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Abstract

Background: Proteomics may help to detect subtle pollution-related changes, such as responses
to mixture pollution at low concentrations, where clear signs of toxicity are absent. The challenges
associated with the analysis of large-scale multivariate proteomic datasets have been widely
discussed in medical research and biomarker discovery. This concept has been introduced to
ecotoxicology only recently, so data processing and classification analysis need to be refined before

they can be readily applied in biomarker discovery and monitoring studies.

Results: Data sets obtained from a case study of oil pollution in the Blue mussel were investigated
for differential protein expression by retentate chromatography-mass spectrometry and decision
tree classification. Different tissues and different settings were used to evaluate classifiers towards
their discriminatory power. It was found that, due the intrinsic variability of the data sets, reliable
classification of unknown samples could only be achieved on a broad statistical basis (n > 60) with
the observed expression changes comprising high statistical significance and sufficient amplitude.
The application of stringent criteria to guard against overfitting of the models eventually allowed

satisfactory classification for only one of the investigated data sets and settings.

Conclusion: Machine learning techniques provide a promising approach to process and extract
informative expression signatures from high-dimensional mass-spectrometry data. Even though
characterisation of the proteins forming the expression signatures would be ideal, knowledge of
the specific proteins is not mandatory for effective class discrimination. This may constitute a new
biomarker approach in ecotoxicology, where working with organisms, which do not have
sequenced genomes render protein identification by database searching problematic. However,
data processing has to be critically evaluated and statistical constraints have to be considered

before supervised classification algorithms are employed.

Background applied for the screening of protein expression changes
In ecotoxicology, proteomics has been increasingly  caused by pollutants [1-10]. Proteomic profiles are gener-
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ally altered upon stress and hence should also be distinc-
tive of certain types of toxic exposure [2]. 2-DE is still the
prevailing tool for protein separation and analysis, fol-
lowed by MS to identify the proteins of interest. MS-based
protein profiling is rapidly emerging within the current
applications of proteomic technologies. Especially in
medical research, it has received increasing attention for
the development of new diagnostic criteria and disease
monitoring. Consequently, there exists a large body of lit-
erature on how to best exploit datasets from proteomic
MS, comprising large sample sizes and high dimensional-
ity. Owing to the amount and complexity of the generated
data, machine-learning techniques have been considered
the methods of choice for analysing such type of multivar-
iate data [11,12]. A plethora of supervised learning meth-
ods, such as partial least squares, discriminant and logistic
regression analysis, genetic algorithms, artificial neural
networks, k-nearest-neighbour, support vector machines
and decision trees have been evaluated for this purpose
[reviewed in [11,13,14]].

In conjunction with SELDI, this concept has also been
introduced into ecotoxicology [5]. After Hogstrand et al.
employed SELDI for protein profiling of rainbow trout
gills during exposure to waterborne zinc [2], Knigge et al.
have suggested the use of classifiers based on ProteinChip
mass-spectra to identify field-exposure to copper or PAH
in the bivalve Mytilus edulis (L.) [5], widely used as an
environmental sentinel. Such classifiers may constitute a
so-called "biomarker pattern” which can be of high dis-
criminatory power, regardless of the identity of the spe-
cific proteins that form it.

The global analysis of cellular constituents potentially
provides a more comprehensive view of toxicity, since tox-
icity generally involves not only single interactions but
also triggers a cascade of alterations [15]. The ability to
display a multitude of alterations renders it particularly
suitable for the evaluation of combined exposure to toxi-
cants [16]. Moreover, proteomics allows molecular finger-
printing of protein expression changes following the
exposures to low levels of contaminants, where conven-
tional methods of toxicology may not be sufficiently sen-
sitive [17]. More importantly, perhaps, a set of proteins
can potentially achieve higher accuracy and specificity
than any single biomarker alone [18].

