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Abstract

in L-OHP sensitivity or not.

correlated with STO0A10 mRNA levels (P=0.002, R =091).

sensitivity to L-OHP.

Background: Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. Our recent
proteomics studies have demonstrated that intracellular protein expression levels of STO0A10 are significantly
correlated with the sensitivity of colorectal cancer (CRC) cells to L-OHP, but not 5-FU, suggesting that STO0A10 is a
candidate predictive marker for the response to L-OHP. In this study, we investigated whether STO0A10 is involved

Results: Forced expression of ST00A10 in COLO-320 CRC cells significantly increased the 50% inhibitory concentration
(ICs) for L-OHP (P=10.003), but did not change that for 5-FU, indicating that STO0A10 is more specific to L-OHP than
5-FU. Silencing of the STOOAT0 gene showed no apparent effect on sensitivity to L-OHP in HT29 cells. Silencing of the
annexin A2 (a binding partner of ST00A10) gene alone downregulated both annexin A2 and STO0A10 protein levels,
with no change in STOOA10 gene expression. However, original levels of intact STOOA10 protein in CRC cells positively

Conclusions: The present results have shown that protein expression of STOOA10 was associated with resistance to
L-OHP, but not 5-FU, supporting the hypothesis that STOOA10 expression may predict L-OHP sensitivity. Thus, our
present study provides basic findings to support that STO0A10 expression can be used as a predictive marker for tumor
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Background

Oxaliplatin (L-OHP) is a key drug used for the treatment of
colorectal cancer (CRC) [1]. L-OHP and bolus/infusional 5-
fluorouracil (5-FU) combined with folinic acid (FOLFOX)
have yielded high response rates (~50%) and good overall
survival [2-4]. Recently, this regimen has emerged as one
of the most effective therapeutic regimens available, pro-
viding a platform for the treatment of CRC [5-7]. How-
ever, approximately half of all patients who receive
FOLFOX gain no benefit, despite the usual risk of toxicity.
Predictive markers of the response to L-OHP have not yet
been established. Although several predictive markers of
the response to platinum-based chemotherapy have been
proposed on the basis of various mechanisms of chemore-
sistance to platinum drugs [8], the UK MRC FOCUS
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(Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing)
clinical trial, the largest randomized biomarker trial in
metastatic CRC to date, reported no significant association
between response to platinum-based chemotherapy and
excision repair cross-complementing rodent repair defi-
ciency, complementation group 1 (ERCCI), xeroderma
pigmentosum group D (XPD, also known as ERCC2),
glutathione-S-transferase-P1 (GSTPI), or other candidate
biomarkers that have previously shown promise [9].
Recently, our proteomics studies have demonstrated
that intracellular SI00A10 protein expression levels are
significantly correlated with the sensitivity of CRC cells to
L-OHP, but not 5-FU, providing a new candidate predict-
ive markers for the response to L-OHP [10]. S100A10
is a member of the S100 family of proteins. It has been
shown to interact with a variety of proteins, including
plasma membrane-resident receptors [11-14], indicating
that S1I00A10 is an active regulator and/or is involved in
the trafficking of cellular/membrane proteins which lead
to various biological functions. SI00A10 mRNA, S100A10
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protein, or both have been found in many types of cells,
tissues, and tumors [15-21]. SI00A10 has also attracted
considerable attention for its role as an essential molecule
in tumor progression via macrophage migration to tumor
sites [22]. In addition, most of the S100A10 protein is
tightly associated with dimers of annexin A2, forming an
(S100A10),-(annexin A2), heterotetramer [23-25]. Annexin
A2 is a member of the annexin family which has been re-
ported to have multiple functions [26-29]. However, the
mechanisms of SI00A10 involvement in chemoresistance,
including the possible participation of annexin A2, are still
unknown.

In this study, we investigated whether alterations in
S100A10 and/or annexin A2 expression were involved in
mediating chemosensitivity to L-OHP by using forced
overexpression of S100A10 in stably transfected cells
and RNA interference. Our results have demonstrated
the potential contribution of SI00A10 to resistance to
L-OHP.

