins.



Benso et al. Proteome Science 2013, 11(Suppl 1):S1
http://www.proteomesci.com/content/11/51/51

Protein homology among different species could be
exploited for this purpose. Many hypothetical proteins
show no interactions (i.e., no edges) in their own net-
work, but are associated with high confidence edges to
homologs of other species networks. An example of this
type of association is shown in Figure 1. The protein
YKL033W-A (UniProtID: Q86ZR7) of Saccharomyces
cerevisiae does not show any interaction in its own net-
work. Nevertheless, it has two interactions with high
homolog similarity with protein HDHDI (UniProtID:
Q08623) of Homo Sapiens species and with protein
CG15441 (UniProtID: Q94529) of Drosophila Melanoga-
ster species networks. Another type of biological infor-
mation that could be exploited to link characterized and
uncharacterized proteins is the set of motifs conserved in
those proteins. Several functionally conserved proteins are
found to have motifs that associate them to a particular
molecular activity. For example in Table 1, uncharacter-
ized protein YIL169C (UniProtID: P40442) is conserved
with Chemotaxis_Transduce_2 and T_SNARE motifs,
while uncharacterized protein Truncated TBY (UniprotID:
E9PAE3) is conserved with INTEGRASE and ASP_PRO-
TEASE motifs. Similar motifs in known proteins can be
used to link functional information with these proteins.

This work is an extension of our previous work [18];
with the additional concept of network enrichment
through similactor proteins which is particularly effective
for proteins with relatively small network information.
We present a novel high-throughput computational
scheme for protein function prediction that aggregates
heterogeneous biological information that can be
retrieved for a large set of uncharacterized proteins. We
build a computational model that integrates protein inter-
action data with sequence similarity, protein homolog

Saccharomyces
Cervisiae
Uncharacterized
protein
YKLO33W-A

Figure 1 An example of Saccharomyces Cerevisiae hypothetical
protein connected with homolog proteins of other species
networks.
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Table 1 An example of Baker Yeast's Hypothetical
Proteins conserved with different motifs.

Hypothetical Proteins  Motif Pattern and Profiles Conserved

1 YIL169C Chemotaxis Transduce 2
T SNARE
2 Truncated TYB INTEGRASE

ASP PROTEASE

similarity and protein shared motifs to calculate an inter-
action score exploited to measure the positive evidence of
protein interactions and shared functions. The integrated
model is then enriched with GO structural information
to calculate a context similarity measure among potential
protein annotations. The whole GO hierarchy is used
without imposing restrictions on the set of considered
GO terms, thus overcoming some of the limitations of
[17]. The method yields high precision and accuracy over
the previously reported methods with a wide protein cov-
erage when applied to Saccharomyces Cerevisiae and
Homo sapiens species proteins.

Methods

Our protein annotation pipeline exploits the associative
nature of proteins that interact and collaborate on a
common biological activity. The functions of an unchar-
acterized protein can therefore be inferred when the
functions of its binding or interacting partners is
known. Figure 2 provides a general high-level view of
the proposed information flow that comprises four main
computational steps:

1. building the protein-protein interaction network,
2. filtering the network for reliable interactions,

3. enriching the network with a set of non interact-
ing highly similar proteins, and

4. computing a GO based function similarity score to
propagate functions from characterized to uncharac-
terized proteins.

Building the PPI network
Given a target uncharacterized protein (uP) identified
using its UniProt [24] identifier, the associated PPI data
are queried from two well established protein interaction
databases: (i) IntAct, a freely available, open source data-
base system for molecular interaction data with all inter-
actions derived from literature curation or direct user
submissions [25], and (ii) DIP (Database of Interacting
Proteins) [26], a database that documents experimentally
determined protein-protein interactions and interaction
networks in biological processes.

All non-redundant interacting proteins (iP) obtained
from the two databases are used to build a protein- pro-
tein interaction network (PPIN) connecting uP with all
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Figure 2 High-level view of the information flow of the proposed protein annotation pipeline.

identified interactors. Interaction data are acquired under
different conditions and for different organisms. In parti-
cular, the study of the evolutionary relationships between
species suggests that orthologs proteins that manifest high
sequence similarity and whose functions have been estab-
lished before speciation, are likely to share similar protein
annotations. To capture homolog similarity based upon
orthologs, the considered PPIN includes two sets of inter-
acting proteins: (i) proteins of the same species of uP, and
(ii) orthologs interacting proteins from other species.