Oil is a complex mixture of hydrocarbons including PAHs
which are strong carcinogens to humans and wildlife [19]
and APs which were demonstrated to elicit oestrogen ago-
nistic and/or antagonistic properties, thereby exerting
hormone-modulating effects [20]. Even if these chemicals
are rapidly diluted in the vicinity of offshore installations
just after their discharge, the effluents may still exert low
concentration effects [21], giving reason to evaluate
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whether these discharges may harm the biological
resources in the sea.

As datasets from proteomic MS are typically characterised
by large numbers of variables but relatively small sample
sizes, untypical machine learning problems are encoun-
tered and supervised training of classifiers may be consid-
ered problematic [22]. In particular, overfitting of the
multivariable models may seriously undermine the bio-
logical relevance of the sets of proteins constituting the
classifier [23,24]. Owing to these concerns, the present
study focuses on pre-processing and analysis of proteomic
MS data generated with SELDI, thereby taking a refined
and more conservative approach then reported previously
[5,8,9]. To evaluate the developed protocol for data
processing and classifier generation, different datasets
derived from a 21-day exposure of Blue mussels in a labo-
ratory flow-through system to crude oil with and without
a spike of PAHs and APs were used. We included feature
selection based on univariate statistical methods prior to
decision tree classification. For final evaluation, a mini-
mum variation threshold for the definite peaks was con-
sidered in order to advance biological relevance and
robustness of the protein expression signatures [25,26].

Results

SELDI profiling of gill proteins

A panel of gill-spectra (n = 51 for C, n = 66 for oil and n =
55 for sO; note: the discrepancy between the final number
of spectra analysed and the number of animals sampled in
total results from the removal of low quality spectra prior
to analysis; see material and methods section) yielded 55
peaks with differential expression. Statistical analysis
revealed 20 of these to be significantly altered, with levels
of differential expression below 50%. Just one peak (m/z
4755) displayed approximately two-fold alteration, albeit
with rather high variability and hence low significance
(0.05 > p > 0.01). Of the 20 peaks showing significantly
altered peak intensities, only six were classified highly sig-
nificant (p < 0.001). The most prominent peaks, combin-
ing high statistical significance with at least 50 % change
in expression were m/z 6696 found in oil and sO as well
as m/z 9661 and m/z 14 847 in oil only, all of which were
down-regulated (Table 1A). Remarkably, the effect of oil
exposure on gills tended to be more pronounced than that
of sO, as generally more peaks were found at a highly sig-
nificant level and the expression changes were slightly
stronger (data not shown). In addition, eight peaks were
unique to oil exposure (data not shown), amongst them
the one at m/z 9661.

SELDI profiling of digestive gland proteins

From the panel of DG-spectra (n = 74 for C, n = 71 for oil
and n = 69 for sO), 88 peaks were found to be differen-
tially expressed. Of the 49 peaks showing significantly
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Table I: Differentially expressed peptides/proteins from gills (A)
and digestive gland (DG, B) of Blue mussels obtained from
controls (C) and 21d exposures to 0.5 mg/L crude oil (oil) and 0.5
mg/L crude oil spiked with a mixture of APs and PAHs (0.1 mg/L;
sO); mean intensities (arbitrary values) and SD of controls (Gills,
n =51; DG, n = 74), oil (Gills, n = 66; DG, n =71) and sO (Gills, n
=55; DG, n = 69). Expression changes relative to the controls are
significantly different at a level of p < 0.001 (one-way ANOVA for
C vs. oil vs. sO) at least for one of the exposures. Peaks are listed
in decreasing order of their respective p values from top to
bottom.

