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Abstract

Background: β-turns are secondary structure type that have essential role in molecular recognition, protein
folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino
acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in
bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and
drug design.

Results: We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a
hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used
for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as
features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426,
BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that
are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in
predicting β-turns as measured by the Matthew’s correlation coefficient (MCC) on these datasets. Furthermore,
H-SVM-LR shows good performance when considering shape strings as additional features.

Conclusions: In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that
our proposed approach achieves better performance compared to other competing prediction methods.

Background
Secondary structure of proteins consists of basic ele-
ments; these elements are a-helices, b-sheets, random
coils, and turns. a-helices and b-sheets are considered as
regular secondary structure elements while the residues
that correspond to turns structures do not form regular
secondary structure elements. In turns structures the
Ca-atoms of two residues are separated by one to five
peptide bonds and the distance between these Ca-atoms
is less than 7A°. The number of peptide bonds that sepa-
rate the two end residues determines the specific turn
type. In a-turns and b-turns, the two end residues are
separated by four and three peptide bonds respectively.
In g-turns, δ-turns, and π-turns, the two end residues are

separated by two, one, and five peptide bonds respec-
tively. The most common types of turns structure that
exist in protein are b-turns structure. They represent
approximately 25% of the secondary structure of the pro-
teins sequences. b-turns can reverse the direction of a
protein chain therefore they are considered as orienting
structure [1]. They also have significant effects in protein
folding, because they have the ability to bring together
and allow the interactions between the regular secondary
structure elements. b-turns are not only important in
protein folding but are also implicated in the biological
activities of peptides as the bioactive structures that
interact with other molecules such as receptors, enzymes
and antibodies [2]. They are also important in the design
of various peptidomimetics for many diseases [3]. There-
fore, the prediction of b-turns is one of the important
problems in molecular biology, which can provide
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valuable insights and inputs for the fold recognition and
drug design.
There are different methods designed for b-turns predic-

tion. These methods can be divided into statistical meth-
ods and machine learning methods. The statistical
methods that are used in b-turns prediction include
Chou-Fasman method [4], Thornton’s algorithm [5],
GORBTURN [6], 1-4 & 2-3 correlation model [7],
sequence couple model [8], and COUDES method [9]. All
of these statistical methods use the sequence as input
except for COUDES, which is based on propensities and
multiple alignments. COUDES also utilizes secondary
structure predicted by PSIPRED [10], SSPRO2 [11], and
PROF [12]. The machine learning methods include
BTPRED [13], BetaTpred2 [14], MOLEBRNN [15] and
NetTurnP [1], which are based on artificial neural net-
works (ANNs), Kim’s method based on k-nearest neighbor
(KNN) [16], as well as support vector machines (SVMs)
based methods, which recently have become popular in
the field of b-turns prediction. These SVMs based meth-
ods include BTSVM [17], Zhang and colleagues’ method
[18], Zheng and Kurgan’s method [2], Hu and Li’s method
[19], the method of Liu et al. [20], DEBT [21], and the
method of Tang et al. [22]. In BTBRED, secondary struc-
ture predictions are utilized with two layered network
architecture. BetaTpred2 enhances the performance of
b-turns prediction by using secondary structure prediction
and evolutionary information in form of position specific
scoring matrices (PSSMs) as input to the neural networks.
MOLEBRNN uses PSSMs as input to a bidirectional
Elman-type recurrent neural network. NetTurnP uses evo-
lutionary information and predicted protein sequence fea-
tures as input to two ANN layers whereas the first layer is
trained to predict whether or not an amino acid is located
in a b-turn. Kim’s method encodes protein sequence using
a window of up to 9 residues to be used as input to a
KNN based method, which is combined with a filter that
uses secondary structure predicted with PSIPRED for the
central residue. In BTSVM, position specific frequent
matrices (PSFMs) and PSSMs, both calculated with PSI-
BLAST [23], are applied to encode input for SVM classi-
fier. Zhang and colleagues’ method is another SVM
method that uses PSSMs over a 7-residue window and the
secondary structure of the central residue predicted by
PSIPRED as an input. In Zheng and Kurgan’s method a
SVM is utilized to predict b-turns using window based
information extracted from four predicted secondary
structures (PSSs) with a selected set of PSSMs as input to
the SVM. The SVM based method developed by Hu and
Li combines the increment of diversity, position conserva-
tion scoring function, and secondary structure predicted
with PSIPRED to compute the inputs for prediction of
b-turns and g-turns. Liu et al. combine SVM with PSS