It is worth mentioning here that the proposed metho-
dology is not tied to the specific protein interaction
databases considered in this paper. Additional databases
or tools able to extract PPI information (e.g., Protein-
quest [27]) can be exploited to enlarge the initial PPIN.

Filtering the PPIN
Due to the heterogenous nature of protein interactions
and to the type of experiments exploited to detect the

interactions, PPI data are prone to false positives. There-
fore, to increase the predictive power of the considered
protein annotation flow, the initial PPIN must be prop-
erly filtered in order to keep reliable interactions, only.
We therefore introduce a Protein Interaction Score
(PIS) between two interacting proteins u#P and iP;
defined as follows:

PIS(uP, iP;) = MS(uP, iP;) + SS(uP, iP}), ¥iP; € PPIN(1)

where MS(uP, iP; ) € [0, 1] measures the motif similarity
of the two proteins, whereas SS(uP, iP; ) € [0, 1] measures
the sequence similarity of the two proteins. Integrating dif-
ferent information in a single score is particularly impor-
tant as each type of data typically captures distinct aspects
of cellular activity.

Proteins often have several motifs with distinct evolu-
tionary histories. The identification in the sequence of an
annotated protein of patterns including evolutionarily con-
served motifs can be associated to a specific biochemical
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function. Similar conserved motifs can be identified in the
sequence of uncharacterized proteins, as well. Therefore,
counting the number of common motifs conserved in two
connected proteins represents a good opportunity to iden-
tify strong functional associations for uncharacterized pro-
teins. Motif information has been taken into account
gathering data from the ProSite database [28] and using
them to introduce a motif similarity measure into our PIS.
ProSite enables to query for a protein and to obtain a list
of conserved motifs associated with a particular protein
functional activity. We define the motif similarity score
between uP and iPj as the number of common motifs con-
served between the two interacting proteins (dividend of
eq. 2) normalized to the minimum number of motifs
obtained for the two proteins in isolation (divisor of eq. 2):

|motif (uP) N motif (iP;)|

MS(uP,ifj) = min (|motif (uP)|, Imotif (iP;)|)

,ViP; € PPIN  (2)

High scores indicate proteins sharing several con-
served motifs and therefore with higher possibility of
sharing the same function. Experimental results showed
that MS is in general biased toward either O (i.e., no
motifs are shared) or 1 (all motif are shared).

The second measure that contributes to increase the
PIS is the sequence similarity. Sequence similarity
between two proteins is a strong hint for interaction
relevance. Proteins with highly similar sequences are
found to have been involved in similar functional activ-
ities. To capture sequence similarity between proteins
we therefore define a sequence similarity score between
protein #P and protein iP; as a normalized pairwise
BLAST score [29]. The BLAST algorithm is a sequence
comparison algorithm that is optimized for speed and
used to search sequence databases for optimal local
alignments to a query and a BLAST score of two pro-
teins is a number that denotes the overall significance of
a sequence alignment between two protein sequences.
High scores correspond to high similarity. We use a
normalized BLAST score, defined as the BLAST score
of the two proteins divided by the self score of the
query (i.e., the BLAST score of the protein against
itself), as reported in eq. 3.

BLAST(uP, iP})

SSWPAP) = b AsT(uP)

,ViP; € PPIN 3)

Interacting nodes with high PIS are more likely to cor-
respond to reliable interactions and therefore to identify
proteins that actually participate in common functions.
A threshold PIS,, is used to filter low scored interac-
tions from the PPIN, and to identify a reliable set of
interacting proteins. Different threshold values have

been investigated in the performed experiments (i.e.,
PIS,,.;, € {0,0.25,0.5}). Following [17], if no shared motifs
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are identified (i.e., MS = 0), proteins with less than 50%
sequence similarity (SS <0.5) are good candidates to be
discarded motivating the maximum considered thresh-
old of 0.5. If shared motifs are identified, also proteins
with less than 50% sequence similarity can be still con-
sidered as valid interactors.