Results

Effects of forced expression of ST00A10 on cell
proliferation and sensitivity to L-OHP or 5-FU in
COLO-320 cells

Stably transfected COLO-320 cells expressing S100A10
(COLO-320/S100A10) showed strong expression of SI00A10
(HaloTag-tagged S100A10) as a 44-kDa protein (S1I00A10:
11 kDa, HaloTag: 33 kDa). The level of expression was
similar to that of endogenous S100A10 levels in HT29
cells, a line which shows high S100A10 protein expression.
Annexin A2, the binding partner of S100A10, was not
expressed in COLO-320/S100A10 cells (Figure 1A). The
proliferation rates of COLO-320/S100A10, COLO-320/
vector, and untreated COLO-320 cells were similar
(Figure 1B). Cell viability after L-OHP or 5-FU exposure
(Figure 1C, upper panel) and ICs, values (Figure 1C, lower
panel) were determined. Forced expression of S100A10
significantly increased the ICs, value of COLO-320/
S100A10 for L-OHP (9.3+1.8 puM [mean + SD]) com-
pared to that for the COLO-320/vector (2.3 + 2.0 uM) and
untreated COLO-320 cells (25+1.8 pM; one-way
ANOVA, P = 0.001; Tukey’s test, P =0.003 and P = 0.002,
respectively; Figure 1C, left panel), while that for 5-FU
was unchanged. The ICs, values (u1M; mean + SD) of cells
for 5-FU were as follows: COLO-320/S100A10, 3.4+ 1.8;
COLO-320/vector, 3.6+2.6; and untreated COLO-320
cells, 4.1 + 3.2 (Figure 1C, right panel).

Effects of ST00A10 or/and annexin A2 gene silencing by
siRNAs on cell proliferation and sensitivity to L-OHP in
HT-29 cells

Real-time qRT-PCR analyses revealed efficient and spe-
cific suppression of SI00A10 or/and annexin A2 mRNAs
in HT29 cells (Figure 2A, lower panel). Western blot
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analyses also revealed the efficient suppression of protein
expression of target molecules (Figure 2A, upper panel).
However, silencing of the annexin A2 gene induced the
downregulation of both annexin A2 and S100A10 pro-
tein levels, with no change in S1I00A10 gene expression
(Figure 2A, upper panel).

Cells transfected with annexin A2 siRNA (HT29/siANXA2)
exhibited slightly lower cell proliferation rates at day 3
compared to those for cells treated with transfection
reagent alone (mock), cells transfected with nontargeting
control siRNA (control), and cells transfected with SI00A10
siRNA (HT-29/5iS100A10) (ANOVA, P=0.004; Tukey’s
test, P=0.031, P=0.006, and P =0.006, respectively;
Figure 2B, left panel), and at day 5 compared to mock or
HT-29/siS100A10 (ANOVA, P=0.015; Tukey’s test, P=
0.023 and P =0.049, respectively; Figure 2B, left panel).
HT-29/5iS100A10 or double knockdown of S100A10
and annexin A2 (HT-29/[siS100A10 + siANXA2]) had no
obvious influence on cell proliferation (Figure 2B). Silen-
cing of the SI00A10 or annexin A2 gene had little effect
on sensitivity to L-OHP in HT29 cells (Figure 2C, left
panel). Double knockdown of S100A10 and annexin A2
showing a similar pattern of protein expressions as single
knockdown of annexin A2 also showed little difference on
sensitivity to L-OHP (Figure 2C, right panel).