information obtained by using E-SSpred, a secondary pro-
tein structure prediction method. DEBT predicts b-turns
and their types using information from multiple sequence
alignments, PSSs, and predicted dihedral angles. Tang et
al. considered another type of one-dimensional string of
symbols representing the clustered region of j, ψ torsion
pairs called shape strings as new features. In [24] we uti-
lized the idea of under-sampling to create several balanced
datasets. These balanced sets were used to train several
SVMs classifiers independently. The SVMs were aggre-
gated using a linear logistic regression model.
In this paper, we propose a new approach called

H-SVM-LR (Hybrid approach of SVMs and Logistic
Regression (LR)) for predicting b-turns. Our proposed
approach incorporates the idea of clustering by parti-
tioning the non-b-turn class into three subsets using
k-means clustering algorithm. Each subset is merged
with the positive class (b-turn) to form a sub training
set. These sub training sets are used to train localized
SVMs classifiers independently. LR model modeled
using fractional polynomials, is used to aggregate the
localized SVMs to make a collective decision. The merit
of using LR to aggregate the localized SVMs is that it
will enable us to take advantages of the statistical mod-
eling theory to find the optimal weights for each local
SVM [24]. Also LR has the advantages of being widely
studied [25], and in the recent years there are many
algorithms have been designed to improve its perfor-
mance. These algorithms include iteratively re-weighted
least squares (IRLS) algorithm, which is a special case of
fisher’s scoring method [26,27].

Methods
Support vector machine (SVM)
The SVM is a state-of-the-art supervised learning model
with associated learning algorithm for analyzing and classi-
fying data. It transfers the data from low dimensional
space to high or infinite dimensional space and then con-
struct a hyper-plane or hyper-planes in this higher dimen-
sional space to classify the transformed data. Normally the
training data are represented as points in a vector space.
The hyper-plane with the largest distance to the nearest
training data point is considered to be the good separator.
Given a training set {xi, yi}i = 1, ..., l, where xi is a vector of
features, and yi Î {-1, 1}. SVM solves the following primal
problem.

min
1
2

||w||2 + C
l∑

i=1

ξi, (1)

subject to

yi(w.xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, ...., l,
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where w is the normal vector to the hyper-plane, b is
the offset from the origin, and C is the error penalty
parameter. The kernel function, which maps the input
space into a higher-dimensional space, can be applied to
create SVM classifier for non-linear problem. The kernel
functions that can be used for SVM include polynomial
kernel function, radial basis (also known as Gaussian
kernel function), and sigmoid kernel function.

Logistic regression (LR)
LR is a type of regression analysis used for predicting
the outcome of a variable that can take on a limited
number of classes. A detailed description of logistic
regression can be found in [25]. In brief, given input
vectors xi Î Rn and output values yi Î {0, 1}, logistic
regression can be fitted using the following likelihood to
predict the probability of the output. This probability
will be p if yi = 1, or 1 - p if yi = 0.

L(θ) =
n∏
i=1

(pi)
(yi)(1 − pi)(1−yi) (2)

However, it is easier mathematically to work with log
of equation. The log-likelihood, where the log will turn
products into sums, can be defined as follows:

lnL(θ) =
n∑
i=1

(yilnpi + (1 − yi)ln(1 − pi)) (3)

The value of θ that maximizes L(θ) is called the maxi-
mum likelihood estimate and it is denoted as θ̂ . For
binary outputs, the loss function or the deviance (DEV)
is the negative log-likelihood and is given by the follow-
ing formula.