PPIN enrichment through similactor proteins

Together with a large set of false positives, PPI informa-
tion are also prone to false negatives (i.e., unknown or
missing interactions). This is due to the fact that a large
fraction of uncharacterized proteins are only known with
their amino acid sequences. Sequence information can be
used to enrich the filtered PPIN with additional interac-
tions with other known proteins through sequence
alignment.

We use the blastp [30] tool of NCBI (National Center
for Biotechnology Information), which is designed to
find local regions of similarity with target database
sequences, to BLAST uP against all sequences contained
in the Non Redundant Protein Sequences (nr ) database
[29] and to obtain a list of highly aligned protein
sequences. The nr database compiled by the NCBI is
one of the largest and most prominent databases that
accumulates and stores almost all the available protein
sequences. It contains non-redundant sequences from
GenBank, CDS translations, PDB, Swiss-Prot, PIR, and
PRF. If the similarity of uP spans the whole sequence,
blastp also accounts a global alignment, which is the
preferred score used to rank the sequence similarity.

Enriching the PPIN with additional proteins may, on
the one hand, reduce the number of false negatives, but,
on the other hand, it can introduce new false positive
interactions. It must be therefore limited to a very small
set of proteins that show very high similarity. In the
experiments performed in this paper, for each uP , only
the first 10 ranked non-interacting (i.e., not already
identified in the PPIN building phase) highly similar
proteins (Similactors) out of the full set of proteins
returned after alignment from the nr database has been
considered for the PPIN enrichment. This set has been
further filtered removing all PDB structures and unchar-
acterized proteins in order to enrich the PPIN with a
very small set of reliable similactors.

Similarity scores based on gene ontology

The set of interacting proteins available in the filtered
and enriched PPIN defines the set of candidate func-
tions for uP . Functions are represented according to
the GO taxonomy as GO terms (i.e., nodes of the ontol-
ogy). However, GO is organized into three principle
ontologies namely: molecular function, biological pro-
cess and cellular component, whereas each ontology is
structured in a DAG of terms. Each term is therefore
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part of a GO hierarchy. For our scheme we focus on the
molecular function GO hierarchy, which describes activ-
ities performed by a protein at the molecular level. This
is particularly important to understand the gene product
in detail. Since GO nodes are connected to other nodes
through parent-child relationships, and a protein known
to a term in GO is also known to all the parent terms
of the hierarchy, we can represent each annotation of an
interacting protein iP (denoted as Aip’ with its full GO
iP;
1
ordered list of GO terms starting from the specific node
identifying a specific function and including all nodes to
traverse before reaching the top of the hierarchy (the
root is not included in this set).

Given this definition of annotation, it is possible to
compute a GO similarity score (GOSS) between two
annotations of two different proteins on the basis of their
relative positioning in the GO hierarchy according to eq.
4. The dividend of eq. 4 measures how much the two
annotations overlap, counting the number of common
terms in the hierarchy. The divisor of eq. 4 normalizes
the overlapping to the hierarchy size of the shortest
annotation.

molecular function hierarchy. A7 is therefore an

|A; 7 N APy

coss(al’, Ay = i e
min(|A;"], [Az"])

(4)

GOSS is computed for all couples of annotations and
proteins available in the filtered and enriched PPIN
resorting to GO structural data downloaded from the
GO database [20] for the molecular function class hier-
archy. To reduce the computational effort, only couples
of annotations in which the top term is equal (i.e., they
belong to the same functional context) are considered.
For all other terms, since the two annotations belong to
different contexts, the GOSS can be directly set to zero.
Once all scores have been computed, a threshold
(GOSS,;,) is used to filter GOSS results and to select
those annotations that likely represent a valid function
for uP. For all scores that cross the threshold, the mini-
mum length hierarchy annotation out of the two that
have been compared during the score calculation is
selected and used to annotate uP. The shortest annota-
tion is selected because up to that level the molecular
activity of interacting proteins is certain.