Peak [m/z] Mean intensity
C oil sO
A - Gills
Down-regulation
14847 1.01 +0.32 0.61 +0.26 0.81 £0.3/
6696 276 £ .19 1.86 + 1.34 1.64 + 1.33
9661 8.11 £3.82 5.35 £ 3.63 8.35 £ 5.06
B -DG
Up-regulation
7811 0.83 £ 0.74 1.46 + 1.22 2.76 + 1.84
16196 0.75 + /.20 1.23 + /.46 2.18 £ 2.06
4744 0.43 + /.05 0.65 * /.60 1.37 + 1.80
3795 0.84 + /.42 1.33 £2.19 2.64 £ 3.39
3984 1.04 + 2.03 1.04 + /.97 2.67 £ 3.05
4108 0.49 + /.36 0.44 + [.32 1.34 + 1.95
3552 0.69 £ 2.00 0.54 + /.34 1.67 + 2.66
28764 0.76 £ 0.77 1.78 + 1.45 1.76 + 1.23
52306 0.34£0.25 0.72 £ 0.73 0.46 + 0.44
Down-regulation
9172 3.78 £ 4.26 2,46 + 2.21 1.01 £ 0.86
18250 0.47 £ 0.40 0.23 £ 0.26 0.15+0.17
7410 1.09 + 0.59 0.74 £ 0.57 0.55 +0.32

altered peak intensities, more than 60 % were highly sig-
nificant at a level of p < 0.001 and the expression levels of
almost 30 % were altered more than two-fold, the major-
ity of which were up-regulated (Table 1B). In terms of sig-
nificance and level of expression change, the peaks at m/z
7811 and m/z 9172 should be highlighted, especially for
their response to additional PAHs and APs.

In general, increases or decreases of expression detected in
both types of exposure behaved consistently, commonly
being less pronounced in the oil-exposure. Evidently,
spiking crude oil with APs and PAHs augmented
responses compared to oil alone in a somewhat 'dose
dependent' manner (Figure 1). Moreover, some peaks
appeared to be altered solely in sO-exposure (dotted bars
in Figure 1). Spike-related intensification of differential
protein expression was also characterised by higher levels
of significance for certain sO-peaks (data not shown).
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Relative expression changes of differentially expressed pep-

tides and proteins in the digestive gland of Blue mussels fol-

lowing 21d exposure to 0.5 mg/L crude oil (oil) and 0.5 mg/L
crude oil spiked with a mixture of APs and PAHs (0.1 mg/L;

sO) in % of control intensity; *, significantly different at 0.05

>p>00I,* at 0.0l >p >0.001, ** at p < 0.001. Dotted

bars indicate differential expression occurring in one of two
exposures only.

SELDI profiling of sex-dependent responses

To obtain information on differential expression with
respect to the gender of the mussels, the datasets were split
into six groups, a male and a female one for the controls
and the two exposures respectively. Consequently, in the
face of high inter-individual variability, the statistics were
weakened. This was reflected in fewer percentages of
highly significant peaks (p < 0.001; gills: 14 % for females,
21 % for males; DG: 27 % for females, 42 % for males).
The majority of these peaks were already displayed in the
overall analysis in which gender information was not
included. For example, the most prominent peaks for DG,
m/z 7811 and m/z 9172 are found to be highly significant
in males and in females with a strong degree of up- or
down-regulation. However, by splitting the data, addi-
tional information on these peaks could be acquired, as
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for instance, the peak at m/z 7811 obviously responded
more strongly in females than in males: in oil-female, it
shows a two-fold increase (p < 0.001) compared to a non-
significant 1.5 fold in the oil-male as well as a 4.5 fold
increase in sO-female compared to 2.5 fold in sO-male,
both atp < 0.001. Similarly, the peak at m/z 18 250 shows
a significant 3 fold down-regulation for the females of the
oil exposure plus a highly significant 5 fold down-regula-
tion for the sO-females but this is less pronounced in
males with a 1.5 fold decrease for oil (p < 0.05) and 2.5
fold decrease for sO (p < 0.001). Accordingly, these inci-
dences characterise the sex-differentiated variations of a
general response.