DEV = −2lnL(θ) (4)

Minimizing the deviance given in the above equation
is equivalent to maximizing the log-likelihood.

Datasets
The dataset BT426, which contains 426 non-homologous
protein chains, is used to evaluate our H-SVM-LR predic-
tion method. This dataset was developed by Guruprasad
and Rajkumar [28]. We obtained it from Raghava Group’s
website http://www.imtech.res.in/raghava/bteval/dataset.
html. The structure of protein chains in BT426 dataset is
determined by X-ray crystallography at two resolution or
better. In each chain there is at least one beta-turns struc-
ture. 24.9% of all amino acids in BT426 have been assigned
to be having b-turns structure. Several recent beta-turns
prediction methods use it as a golden set of amino acid
sequences to evaluate their performances. We therefore
used it to evaluate our methods and to make direct com-
parisons with the other prediction methods. Besides

BT426, we used the dataset of 547 protein sequence
(BT547), and the dataset of 823 protein sequence (BT823)
to evaluate our approach. These datasets were constructed
for training and testing COUDES [9].

Features
PSSMs
It has been shown that PSSMs contributed significantly
to the accuracy of b-turns prediction [1,2]. They are in
the form of M*20, where M represents the sequence
length. The PSSMs are generated using three rounds of
the iterative PSI-BLAST program [23] against National
Center for Biotechnology Information (NCBI) non-
redundant (nr) sequence database with the default para-
meters. The PSSMs values are scaled to values between
0 and 1 using the following function.

f (x) =
1

1 + e−x
(5)

where x is the PSSM’s element that stands for the
likelihood of the particular residue substitution at that
position.
Predicted secondary structure (PSS)
PROTEUS [29] is used to predict the secondary structure
features. The motivation to use PROTEUS comes from
the work of Tang et al. [22], which concludes that the pre-
dictions when using PROTEUS and PSSMs were better
than when using PHD [30], JPRED [31], PROTEUS, and
PSSMs together. The secondary structure features are pre-
dicted as three structure states: helix (H), strand (E) and
coil (C). These three structure states are encoded as 1 0 0
for helix, 0 1 0 for strand, and 0 0 1 for coil.
Predicted shape strings
Tang et al. [22] predicted shape strings from a predictor
constructed based on structural alignment approach.
Shape strings were represented by eight states, i.e. S, R,
U, V, K, A, T and G. They used a sliding window of 8
amino acids on PSSMs, PSS and shape strings features.
We also added shape strings to our PSSMs and PSS fea-
tures. The shape strings were predicted using the protein
shape string and its profile prediction server (DSP) [32].
Besides the eight states DSP defines shape N where the j
and ψ angles are undefined, or no structure determina-
tion for parts of the sequence. The shape strings features
are encoded as (1 0 0 0 0 0 0 0 0) for S, (0 1 0 0 0 0 0 0 0)
for R, ..., and (0 0 0 0 0 0 0 0 1) for N.

The proposed approach
The entire framework of our proposed approach is
shown in Figure 1. Three SVM classifiers are con-
structed using inputs from three clustered model. Then
these three SVMs classifiers are integrated with logistic
regression model. Statistical model selection based on
fractional polynomials is used to take advantage of each
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classifier such that the final global classifier could have a
better performance.
A sliding window of size seven residues is used over

the matrix that consists of the features. The prediction
is made for the central residue. This window size is
selected in accordance with Shepherd et al. [13] who
found that the optimal prediction for b-turns is achieved
using window size of seven or nine.