Relationships between the mRNA and protein expression
levels of ST00A10 and annexin A2

Considering the suppression of SI00A10 protein levels
by silencing of the annexin A2 gene, we next investi-
gated the associations between S100A10 and annexin A2
mRNA and protein expression. The protein expression
of both SI00A10 and annexin A2 in whole cell lysates
from 8 CRC cell lines, quantified by western blot densi-
tometry (Figure 3A), demonstrated a statistically strong
correlation (P<0.001, R=0.97) between the 2 targets
(Figure 3B). Real-time qRT-PCR analyses also revealed a
positive correlation between mRNA expression levels of
S100A10 and those of annexin A2 in 13 CRC cell lines
(P<0.001, R=0.95, Figure 3C). Furthermore, S100A10
protein expression levels were strongly correlated with
S100A10 mRNA expression levels (P=0.002, R=0091,
Figure 3D); the same could be said of annexin A2 (P=
0.017, R = 0.80, Figure 3E).

In DLD-1 cells, annexin A2 appeared as 2 bands
around 36 kDa (Figure 3A), probably representing the 2
isoforms of annexin A2, in which isoform 2 has a substi-
tution of 19 amino acids in Met 1 of isoform 1, resulting
in a molecular weight that is 2 kDa higher than that of
isoform 1. The characteristics of isoform 2 are not well
known; however, we evaluated the protein expression of
annexin A2 in DLD-1 cells by taking the sum of the
density of both bands because all the other amino acids,
including all functional sequences, other than Met 1, are
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Figure 1 Effects of forced expression of ST00A10 on cell proliferation and chemosensitivity. (A) Untransfected COLO-320 cells (UT), cells
transfected with non-target vector (control), cells stably transfected with ST00A10 (ST00A10), and HT29 cells used as a positive control were lysed.
Cell lysates (10 ug protein) were subjected to western blot analysis using anti-S100A10 (1:5000), anti-annexin A2 (1:2500), and anti-GAPDH antibodies
(1:4000). Molecular weight standards (MW) are in the left lane. (B) The growth curves of each cell line. (C) Each cell was treated with
various concentration of L-OHP or 5-FU. Cell viability after exposure to L-OHP or 5-FU (upper panel), and ICsq values for L-OHP or 5-FU (lower panel)
were determined. Data are the mean + SD (n =4). P values are by comparison with the results for UT (**f < 0.01) and control (tt, P < 0.01) by on-way
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identical between the 2 isoforms (UniProtKB/Swiss-Prot:
http://www.uniprot.org/uniprot/P07355).

Discussion

Predictive markers of chemotherapeutic response are ur-
gently needed to improve the outcomes of cancer treat-
ment. Predictive markers of the response to L-OHP have
not yet been established [8,30], and clinically available
protein markers of drug responses are also limited [30].
Using a proteomics approach, we recently found that
intracellular SI00A10 protein expression levels were sig-
nificantly correlated with the sensitivity of CRC cells to
L-OHP, but not to 5-FU, providing new insights into pre-
dictive markers of the response to L-OHP [10]. Therefore,

in the current study, we investigated whether S100A10
was involved in mediating L-OHP sensitivity by using
stably transfected cells expressing SI00A10 and RNA
interference.

Forced expression of SI00A10 in COLO-320 CRC cells,
which do not express endogenous S100A10, significantly
reduced the sensitivity of these cells to L-OHP. In par-
ticular, substantial changes in cell viability were observed
between 1 and 10 uM of L-OHP exposure, correspond-
ing approximately to the blood concentration of L-OHP
in clinical use [31]. A roughly 4-fold change in ICs, value
for L-OHP observed seems not to be prominent, but
should be considered. First, IC5y values for L-OHP in
this study correspond approximately to the peak plasma
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Figure 2 Effects of S1T00A10 or/and annexin A2 gene silencing on cell proliferation and chemosensitivity. HT29 cells were treated with
transfection reagent alone (mock) or transfected with nontargeting control siRNA (control, final concentration 10 nM or 20 nM), STOOA10 siRNA