Protein annotation example

To help understanding the computational steps involved
in the annotation of a protein we consider the example
of MAP kinase kinase MKK1/SSP32 protein (MKK1,
UniProtID P32490), which is annotated in the UniProt
database with three molecular functions: (1) ATP bind-
ing, (2) Protein binding, and (3) Protein serine/threonine
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Kinase activity functions. We assume MKKI to be our
target uncharacterized protein and we try to predict its
functions using our scheme, as reported in Figure 3.

MKK1 has 21 interactors obtained from IntAct and
DIP databases resulting in a PPIN network of 22 nodes
with a subset of them depicted in Figure 3. For each
edge of the PPIN, we calculated the PIS according to eq.
1 and we filtered the interactions applying a threshold of
PISth = 0.5, obtaining a set of 4 candidate interactors:
(1) Protein Kinase C-Likel (PKC1, UniProtID P24583),
(2) Serine/threonine-protein kinase BCK1/SLK1/SSP31
(BCK1, UniProdID QO01389), (3) Mitogen-activated pro-
tein kinase SLT2/MPK1 (SLT2, UniProtID Q00772), and
(4) Serine/threonine-protein kinase GIN4 (GIN4, UniPro-
tID Q12263). For the sake of simplicity no similactors
are included in this example.

Potential interactors are annotated with a number of
functions. We map them on GO terms to obtain related
term dependencies as shown in Figure 3. In our exam-
ple, there are only two functional contexts among all
interactors of MKK1 namely, binding, and catalytic
activity. For protein annotations under the same func-
tional context, we computed the GOSS score according

to eq. 4. For instance, let us compare the ATP binding

annotation of protein PKCI (A,’i’;[?ibmdmg) and the ATP

binding annotation of protein BCK1 (A5 ine): under

the binding context. Since both proteins are annotated
with the same GO terms (i.e., all terms in the hierarchy
overlap) and this term is elaborated at the sixth level

in the GO hierarchy, according to eq. 4 GOSS

PKC1 PKC1
(AATP—binding’AATP—binding) = 6/6 =1. GOSS equal to 1

means one of the term is completely part of the other.
For MKKI both interacting proteins PKCI and BCKI
are found to be involved in ATP binding activity with
high GO similarity. We therefore annotate protein
MKK1 with this functional term. Likewise, we calculate
GOSS for other couples of annotations of the interacting
proteins and obtain two additional valid annotations
Protein binding, and Protein serine/threonine Kinase
activity with high GO similarity compared to other
terms. In summary, all original annotations of MKKI
have been properly predicted by the proposed protein
annotation flow.

Results and discussion

To validate the pipeline described in the Methods sec-
tion, we applied the annotation process to predict the
functions of two Saccharomyces Cerevisiae and Homo
sapiens species protein datasets. The protein functional
annotation data used for our model were obtained from
the Uniprot [24] database for both species, and the
functional term-related dependencies were extracted
from the GO database [20]. To calculate the prediction
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Figure 3 An example of context similarity score based on Gene Ontology for MAP kinase kinase MKK1/SSP32 protein.

performance we used a leave-one-out cross-validation represents the actual set of functions that our
approach: each annotated protein P in our dataset has method is able to predict for a given protein.

been selected as a candidate unknown protein and its 3. Predicted annotations set: is the set of GO terms
functional annotations predicted resorting to our metho- predicted by the proposed computational model for
dology. Predicted functions have been then compared the selected protein.

with the protein’s original annotations in order to

understand the overall prediction performance. The pro- Based on these three sets of annotations, our predic-

cess has also been repeated under several different tions can be classified as follows:
thresholds settings. We present the results for 763 pro-

teins annotated with 2,099 GO terms of Saccharomyces « TP terms are the intersection between the pre-
Cerevisiae species, and 793 proteins annotated with dicted annotations (i.e., predicted annotation set)
2,178 GO terms of Homo sapiens species. and the real annotations (i.e., true annotation set). It

is important to remember here that nodes in GO
Performance evaluation metrics are hierarchically arranged from the most abstract
Conceptually, protein activities are very much related to term to the more detailed levels of activities and, if a
each other. To precisely understand and evaluate the protein is annotated to a child, it is also annotated
proposed experimental results it is necessary to provide to its parent. Therefore, annotating a protein with
a clear definition of how True Positive (TP), True Nega- the functional activity of the parent node in the GO
tive (TN), False Positive (FP) and False Negative (FN) hierarchy may be considered as a TP. Nevertheless,

predictions are defined. These definitions may signifi-
cantly impact not only the overall statistical strength of

the experiments, but also the comparison with other )
methods.