Clustered model
Since b-turns account for approximately 25% of the globu-
lar protein residues, the ratio of b-turns to non-b-turns is
1:3. Thus, the training sets used for b-turns prediction are
imbalanced sets. In our trail experiments, we found that if
the non-b-turns set is divided into a three subsets by a sui-
table clustering algorithm, each non-b-turns subset with
the whole b-turns set will form approximately balanced
training set. This balanced training set is more likely to be
separable in the feature space. That is because the distri-
bution of the non-b-turns samples in a subset is centra-
lized and compacted. In other words, the b-turns set can
be easily separated from each non-b-turns cluster by a dif-
ferent hyper-plane. That means good performance would

be expected when constructing localized SVMs using each
non-b-turns cluster against the b-turns. But, each of these
SVMs alone is certainly not a good global classifier. It pro-
poses that it is possible to construct a better classifier than
the SVM trained with the whole data by combining these
SVMs effectively. Particularly, a localized SVM classifier
can be constructed for each sub training set, this way the
localized SVMs will not be affected by the heterogeneity of
the whole training set. To outperform the SVM that is
trained with the whole data, we need to combine these
localized SVMs effectively into global one without neglect-
ing their local advantages. Majority voting is one of the
methods that are used to combine several classifiers, but
its main problem is that it will not give weight to each
classifier. LR model can integrate the localized SVMs clas-
sifiers, and it allows us to take advantages of the statistical
modeling theory to find the optimal weights for each local
classifier. The motivation to use this clustered model
comes from the work of Yi Chang [33]. In his work, Yi
Chang used localized linear SVMs classifier for a data in
the feature space defined by a chosen kernel.
At the very beginning, the whole negative examples

are divided into three clusters by a k-means clustering

Figure 1 The architecture of the proposed prediction method. Figure 1(a) represents the prediction using PSSMs, and PSS, while Figure 1(b)
represents the prediction using PSSMs, PSS, and shape strings. 7 denotes the window size, the PSSMs have 20 columns and there are 3
secondary structure states and 9 shape string states.
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algorithm using original variables. The distribution of
those three clusters is shown in Figure 2. We merged
the whole positive examples with each cluster to form
three sub-training sets. These sub-training sets are used
to build three SVMs models. The three SVMs will not
be used directly in the prediction, but they will be used
as variable generators. During training and prediction
stages, these models are unchanged and all the samples
enter all of the three models. The signed distance for
each example to the separating hyper-planes of the
three models is computed and stored in a vector d of
dimension (N * 3), where N is the number of the
instances. The vector d will be used as a new feature
vector for a LR model, which will weigh the response of
the three models and then calculates the prediction
probability.
LR model selection
The components of the LR predictive model are obviously
variables, which should be selected carefully so that the
model makes accurate prediction, but without over-fitting
the data. There are two competing goals in model selec-
tion. (1) It should be complex to fit the data well. (2) It

should be simple to interpret. To select our LR model, we
first looked at the correlation in the estimated coefficient.
If two variables are highly correlated, we do not need both
of them in the model. The uni-variate analysis was used to
identify the important variables, in which the LR models
with one variable at a time were fitted, and then the fits
were analyzed. In particular, we looked at the estimated
coefficients, their standard errors and the likelihood ratio
test for the significance of the coefficients. Then we fitted
our LR using the variables selected in the uni-variate ana-
lysis according to the following procedure:
- We verified the importance of each variable in the

LR model using Wald statistics.
- We compared the coefficients of the each variable with

the coefficient from the model containing only that variable.
- Any variable that did not appear to be important was

eliminated, and a new model was fitted. The new model
was checked whether it is significantly different from the
old model. If it is, then the deleted variable is important.
- The process of deleting, refitting and verifying was

repeated until it appears that all the important variables
were included in the model.

Figure 2 The distribution of the three clusters. The axes represents the top 3 PCs of principal component analysis (PCA) of negative samples
(non-b-turns). Red dots denote samples in cluster 1, blue denotes samples in cluster 2, and green denotes samples in cluster 3.
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- We tried to fit a linear LR model to the data but the
prediction error is found to be very large, so we consid-
ered power transformation using fractional polynomials.
- A list of possible interactions between each pairs of