Il S100A10
[ ANXA2

(STO0AT0 siRNA, final concentration 10 nM), annexin A2 siRNA (ANXA2 siRNA, final concentration 10 nM), or both ST00A10 siRNA and annexin A2
SIRNA (STO0A10 siRNA + ANXA2 siRNA, final concentration 20 nM). (A) The expression levels of STOOA10 and annexin A2 were examined by using
real-time qRT-PCR (lower panel) and western blot analyses (upper panel). (B) Cell proliferation was determined after transfection for the indicated
times (left panel, single knockdown; right panel, double knockdown). Data are the mean + SD (n = 3). P values are by comparison with the results
for the mock (¥, P < 0.05), control (1, P <0.01), or STOOA10 siRNA (§, P < 0.05; §§, P < 0.01) by one-way ANOVA with Tukey's post hoc test. (C) Cell
viability after exposure to L-OHP was determined. Cells were treated with various concentrations of L-OHP after single knockdown with each
SIRNA (left panel) or after double knockdown of STOOA10 and annexin A2 (right panel). Data are the mean + SD (n=9).

concentration after intravenous infusion (Cmax) in clinical
setting, and Cmax is thought to be important for efficacy,
considering that antitumor activity of L-OHP is concen-
tration and time dependent [32,33] and infusion time of

L-OHP is almost fixed as 2 hours except in some cases
with high risk of toxicity. Second, interpatient variability
in L-OHP pharmacokinetics, evaluated as ultrafiltrable
platinum, is moderate to low and 4-fold change is above
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Figure 3 Relationships between protein and mRNA expression levels of ST00A10 and annexin A2. The expression levels of STO0A10 and
annexin A2 were examined by western blot analyses (A, B, D, E) and real-time qRT-PCR (C, D, E). (A) A western blot illustrating the differential
expression of STO0A10 and annexin A2 derived from cell lysates of 8 CRC cell lines. The results are representative of 3 separate experiments.
ST00A10 and annexin A2 protein expression levels in 8 CRC cell lines (B), STO0A10 and annexin A2 mRNA expression levels in 13 CRC cell lines

(C), mRNA and protein expression levels of ST00A10 in 8 CRC cell lines (D), and mRNA and protein expression levels of annexin A2 in 8 CRC cell
lines (E) were investigated by Pearson’s correlation coefficient test. There was a significant and positive correlation between ST00A10 and annexin
A2 mRNA expression levels (C), and ST00A10 protein levels positively correlated with STO0OAT0 mRNA levels (D). Data were plotted as the mean + SD
(n = 3). Western blot densitometry and relative quantity of ST00A10 and annexin A2 transcripts are plotted as means + SD (n = 3).
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interpatient variability in Cmax, indicating that this mag-
nitude of change in sensitivity is unignorable [31,34,35].

On the other hand, forced expression of SI00A10 did
not alter sensitivity to 5-FU, suggesting that, as a predict-
ive marker, SI00A10 is more specific to L-OHP sensitivity
than to 5-FU sensitivity. These observations strongly
support our recent findings that CRC cells with higher
S100A10 protein expression levels exhibit lower sensitivity
to L-OHP, but not to 5-FU [10]. These results were also
consistent with previous studies demonstrating an associ-
ation between upregulation of S100A10 and enhance-
ment of cell viability. SI00A10 interacts with Bcl-xL/
Bcl-2 associated death promoter (BAD), a death enhancer,
and blunts its pro-apoptotic activity [36]. SI00A10 is in-
duced by nerve growth factor, and increased S100A10
levels promote the proliferation of PC12 cells, a pheochro-
mocytoma cell line [37]. Moreover, limbal epithelial cell
proliferation and differentiation are reported to be associ-
ated with S100A10 expression [38]. SI00A10 is also a po-
tential inducer of nuclear factor-kB (NF-kB) via activation
of the Akt pathway [39], which is involved in cell growth,
anti-apoptotic signaling, and carcinogenesis in tumor cells
[40,41]. Interestingly, SI00A10 is also thought to be a tar-
get of NF-kB [42], leading the possibility of further en-
hancement of cell growth by S100A10. Thus, previous
data suggest that SI00A10 may act as an anti-apoptotic
factor.