Figure 4 provides a graphical view of the different rediiand
ways annotations for a target protein P under test can O Shiiotstions set
be classified. Three main sets of annotations can be O
defined: { annotations set

O
1. True annotation set: the set of GO terms for annotations set
which the target protein is actually annotated in
UniProt. It represents the reference set to which our v
predictions can be compared; UFN
2. Full annotations set: is the set of all GO terms
found in the annotations of all interactors extracted Figure 4 Schematic view of predicted annotations, true
for the target protein (before applying the filtering) annotat.ions, and full annotation set, along with the concept of

unpredictable FN.

plus the annotations of all selected Similactors. This
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methods that consider the prediction to parent
terms as TP actually reduce the protein annotation
information. Therefore, their prediction strength
cannot be fairly compared with those methods that
aim at predicting only the actual annotations of the
proteins. Our results are compiled by considering as
TP only those terms that correspond exactly to one
of the true annotations. All other predictions are
considered as false positives.

+ FP terms are all terms in the predicted annotations
set excluding the previously defined TP terms.

+ EN terms are those functions that are present in
the true annotations set but are not present in the
predicted annotations set (i.e., missing predictions).
Within the FN set, it is possible to identify a subset
of annotations that we call Unpredictable False
Negatives (UFN). It corresponds to the set of true
functions of the test protein that are not part of the
full annotation set. The UFN terms cannot be
strictly called false negatives because our method
does not actually reject those annotations. The bot-
tleneck is rather to find enough biological informa-
tion that could be used to include interacting
proteins annotated with those functions in order to
include them in the full annotations set. However, in
order to provide worst case results, UFN have been
included in the computation of FN.

« TN terms are all the terms in the full annotations
space excluding the predicted true terms.

We computed TP, TN, FP and EN for each of the
1,556 proteins composing the two considered datasets.
Cumulative TP, TN, FP and FN for each dataset have
been then used to compute the following set of perfor-
mance measures:

. P
precision =
TP + FP
TP
recall =
TP + FN 5
TP + TN (5)
accuracy =
TP + TN + FP + EN
Fl - 2 - precision - recall

precision + recall

Performance results
Table 2 reports the performance metrics for the two
data-sets computed with different PIS;, thresholds and
with GOSS,;, = 0.99.

Results show that combining the filtering capability of
the PIS with the introduction of similactors in the PPIN
significantly improves precision, accuracy, and FP rate.
This can be appreciated by comparing these results with
the ones published for Homo sapiens species in [31].
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Table 2 Precision, Recall, Accuracy, and F1 for S.
Cerevisiae and Homo sapiens datasets under different
PISth and high GOSS values

PISth GOSSth  Dataset Precision Recall Accuracy F1
% % % %
0.0 0.99 Homo 29.05 8830 77.50 4372
sapiens
S. Cerevisiae 05.78 92.92 66.16 10.87
025 099 Homo 8334 79.71 82.65 8148
sapiens
S. Cerevisiae 75.30 86.56 81.16 79.21
050 099 Homo 8538 79.11 81.95 82.12
sapiens
S. Cerevisiae 79.73 81.76 80.06 80.73

Cerevisiae and Homo sapiens datasets under different PISth and high GOSS
values

To understand the effect PIS,, on the overall predic-
tion performance, experiments have been repeated with
three different thresholds: PIS,, = 0.5, PIS,, = 0.25 and
PIS,;;, = 0. High values of PIS,;, guarantee better perfor-
mances in terms of precision, accuracy, and F1, since
the algorithm only selects highly reliable interactors.
Reducing PIS,, results in downgraded precision and
accuracy values for both species. This is caused by the
fact that a lower PIS;, means selecting all interactors of
the test protein along with its similactors as potential
proteins. This leads to a too heterogeneous set of poten-
tial annotations and consequent lower precision and
accuracy.