To extract truly male- or female-specific responses, the
univariate statistics carried out for males and females sep-
arately have been 'subtracted' from each other, in order to
keep only peaks appearing in one of the genders. In DG,
where most of the sex-specific alterations were obtained,
22 peaks showing differential expression were unique to
females and 20 to males. Regarding the levels of differen-
tial expression, 55 % of these male-specific peaks were
altered more than two-fold compared to only 36 % in
females. Eventually, the sex-specific peaks were cross-
checked for similar but non-significant differential expres-
sion, and if such occurred, those responses were regarded
less likely to be genuinely sex-specific and thus the peaks
were excluded. Figure 2 shows the most definite peaks for
DG, which were attributed to a clear sex-specific response;
notably they were all found to be in the peptide range.
Another five peptides represented some kind of sex-differ-
entiated response in which up-regulation was found in
one gender and down-regulation in the other, four of
which were significantly altered only in males. The major-
ity of these alterations were triggered by spiking the crude
oil with additional APs and PAHs.

In addition, the datasets for gills were examined for sex-
specific responses. Although this tissue was expected to be
less prone to respond in a sex-specific manner, some pro-
teins were revealed; the most important ones are depicted
in Figure 3. These proteins were predominantly found in
males, the majority of which exceeded 10 kDa. There was
but one remarkable exception: more detailed analysis of
the data revealed a peptide of m/z 4185 that was practi-
cally absent in the controls and induced in oil (~17-fold)
and sO (~10-fold), although only significant in the latter
at a level of p < 0.05 due to an enormous variability as
indicated by a high SD.

Classifiers

The above data analysis was complemented by generating
classification models using pattern recognition software
based on CART to validate the predictive value of the dif-
ferentially expressed proteins. In principal, the models on
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the gill data required more nodes in the decision tree asso-
ciated with higher error costs to carry out the classification
to a satisfactory degree than the ones for the DG data. This
is likely to diminish their predictive reliability and
accounts for the absence of robustness as was confirmed
by comparing the estimated classification success on the
basis of random cross-validation of 10% of the LS with the
actual classification success as validated with the TS. The
two best models for gills predicted a relatively good clas-
sification with 73 % of the oil-samples correctly attrib-
uted, 81 % of the sO-samples and 88 % for the controls
each. Only the sO-model for DG assumed to perform a
better classification of 91 %. Still, the overall classification
success for gills, when tested with unknown samples,
turned out not to be as estimated and less good than for
DG (Table 2). For example, with the gill-TS, merely 50 %
of the sO-samples could be assigned correctly and for oil-
exposure, only 60 % of the controls were recognised
(Table 2A). In other words, both models generated for
gills showed sufficient classification success only for one
of two groups. On the contrary, the models for DG yielded
relatively good classification success for the controls and
sO-samples; just the oil samples showed less than 70 %
correct classification (Table 2B). However, these models
also displayed significant discrepancy between estimated
and actual classification successes (maximum 11 percent-
age points), although not in the same extent as for the gills
(maximum 31 percentage points).

The models for gills and for DG did well reflect the signif-
icance of certain peaks as ranked by univariate statistics
and by their levels of up- or down-regulation (Table 1 and
Table 3). Since the models for gills and for DG were gen-
erated for two groups only (C vs. oil plus C vs. sO), the
most important peptides and proteins as listed in Table 1
were not necessarily represented in both models. When-
ever this was the case, they did not exactly display the
same discriminatory power for classification of oil and sO
samples respectively (Table 3A and 3B). Attempts to gen-
erate classifiers with three groups including controls and
both of the exposures failed. Those classifiers were unable
to effectively distinguish controls from exposures and
thus were omitted. If taken together, though, most of the
prominent peaks determined by Kruskal-Wallis One-way
ANOVA can be retrieved in either of the two classifiers for
oil and sO.