variable was created, these interactions terms were added
one at a time, in the model containing all the main effects
and assess its significance using the likelihood ratio test.
The significant interactions were added to the main effect
model and its fit was evaluated using Wald tests and LR
test for the interaction terms, and any non-significant
interaction was dropped.
Fractional polynomials
The final outcome variable is the b-turn/non-turn
response. In our hybrid model, this variable depends on
the outcome of the three SVMs classifiers in a logistic
regression model. The outcome of the three SVMs classi-
fiers is represented by the vector d = (d1, d2, d3). The nat-
ural starting point, the straight line model b0 + b1d1 +
b2d2 + b3d3 or b0 + dB in matrix form, where B is the
vector of parameters, is first tested whether it is adequate.
To improve the fit, we investigated other models. We
looked for non-linearity by fitting a first order fractional
polynomial to the data. The best power transformation

dpi was found, with the power p chosen from candidates

-2, -1, -0.5, 0, 0.5, 1, 2, 3, where d0i denotes log(di). The

set includes the straight line (i.e. no transformation)
p = 1. The variables di contain non-positive values, thus
we transformed its values to values > 0, which will enable
the use of logarithms and negative powers transforma-
tion. Including more powers usually offers only slight
improvement in the model fit. In particular, there is a
problem with including large negative powers, such as -3,
that individual extreme observations will influence the fit
too much [34]. The first-degree fractional polynomial
provides unsatisfactory fit to our data, so we considered
second-degree fractional polynomial. We used the closed
test procedure, which first determine the best-fitting sec-
ond degree polynomial by choosing the powers transfor-
mation p and q from the aforementioned set. For
mathematical limit, when p = q for the variable di in the
model then the terms of the variable will be written in

the form bjd
p
i + bkd

p
i log(di) . The best fit among the com-

binations of such powers is defined as that which maxi-
mizes the likelihood or equivalently that which
minimizes the deviance [35]. The MFP package, which is
a collection of R [36] functions targeted at the use of
fractional polynomials for modeling the influence of con-
tinuous variables on the outcome in regression models is
used in this research to find the best fit among the com-
binations of the powers p and q. MFP uses a sequential
and a closed testing selection procedures for a single con-
tinuous variable. Using the BT426 dataset, our final

model is selected after two cycles. The results of the
model selection are shown in Table 1. The best-fit frac-
tional polynomials (fractional polynomials with the low-
est deviance) for SVM model1, SVM model2, and SVM
model3 are underlined.

Training and testing
We used LIBSVM package [37] to train and build the
SVMs prediction models. The radial basis kernel func-
tion was used to transfer the data from a low dimension
space to a higher-dimensional space nonlinearly for all
the SVMs. The default grid search approach was used
to find the optimal values for the LIBSVM’s parameters
C and gamma. The leave-one-out cross-validation test,
in which different datasets for training and testing are
used to evaluate a prediction method, is an accurate test
method compared with independent dataset test and
sub-dataset test [38]. When using this test, one protein
out of N proteins is removed to represent the testing set
and the remaining N-1 proteins are combined together
to represent the training set that will be used for train-
ing the prediction method. This process is then repeated
N times by removing one protein in each time. In
b-turns prediction, applying this process exactly is time
consuming. Thus, most of the state-of-the-art b-turns
prediction methods use seven-fold cross validation to
assess their prediction performances [39]. Therefore, we
used seven-fold cross validation to assess the perfor-
mance of our H-SVM-LR method. We first started by
dividing the dataset into seven subsets that contain
equal numbers of proteins. In each set the b-turns
account for approximately 25% of the protein residues,
in other words each set contains the naturally-accruing

Table 1 Fractional polynomials for the SVMs models
using the BT426 dataset.

Cycle 1 Cycle 2

Variable Powers Powers

Deviance Deviance

P q P q

SVM model1 256272.1 256255.1

256235.6 1 256209.8 1

256180.1 -0.5 256146.1 -0.5

256080.4 1 2 256035.3 1 2

SVM model2 257266.9 257050.1

256512.8 1 256314.3 1

256284.1 0 256086.0 0

256235.6 0.5 1 256035.3 0.5 1

SVM model3 258586.7 258511.7

256669.1 1 256247.5 1

256626.6 0.5 256148.6 0.5

256512.8 2 3 256035.3 2 2
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proportion of beta-turns. We removed one set to repre-
sent the testing set and the other sets were merged
together in one training set, which is used to train
H-SVM-LR. This process was repeated seven times in
order to have a different set for testing each time. We
take the average of the results from the seven testing
sets to represent the final prediction result.