The presented results were compiled including UFN
terms, i.e., considering UFN as FN. However, the inclu-
sion of UEN terms in the analysis does not render the
complete predictive strength of the experiments. Table 3
reports the results of the same experiments but includ-
ing only predictable false negative terms for both spe-
cies. Clearly, the accuracy and recall values show a
significant increase.

To better evaluate the contribution of the GO-based
annotation transfer, we repeated the experiments using a

Table 3 Precision, Recall, Accuracy, and F1 for S.
Cerevisiae and Homo sapiens datasets without UFN terms

PISth GOSSth Dataset Precision Recall Accuracy F1
% % % %
0.0 0.99 Homo 29.05 94.375 78.05 4442
sapiens
S. Cerevisiae 05.78 95.85 66.20 10.89
0.25 0.99 Homo 83.34 90.84 87.80 86.93
sapiens
S. Cerevisiae 7530 90.81 84.04 82.33
0.50 0.99 Homo 8538 90.35 87.66 87.79
sapiens
S. Cerevisiae 79.73 89.44 83.73 84.31

Cerevisiae and Homo sapiens datasets without UFN terms.
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Table 4 Comparison of results with and without GO
based relationships

Dataset PISth Precision Recall Accuracy F1
Homo sapiens 00  with GO 29.05 94375 78.05 4442
w/o GO 1149 99.39 1379 2060
S. Cerevisiae 00  with GO 05.78 95.85 66.20 10.89
w/o GO 02.30 9747 02.89 04.51
Homo sapiens 025 with GO 83.34 90.84 87.80 86.93
w/o GO 60.24 97.65 63.51 74.51
S. Cerevisiae 025 with GO 7530 90.81 84.04 8233
w/o GO 52.58 96.17 56.12 67.99
Homo sapiens 050  with GO 85.38 90.35 87.66 87.79
w/o GO 65.22 97.22 67.38 78.06
S. Cerevisiae 050 with GO 79.73 89.44 83.73 84.31
w/o GO 64.17 94.91 6584 7657

Comparison of results with and without GO based relationships

direct annotation, i.e., GOSS,, = 0. This means directly
annotating the test protein with all functions of the iden-
tified potential interacting proteins. Results are shown in
Table 4. Except for the recall, the GO based annotation
transfer shows superiority in all metrics. The GO-based
annotation transfer increases the number of TN terms,
and strongly decreases the number of FP terms, which
consequently leads to higher precision and accuracy.
Another important observation is that the use of the
GOSS similarity measure enables to decrease the False
Positive Rate (FPR) for both data sets with increasing
similarity values. We calculate the FPR as:
FPR = kP (6)
TN + FP
The FPR is decreased from 77% to 14% for Homo
sapiens dataset and from 76% to 21% for Saccharomyces
Cerevisiae dataset as shown in Figure 5. This result
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demonstrates that, thanks to GO-based similarity, pre-
dictions are more centered towards a semantically
related annotation set.

Comparison with other approaches

In this section, we compare our method with other
techniques that also integrate multiple sources of infor-
mation for protein annotation. The first technique we
compare with is presented by S. Jaeger’s et al. [32]. This
technique proposes a scheme for predicting functional
annotations of proteins by comparing interaction net-
works from various species and by utilizing orthology
relationships, conserved modules and local PPI neigh-
borhoods. It incorporates PPI data from various data-
bases, and detects maximal conserved and connected
sub-graphs in the interaction sets using approximate
cross-species network comparisons. Finally, predictions
are made for proteins within functionally coherent con-
nected sub-graphs. The predictive strength of our tech-
nique can be compared with this technique, since it
reports the function prediction results for our same
Homo sapiens dataset. The results reported in Figure 6
show how our method outperforms the other in preci-
sion, recall, and F1 scores. This enhanced performance
can be attributed to both the ability of our algorithm to
identify functionally similar proteins, and to the use of
the GO-based similarity measures to increase TP, TN
terms and to reduce FP terms.