Discussion

By using one surface-chemistry for gills and DG, which
were assumed to be most affected targets in mussels, it was
possible to compare differences in the response of two
dissimilar tissues to oil exposure. At first, it was found that
both tissues differ remarkably in number, type and ampli-
tude of differentially expressed peptide and protein peaks.
Such differences may have an important influence on the
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Histogram of sex dependent expression changes (intensities as arbitrary units) obtained for digestive gland of M. edulis upon

21d exposure to 0.5 mg/L crude oil (oil) and 0.5 mg/L crude oil spiked with a mixture of APs and PAHs (0.1 mg/L; sO); CF =
control females, CM = control males, sOF = spiked oil females, sOM = spiked oil males, oilF = oil females, cilM = oil females;
males are in blue and females in orange; the upper five represent female-specific and lower three male-specific peaks. Signifi-

cantly different at 0.05 > p > 0.01, **, at 0.01 > p > 0.001, ***, at p < 0.001.

performance of classifier generation and could render cer-
tain datasets unsuitable for tree-structured analysis (see
below). In consequence, the choice of tissue investigated
by MS proteomic profiling for the construction of deci-
sion tree models is not trivial. It cannot be excluded that
some of this observed difference may be attributed to
minor alterations in the protein extraction procedure,
which were necessary due to the high amounts of lipids in
the DG. However, we do not believe these were the most
important factors in causing overall differences in the pro-
files. The DG represents a major site of synthesis and
detoxification [27,28]. With respect to the complexity of
its functions, it is not surprising that a higher amount of
differentially expressed peptides and proteins in response
to toxicant exposure could be obtained.

Nonetheless, classifiers have been generated for both gill
and DG data sets by subjecting all proteins and peptides
with highly significant expression changes to pattern rec-
ognition analysis, an artificial learning algorithm that
generates supervised classifiers. Generally spoken, the
dual aim of carrying out class prediction is i) to evaluate
the discriminatory power of differentially expressed pro-
teins and ii) to identify a so-called protein expression sig-
nature indicative of the type of exposure. This is based on
the following suppositions: first, it is expected that the
higher the discriminatory power of a variable, the more
relevant it should be as a potential biomarker; second, as
suggested earlier [1], the set of proteins itself may serve as
a biomarker (thus also-called 'biomarker pattern') as it is
able to distinguish between control and exposed animals.
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Figure 3

Histogram of sex dependent expression changes (intensities as arbitrary units) obtained for gills of M. edulis upon 21d exposure
to 0.5 mg/L crude oil (oil) and 0.5 mg/L crude oil spiked with a mixture of APs and PAHs (0.1 mg/L; sO); CF = control females,
CM = control males, sOF = spiked oil females, sOM = spiked oil males, oilF = oil females, 0ilM = oil females; males are depicted
as blue and females as orange; the upper two represent female-specific and lower four male-specific peaks. Significantly differ-

entat 0.05 > p > 0.01, % at 0.01 > p > 0.001, ***, at p < 0.001.

The concept, that a set of multiple marker proteins acting
in concert produces better classifiers containing a higher
level of discriminatory power than could be obtained by a
single biomarker alone has been widely acknowledged
[18,23].

Unlike the hypothesis driven approach, which investi-
gates known molecules, proteomics may reveal associa-
tions between proteins and exposure to contaminants that
have not been described previously. However, the identi-
fication of several proteins in question is a laborious and
time-consuming operation. Even worse, it is derogated by
the lack of database information on non-model organ-
isms [29,30], in particular for many invertebrate species
such as mussels, which to date are poorly characterised at
the genome and proteome level [31]. Previous attempts to
identify the constituents of expression signatures in
bivalves obtained from the exposure to pollutants docu-
mented difficulties in identifying key proteins [3,6,7,10].