Performance measures
The quality of prediction is evaluated using four mea-
sures, the prediction accuracy, Qpredicted, Qobserved,
and MCC. These measures are the most frequently used
measures to evaluate the b-turns prediction methods.
They are calculated using the four values (i) true posi-
tive (TP), which is the number of the residues that are
correctly classified as b-turns, (ii) true negative (TN),
which is the number of the residues that are correctly
classified as non-b-turns, (iii) false positive (FP), which
is the number of residues that have non-b-turns struc-
ture and incorrectly classified as having b-turns struc-
ture, and (iv) false negative (FN), which is the number
of residues that have b-turns structure and incorrectly
classified as having non-b-turns structure.
The prediction accuracy (also known as Qtotal) refers

to the percentage of correctly classified residues and is
calculated as follows:

Qtotal =
TP + TN

TP + TN + FP + FN
× 100 (6)

Qpredicted (also known as the predicted positive value
(PPV) or the probability of correct prediction) refers to
the percentage of the residues that are correctly pre-
dicted as b-turns among the predicted ones and is cal-
culated as follows:

Qpredicted =
TP

TP + FP
× 100 (7)

Qobserved (also known as sensitivity or coverage)
refers to the percentage of the residues that are correctly
predicted to have b-turns structure among those
observed as having b-turns structure. In other words, it
represents the fraction of the total positive samples that
are correctly predicted and it is calculated as follows:

Qobserved =
TP

TP + FN
× 100 (8)

Because of the imbalanced dataset (25% b-turns), Qtotal
by itself is a poor measure. In other words, one can
achieve a Qtotal of 75% (baseline accuracy) by predicting
all the residues to be non-b-turns. Therefore, Matthew’s
correlation coefficient (MCC) [40] is an important, robust
and reliable performance measure. The MCC can be
obtained using the following formula:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(9)

Normally, the value of MCC is greater than or equal
to -1 and less than or equal to 1. If the value of MCC is
close to 1 then there is a perfect positive correlation, if
it is close to -1 then there is a perfect negative correla-
tion, and a value close to 0 indicates no correlation.
The receiver operating characteristic (ROC) curve is

adopted in this paper as a threshold independent mea-
sure. The ROC curve provides the effectiveness of
b-turns prediction method. The area under the ROC
curve (AUC) is an important index that reflects the pre-
diction reliability. A good classifier has an area close to
1, while a random classifier has an area of 0.5.

Results and discussion
The methods that are applied on b-turns prediction use
different PSSMs and PSS organizations. Some research-
ers use a sliding window on the PSSMs and then add
the PSS e.g. [18]. Other researchers use a sliding win-
dow on both PSSMs and PSS e.g. [20]. Both ways are
tested in our proposed method and the results for the
BT426 dataset are shown in Table 2.
From the results we found that the performance of

H-SVM-LR using a sliding window on both PSSMs and
PSS is by far better than using a sliding window on
PSSMs only and then add the PSS for the central amino
acid. Figure 3 shows the ROC curves for b-turns predic-
tion using a sliding window on PSSMs only and a sliding
window on both PSSMs and PSS. The AUC highlights
the effect of using a sliding window on both PSSMs and
PSS. The AUC value using a sliding window on both
PSSMs and PSS is 0.89, 0.03 higher than using a sliding
window on the PSSMs only.
Table 3 shows the comparison between H-SVM-LR and

other existing b-turns prediction methods based on seven-
fold cross validation on the BT426 dataset. H-SVM-LR
achieves prediction accuracy or Qtotal = 82.87%, Qpre-
dicted= 64.83%, Qobserved = 70.66%, and MCC = 0.56.
The Qtotal of H-SVM-LR is the highest among the exist-
ing methods that use PSSMs and PSS as features; i.e.
Zheng and Kurgan’s method and the method of Liu et al.
achieved Qtotal of 80.9. The difference in Qtotal between
H-SVM-LR and these methods is 1.97%. We emphasize
that this difference is relatively large when considering