The differences in the antitumor mechanisms and/or
the opposite effects exerted on NF-xB by L-OHP or 5-
FU [43-46] may be involved in mediating the distinct ef-
fect of SI00A10 on cellular chemosensitivities. However,
the underlying mechanisms of the different effects of
S100A10 on the sensitivity to each antitumor drug have
not been clarified in the current study, and further studies
are required to completely elucidate these mechanisms.

The interaction between S100A10 and annexin A2 may
be partly involved in the mechanisms of sensitivity to
L-OHP. Most of the S100A10 is tightly associated with
annexin A2 dimers, forming an (S100A10),-(annexin A2),
heterotetramer [23-25]. SI00A10 acts as a key molecule
for the promotion of angiogenesis and tumor metastasis
[22], and annexin A2 is believed to act as a scaffolding
protein to secure SI00A10 to the cell surface, considering
the well-established roles of SI00A10 in cellular plasmin
regulation [47-49]. Conversely, annexin A2, well known to
have multiple functions and biological role in cancer cells
[29,50], also requires SI00A10 for its action and trans-
location to the cell surface [51]. In this study, we ob-
served that reduction in both S100A10 and annexin A2
protein expression, shown in HT29/siANXA2 and HT29/
(siST00A10 + siANXA?2) cells. The decreased proliferation
rate in HT29/siANXA2 cells, probably due in part to cell
cycle arrest at the G, phase [52], is unlikely to influence
sensitivity to L-OHP since L-OHP is cell-cycle nonspecific
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[53]. These findings lead us to speculate that S100A10
may function collaboratively with annexin A2 in che-
moresistance, although its precise mechanisms are still
unknown because siRNA knockdown experiments failed to
discriminate the difference between S100A10 and annexin
A2 in terms of their contributions to chemoresistance due
to simultaneous changes in the expression of S100A10
and annexin A2 proteins induced by single knockdown of
annexin A2. Silencing of S100A10 and/or annexin A2
showed no apparent effect on sensitivity of the cells to
L-OHP. The inconsistent effects of S100A10 forced
expression and RNA interference on the sensitivity to
L-OHP may partly due to the difference in baseline ex-
pression of annexin A2 between COLO-320 and HT29
cells. Native COLO-320 cells express no endogeneous
annexin A2 whereas HT29 cells highly express annexin
A2 [10]. Another limitation of the present study is that
the efficiency of siRNA transfection into cells could not be
normalized since a co-transfected marker was not used.
Transfection was attempted by adding siRNA-transfection
reagent complex to cells in each well of 96-well plates.

Intracellular SI00A10 protein expression may also be
mediated by post-translational suppression possibly due
to the instability of SI00A10 protein induced by annexin
A2 suppression, considering that annexin A2 stabilizes
intracellular S100A10 via binding, which masks the
S100A10 polyubiquitination signal leading to proteaso-
mal degradation, as previously reported [54-58]. How-
ever, there was a positive correlation between S100A10
and annexin A2 mRNA expression levels (Figure 3C),
and S100A10 protein levels positively correlated with
S100A10 mRNA levels (Figure 3D), suggesting that the
original levels of intact SI00A10 protein were not neces-
sarily attributed to annexin A2 regulation and therefore
not simply a reflection or a surrogate of annexin A2
levels. In fact, Hajjar et al. reported that the expression
of S100A10 in glioma cells is not affected by stable de-
pletion of annexin A2, probably owing to binding part-
ners of SI00A10 other than annexin A2, in her response
to letters to her article [59].

Additionally, it cannot be excluded that intracellular
S100A10 is a surrogate of other active molecules related
to cell survival after exposure to antitumor drugs since
S100A10 has been shown to interact with a variety of
proteins, including plasma membrane-resident receptors
and channels [11-14]. Serotonin plays important role in
CRC physiology, and S100A10 interacts with the 5-HT g
receptor and modulates its function [14]. SI00A10 may
be involved in releasing pro-inflammatory cytokines,
such as interleukin-6 [39], which has been suggested to
promote cell growth and apoptosis-escape in colon cancer
[60,61]. Downregulation of caveolin-1, which has recently
attracted attention for its potential role in chemoresistance
[62,63], reduces intracellular SI00A10 protein expression
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and localization of S100A10 to caveolae in HCT116 cells,
although the mechanisms involved are unknown [64].