Another successful technique has been proposed by
Nariai et al. [15]. This method proposes and evaluates a
probabilistic approach for protein function prediction
that incorporates heterogeneous data. The association
among proteins is established by means of interaction
graphs constructed from PPI and gene expression data.
The scheme is based on the assumption that neighboring
proteins are more likely to share functions, compared to

% of False Positive Rate (FPR)

001 02 04 06

GOSSth

These values are calculated for PISth = 0.5

Figure 5 False Positive Rate trend for both Homo sapiens and Saccharomyces Cerevisiae datasets.

=<*Homo sapiens
5. Cerevisiae
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proteins that are not neighbors. The interaction graphs
along with protein domain, mutant phenotype and pro-
tein localization data are integrated into a probabilistic
Bayesian framework, which accordingly assigns a prob-
ability to each protein in the network representing the
likelihood of positive or negative annotation to a specific
function [15]. We compared Narai’s best prediction
results, i.e., the ones with optimum values of precision
and accuracy, with our results for Saccharomyces Cerevi-
siae proteins providing prediction performance indicators
for both methods in Figure 7. Regardless the considered
performance indicator our method provides higher pre-
diction capability compared to Narai’'s method. In parti-
cular we have been able to strongly reduce the false
negative rate compared to the Narai’s approach thus
obtaining significant improvements in the prediction
recall. A significant improvement in the true negative
rate coupled with the reduction of the false negative rate
also allowed us to outperform Narai’s method in terms of
prediction accuracy.

Finally, we compare our results with a more recent
technique proposed by A. Mitrofanova et al. [17]. In this
method the authors present a novel probabilistic chain-
graph-based approach for predicting protein functions
that builds on connecting networks of two different spe-
cies by links of high interspecies sequence homology.
The model is further enhanced to account for the GO
based dependencies by linking multiple but related func-
tional ontology categories within and across multiple
species. Although the results reported by this approach
show a very high Precision, Recall, Accuracy, and F1,
from the perspective of the number of predicted func-
tions, our technique is able to predict a larger set of
individual GO terms with 100% precision. Nevertheless,
a direct comparison of our measures with Mitrofanova’s

ones is not possible. Mitrofanova’s approach operates on
fixed size ontologies (8, 12, and 16 GO terms), whereas
our method is independent of the ontology size. We
have no way to elaborate on how their method would
perform for larger ontology sizes and increased com-
plexity. It is important to consider that limiting ontology
size also limits the proteins annotated to it. Therefore,
the protein dataset for cross validation is different in the
two methods; in our case the set is larger and with
higher diversity in annotations.

Term wise prediction results
To complete the evaluation of our proposed methodol-
ogy, we report a set of measures on the coverage of the
GO terms that appear in the cross validation test of our
protein datasets. The complete term wise prediction
results can be seen in the supplemental material (Addi-
tional file 1 & Additional file 2).

For each functional term in the GO hierarchy we
report

« the Total Appearance Count, which is the number
of proteins in the dataset that are annotated with
that functional term;

« the Total Prediction Count, which is the number of
times that a term has been correctly predicted;

+ the Term Coverage, which is the percentage of
Total Predictions over the Total Appearance of each
term.

For 330 unique GO terms appearing in the annotation
of the dataset for Homo sapiens species we predicted
201 terms with 100% precision; likewise for 263 unique
GO terms for Saccharomyces Cerevisiae species we pre-
dicted 165 terms with 100% precision.
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Figure 7 Comparison of Precision, Recall, Accuracy and F1 of our method (black) with Narai’s [15] method (purple).

Conclusion

In this work, we presented a methodology that uses exist-
ing biological data with Gene Ontology functional depen-
dencies to infer functions of uncharacterized proteins. We
combined different sources of structural and functional
information along with Gene Ontology relationships to
predict multiple but related functional categories of unan-
notated proteins. These term-specific relationships, defined
to clearly identify the functional contexts of activity of the
interacting proteins, enables a dramatical improvement
of the annotation accuracy with respect to previous
approaches. The presented methodology may be easily
extended to integrate more sources of biological informa-
tion to further improve the function prediction confidence.

Additional material

Additional file 1: Term wise prediction-Homo sapiens.pdf Term wise
prediction results for Homo sapiens data set.

Additional file 2: Term wise prediction-Cerevisiae.pdf Term wise
prediction results for Saccharomyces Cerevisiae data set.
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