Table 2 Performance comparison between different
features organization on the BT426 dataset

Features organization Qtotal Qpredicted Qobserved MCC

A sliding window on PSSMs
only

81.03 63.98 57.40 0.48

A sliding window on both
PSSMs and PSS

82.87 64.83 70.66 0.56
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that the baseline accuracy equals to 75%, which could be
obtained by merely regarding all residues as non-b-turns.
i.e., H-SVM-LR provides 7.87/25 = 31.5% error rate reduc-
tion, while Zheng and Kurgan’s method and the method
of Liu et al. provide 5.9/25 = 24% error rate reduction, and

Hu and Li’s method provides 4.8/25 = 19% error rate
reduction.
H-SVM-LR shows high MCC 0.56 compared to Net-

TurnP 0.50, Zheng and Kurgan’s method 0.47, and the
method of Liu et al. 0.44. Thus, H-SVM-LR has the high-
est MCC and Qtotal among the other b-turns prediction
methods. The MCC value achieved is noteworthy since
MCC accounts for both over predictions and under pre-
dictions. The Qobserved of H-SVM-LR is higher by
15.06% than the Qobserved of Zheng and Kurgan’s
method, by 1.76% than the Qobserved of Hu and Li’s
method, and by 21.46% than the Qobserved of the method
of Liu et al. Higher Qobserved values mean that a large
percentage of the observed b-urns is correctly predicted.
At the same time, the Qpredicted of our method shows
that more than 64% of the actual b-turns are correctly pre-
dicted. We note that the Qpredicted of H-SVM-LR is
2.13% higher than the Qpredicted of Zheng and Kurgan’s
method, by 9.23% than the Qpredicted of Hu and Li’s
method, and by 1.23% higher than the Qpredicted of the
method of Liu et al.
Besides BT426 dataset that is used for training and

testing H-SVM-LR, we used two additional datasets, i.e.
BT547 and BT823 datasets, to validate its performance.
Results obtained based on seven-fold cross validation on
these datasets are given in Table 4. The results show that
for the BT547 dataset H-SVM-LR obtains Qtotal =
82.84%, Qpredicted = 63.60%, Qobserved = 68.50%, and
MCC = 0.55. The MCC and Qtotal of H-SVM-LR are the
best among the other competing methods that are evalu-
ated on BT547 dataset. We note that the Qpredicted of
H-SVM-LR is 0.7% lower than the Qpredicted of the
method of Liu et al., while the Qobserved of H-SVM-LR

Figure 3 ROC curves for the prediction using a sliding window
on PSSMs only and sliding window on both PSSMs and PSS.
Blue curve corresponds to the prediction using sliding window on
both PSSMs and PSS, while the green curve corresponds to the
prediction using a sliding window on PSSMs only. The dataset used
for drawing the curves is BT426.

Table 3 Comparison of H-SVM-LR with other b-turns
prediction methods on the BT426 dataset

Prediction method Qtotal Qpredicted Qobserved MCC

H-SVM-LR 82.87 64.83 70.66 0.56

Zheng and Kurgan [2] 80.9 62.7 55.6 0.47

Liu et al. [20] 80.9 63.6 49.2 0.44

Hu and Li [19] 79.8 55.6 68.9 0.47

DEBT [21] 79.2 54.8 70.1 0.48

BTSVM [17] 78.7 56.0 62.0 0.45

NetTurnP [1] 78.2 54.4 75.6 0.50

MOLEBRNN [15] 77.9 53.9 66.0 0.45

Zhang et al.(multiple
alignment) [18]

77.3 53.1 67.0 0.45

BetaTPred2 [14] 75.5 49.8 72.3 0.43

Kim [16] 75.0 46.5 66.7 0.40

COUDES [9] 74.8 48.8 69.9 0.42

BTPRED [13] 74.4 48.3 57.3 0.35

a Note: The results of the method of Liu et al. and NetTurnP method are
obtained from their corresponding papers. The results of other b-turns
prediction methods are obtained from [22].