Thus, the molecular backgrounds of S100A10 de-
scribed in previous reports are partly consistent with our
hypothesis that SI00A10 protein expression levels may
reflect cell sensitivity to L-OHP. In addition, we demon-
strated that protein expression of SI00A10 was involved
in mediating sensitivity to L-OHP, at least in part, by
using stably transfected cells expressing S100A10. How-
ever, the mechanisms of S100A10 involvement in che-
moresistance are still unknown, and the suppression of
S100A10 protein expression induced by knockdown of
annexin A2 makes it difficult to differentiate between the
effects of annexin A2 and those of SI00A10 on chemosen-
sitivity. In the present study, we have demonstrated that
protein expression of SI00A10 was associated with resist-
ance to L-OHP, but not 5-FU. However, further studies
are required in order to fully elucidate the molecular
mechanisms through which S100A10 acts as a predictive
biomarker of the response to L-OHP.

Conclusions

We have shown that protein expression of SI00A10 was
associated with resistance to L-OHP, but not 5-FU, using
forced expression of SI00A10 in CRC cells. Our results
provide basic findings for SI00A10 as a predictive marker
of the response to L-OHP. Further clinical validation and
functional analysis are required to confirm this hypothesis
and to elucidate the underlying biological mechanisms.

Methods

Agents and antibodies

L-OHP and 5-FU were purchased from WAKO Chemicals
(Tokyo, Japan) and Sigma-Aldrich (St. Louis, MO, USA),
respectively. Purified mouse anti-annexin II Light Chain
(S100A10) monoclonal antibodies (mAbs) and purified
mouse anti-human annexin II (annexin A2) mAbs were
obtained from BD Biosciences (Mississauga, ON, Canada).
Anti-human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mAbs were obtained from Life Technologies
(Carlsbad, CA, USA). All other chemicals and reagents
were of the highest purity available.

Cell culture

DLD-1, LOVO, HT29, SW480, SW1116, WiDR, and HCT116
cells were purchased from the European Collection of Cell
Cultures (Salisbury, UK), and SW620 cells were purchased
from the American Type Culture Collection (Manassas,
VA, USA). COLO205, HCT-15, and LS174T cells were
provided by the Cell Resource Center for Biomedical
Research, Tohoku University (Sendai, Japan). COLO201
cells were provided by the Japanese Collection of Research
Bioresource (Tokyo, Japan), and COLO-320 cells were
provided by RIKEN Bio-Resource (Tsukuba, Japan). The
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cells were cultured in RPMI 1640 medium supplemented
with 10% fetal bovine serum (FBS) and 2 mM glutamine
at 37°C in humidified air containing 5% CO,. Cells were
used when in the exponential growth phase.

S100A10 expression vectors and generation of a stable
transfectant expressing ST00A10

The Flexi HaloTag clone pFN21AB8860, an S100A10
expression vector capable of producing N-terminally
HaloTag-fused recombinant SI00A10 protein, was obtained
from Kazusa DNA Research Institute (Kisarazu, Japan).
The S100A10-nonexpressing CRC cells, that is, COLO-320
cells, were plated at a density of 3 x 10° cells per 35-mm
dish 24 h prior to transfection. Cells were transfected
with either SI00A10 in the pFN21AB8860 (COLO-320/
S100A10) or with the vector control (COLO-320/vector)
using TransIT-LT1 transfection reagent (Mirus, WI, USA)
according to the manufacturer’s instructions. Cells stably
expressing S100A10 were selected with 0.8 mg/mL of
geneticine (G418 disulfate, Sigma-Aldrich) and subse-
quent subcloning. COLO-320/S100A10 cells were main-
tained in medium containing 0.4 mg/mL G418 disulfate.
Stable expression of S100A10 in the cells was verified
using western blot analysis.