Table 4 Comparison of H-SVM-LR with other b-turns
prediction methods on BT547 and BT823 datasets.

Prediction method Dataset Qtotal Qpredicted Qobserved MCC

H-SVM-LR 82.84 63.60 68.5 0.55

Zheng and Kurgan
[2]

80.5 61.6 54.2 0.45

Liu et al. [20] BT547 80.6 64.3 44.5 0.44

Hu and Li [19] 76.6 47.6 70.2 0.43

DEBT [21] 80.0 55.9 68.7 0.49

COUDES [9] 74.6 48.7 70.4 0.42

H-SVM-LR 82.32 64.48 72.72 0.56

Zheng and Kurgan
[2]

80.6 60.8 54.6 0.45

Liu et al. [20] BT823 80.5 62.3 44.6 0.44

Hu and Li [19] 76.8 53.0 72.3 0.45

DEBT [21] 80.9 55.9 66.1 0.48

COUDES [9] 74.2 47.5 69.6 0.41

a Note: The results of the method of Liu et al. are obtained from their
corresponding paper. The results of other b-turns prediction methods are
obtained from [22].
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is 24% higher than the Qobserved of the method of Liu et
al. The increase in the Qobserved value is a trade-off for
the decrease in the Qpredicted value. In spite of this
trade off, H-SVM-LR shows high overall accuracy. For
the BT823 dataset H-SVM-LR obtains Qtotal = 82.32%,
Qpredicted = 64.48%, Qobserved = 72.72%, and MCC =
0.56. Also H-SVM-LR has the highest MCC, Qtotal,
Qpredicted, and Qobserved on BT823 datasets. The
results also show that H-SVM-LR shows stable perfor-
mances on all the three datasets used. Note that we used
the same LR model that is used for testing BT426. These
results indicate that H-SVM-LR can better discriminate
between b-turns and non-b-turns.

Including shape strings features
The comparisons between H-SVM-LR after including
the shape strings features and the method of Tang et al.
on the BT426, BT547, and BT823 are shown in Table 5.
Figure 4 depicts the ROC curves for b-turns prediction
using H-SVM-LR before and after adding the shape
strings for the BT426 dataset. The AUC value when
including the shape strings is 0.923, while the AUC
value when using PSSMs and PSS only is 0.886.

Conclusions
In this paper, we proposed an approach that combines
SVM and LR to create a hybrid method for b-turns pre-
diction. We called this hybrid method H-SVM-LR. In
H-SVM-LR, we utilized protein profile in the form of
PSSMs, and PSS as features. We also considered shape
strings as additional features. We divided the non-b-
turn class into three partitions using k-means clustering
algorithm and then each partition is combined with the
b-turn class to form approximately balanced sub-train-
ing sets. SVM classifier is used for each sub-training set.
Using this procedure, the problem of imbalanced class
can be overcome, and the SVM computational time can
be reduced. LR model selected based on fractional poly-
nomials is used to aggregate the decisions of the SVMs
to come up with final b-turn or non-b-turn decision.
Using LR to aggregate the decisions of the SVMs
enables us to take advantages of the statistical modeling
theory to find the optimal weights for each SVM. H-

SVM-LR achieved MCC of 0.56, and Qtotal of 82.87%
on the BT426 dataset when using PSSMs and PSS as
features. The MCC and the Qtotal achieved are signifi-
cantly higher than the best existing methods that predict
beta-turns using PSSM and PSS. Also H-SVM-LR
obtained the highest MCC and Qtotal on BT547 and
BT823 datasets. Furthermore, H-SVM-LR shows good
performance when including shape strings features.
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the prediction after including the predicted shape strings, while the
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