Small-interfering RNA (siRNA) “knockdown” experiment
S100A10 siRNA (Stealth Oligo ID: 143791), annexin A2
siRNA (Stealth Oligo ID: 179173), and nontargeting con-
trol siRNA (Silencer Select Negative Control #1) were
purchased from Life Technologies. Twenty-four hours
prior to transfection, HT29 cells were plated at a density
of 5 x 10? cells/well in 96-well plates for cell proliferation
assays, chemosensitivity tests, and mRNA expression
analyses and were plated at 1.5 x 10> cells/well in 6-well
plates, scaling up proportionally to the relative surface
area of culture vessels, to prepare cell lysates for western
blot analysis. Cells were transfected with appropriate
siRNAs for 24 h by using Lipofectamine RNAIMAX
(Life Technologies) as described in the manufacturer’s
standard protocol. The final siRNA concentration was
10 nM for single-knockdown experiments and 20 nM for
double-knockdown experiments (concentration of each
siRNA: 10 nM). After transfection, cells were processed for
subsequent chemosensitivity test. sSiIRNA-mediated knock-
down of target molecules was confirmed by quantitative
real-time reverse transcription (qRT)-PCR and western
blot analysis at 48 h after transfection.

Cell proliferation assay and chemosensitivity test

The viability of cells in the cell proliferation assay and
chemosensitivity test in stably transfected COLO-320
cells was assessed by using the CellTiter96 AQueous
One Solution Cell Proliferation Assay (MTS assay,
Promega Corporation, Madison, WI, USA) according to
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the manufacturer’s protocol. Cell proliferation was mea-
sured 4 days after plating cells at a density of 0.5 x 10>
cells/well in 96-well plates. For chemosensitivity tests, cells
were plated at a density of 0.5 x 10 cells/well in 96-well
plates 24 h prior to exposure to L-OHP (0, 0.01, 0.1, 1,
10, or 100 uM) or 5-FU (0, 0.1, 1, 10, 100, or 1000 puM).
Cell viability was assessed after 48 h exposure to L-OHP
or 72 h of exposure to 5-FU, and the 50% inhibitory con-
centration (ICso) was calculated from graphical plots.

Crystal violet staining (CVS) was used to determine
cell numbers for assessing the cell viability of HT29 cells
in siRNA-mediated knockdown experiments. Cell prolifer-
ation was measured at day O (just before transfection), day
3 and day 5, that is, 48 and 96 h after the end of transfec-
tion, respectively. For chemosensitivity tests, cells trans-
fected with appropriate siRNAs for 24 h were subsequently
exposed to L-OHP (0, 0.001, 0.01, 0.1, 0.3, 1, 3, 10, 30, 100,
or 1000 puM) for 24 h. The medium was then changed, and
cell survival was assessed by CVS after 24 h of incubation.
The CVS was performed by the modified method of
Sergent et al. [65]. Briefly, surviving cells were fixed by
exposure to pure ethanol, stained for 30 min with 0.1%
crystal violet solution in 10% ethanol, and washed with
abundant tap water. After air-drying, the dye was eluted
with 33% acetic acid, and the optical density of dye
extracts was measured at 540 nm. The percentage of sur-
viving cells was determined, and the ICs, values were
calculated.

The ICs, values for L-OHP or 5-FU were log transformed
for normal distribution, and the log;q ICso values were
used for further statistical analysis.

Preparation of cell lysates and western blot analysis

To investigate the relationship between S100A10 and
annexin A2 protein expression, 8 CRC cell lines (HCT116,
HCT15, COLO-320, LS174T, SW620, SW480, HT29,
and DLD-1) were used. Cells were scraped off 100-mm
dishes into a lysis buffer containing 9 M urea, 2% CHAPS,
1 mM dithiothreitol (DTT), and a protease inhibitor cock-
tail (Sigma-Aldrich). After incubation on ice for 10 min
followed by sonication on ice, the lysates were cleared by
centrifugation at 15,000 x g for 30 min at 4°C, and protein
concentrations were determined by the DC protein assay
(Bio-Rad Laboratories, Hercules, CA, USA). In experi-
ments using stably transfected COLO-320 cells or RNA
interference, cell lysates were prepared by using M-PER
Mammalian Protein Extraction Reagent (Thermo Fisher
Scientific Inc., Rockford, IL, USA) with 1 mM DTT, 0.1 mM
phenylmethylsulfonyl fluoride, and a protease inhibitor
cocktail (Sigma-Aldrich) according to the manufacturer’s
protocol. After centrifugation at 15,000 x g for 10 min at
4°C to remove cellular debris, protein concentrations were
determined by the Pierce BCA protein assay (Thermo
Fisher Scientific Inc.), and aliquots were quickly frozen in
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liquid nitrogen and stored at —80°C until analysis in all
experiments.

Cell lysates were separated by SDS-polyacryamide gel
electrophoresis. The separated proteins were transferred
electrophoretically to polyvinylidene difluoride membranes
and probed with the respective primary antibodies and
alkaline phosphatase-conjugated secondary antibodies (Life
Technologies) as described previously [10]. GAPDH was
used as a loading control. Protein bands were visualized
with an LAS 4000 mini imaging system and analyzed with
Multi Gauge software ver. 3.0 (FUJIFILM, Tokyo, Japan).

RNA extraction and real-time qRT-PCR

For quantification of mRNA expression, cells were
plated at a density of 5 x 10® cells/well in 96-well plates
in all experiments. Extraction of total RNA from cul-
tured cells and synthesis of cDNA from total RNA were
performed using the TagMan Gene Expression Cells-to-
CT Kit (Life Technologies) according to the manufacturer’s
instructions. The real-time qRT-PCR measurement of indi-
vidual cDNAs was performed using TagMan Gene Expres-
sion Assays for S100A10 (Assay ID: Hs00237010_ml),
annexin A2 (Assay ID: Hs00237010_ml), and GAPDH
(Assay ID: Hs99999905_m1) on an ABI 7900 Real-Time
PCR System (Life Technologies). The reactions were run
in 384-well plates, using the following program: 50°C
for 2 min followed by 95°C for 10 min, followed by
40 cycles of 95°C for 15 s, 60°C for 1 min. The cyc-
ling parameters were manufacturer’s specifications. The
relative standard curve method, preparing serial dilution
of total RNA (1x, 10x, 20x, 40x, 80x, 160x, 320x, 800x,
1600x) prepared from the pool of total RNA obtained by
combining aliquots of samples for all assay, was used to
quantify the results obtained by real-time qRT-PCR. Rela-
tive fold-changes were normalized to the expression of
GAPDH.

Statistical analysis

Statistical analyses were performed using SPSS software
19.0 J for Windows (SPSS, Chicago, IL, USA). Comparison
between groups was performed by one-way analysis of
variance (ANOVA) followed by post-hoc multiple pairwise
comparison using Tukey’s test to determine statistical dif-
ferences. To evaluate relationships between 2 variables,
Pearson’s correlation coefficient test was used. P values of
less than 0.05 were considered statistically significant.

Ethical approval

Our in vitro study described in this manuscript used the
cell lines commercially available. This type of study does
not apply to human subject research by standards of
Guidance from US-Office for Human Research Protection
(OHRP). OHRP states that “OHRP does not consider the act
of solely providing coded private information or specimens



Suzuki and Tanigawara Proteome Science 2014, 12:26
http://www.proteomesci.com/content/12/1/26

(for example, by a tissue repository) to constitute involve-
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Furthermore, NIH Office of Extramural Research in
US Department of Health & Human Service (HHS) also
answers to investigators in their FAQs that “Research
that proposes the use of human cell lines available from
American Type Culture Collection or a similar repository is
not considered human subjects research because the cells
are publicly available and all of the information known
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