Some evidence suggests that a bias towards cytoskeletal
proteins emerged [3,6,10,32], presumably due to their rel-
ative abundance and prevalence in databases [3]. There-
fore, even if informative protein markers can be extracted
from proteomic datasets, their identification may remain
elusive. While it will definitely aid understanding of the
mechanistic role and hence improve the diagnostic relia-
bility [1], it is not imperative to know the identity of an
effective biomarker of exposure, given that it would con-
stantly appear under certain conditions [2]. Taking this
idea further, a set of proteins and peptides, specific to a
particular stressor would constitute the diagnostic marker,
independent of their identity. Biomarker pattern recogni-
tion based on tree-structured analysis of large-scale pro-
teomic MS data certainly represents a powerful approach
to achieve this goal.

It should also be noted that even though the correlation

of proteomic alterations with biochemical pathways
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Table 2: Prediction success of the classifiers for gills (A) and
digestive gland (B) from the Blue mussel for pairwise comparison
of controls (C) with either of the two different exposures to i) 0.5
mg/L crude oil (oil) and ii) 0.5 mg/L crude oil spiked with a
mixture of APs and PAHs (0.1 mg/L; sO) for 21 days as validated
with an independent sample set not used in model construction.
Sample size for learning and testing set, amount of samples
attributed to each class, individual and overall classification

http://www.proteomesci.com/content/4/1/17

Table 3: Peak constituents of the optimal classification models
for gills (A) and digestive gland (B) of Blue mussels exposed to
0.5 mg/L crude oil (oil) and 0.5 mg/L crude oil spiked with a
mixture of APs and PAHs (0.1 mg/L; sO) for 21 days. The score
equals the discriminatory weight of the variable within the
classifier. A pre-selection of highly significant peaks (p < 0.001)
has been carried out prior to model construction.

success in % of testing set is presented. A - Gills
Prediction success oil vs. C sOvs. C
A - Gills Peak [m/z] Score [%] Peak [m/z] Score [%]
Class Learning Testing % C oil sO Tot% 14847 100.00 6696 100.00
9661 86.57 28017 45.98
c 34 17 65 116 72 6696 65.34 40456 35.26
oil 44 22 7 5 17 44667 54.4| 14847 27.95
S 34 17 82 14 3 66 28017 5231 110694 19.99
sO 37 18 50 9 40456 31.73 4755 18.53
12848 12.86 31830 17.12
B - DG 20316 10.60 6103 1651
29340 9.09 88989 14.53
Class Learning Testing % € oil sO Tot% 44667 12.89
c 48 26 85 22 4 76 B - DG
oil 47 24 67 7 17
c 48 26 77 20 6 80 oil vs. C sOvs. C
sO 45 24 83 4 20 Peak [m/z] Score [%] Peak [m/z] Score [%]
. 16413 100.00 7811 100.00
would render proteomic assays more powerful and 28764 89.59 9172 55.46
should eventually be aspired where possible, in many 18250 77.33 18250 54.69
cases the significance of expression changes is not vali- 12481 54.11 7410 47.04
dated prior to protein identification. Indeed protein iden- 7410 48.11 4744 40.56
tification often represents a means of evaluating such 8489 21.94
significance by attempting to reveal a biologically plausi- |369|8946 TgZT
ble function, which in turn would demonstrate their 1248 1173
involvement in responses related to pollution exposure 28764 8.17

[3,6,7,10]. Oberemm et al. [17], for instance, could con-
firm the differentially expressed proteins of the thymus
tissue of marmoset exposed to TCDD to be related to
immune function, which is particularly affected by this
substance. In ecotoxicology, however, where non-model
organisms are frequently employed for monitoring pur-
poses, such confirmation often fails as database matches
cannot be obtained for the key proteins of the exposure
derived expression signatures [3,6]. It has been suggested,
though discussed critically, that the evaluation of pro-
teomic patterns from MS proteomic profiling can proceed
independently from the identities of their proteins
[18,33-35] and that classification algorithms would repre-
sent a means to extract informative proteins from such
data [11,13].

In comparison to earlier studies [5,8,9], however, we
experienced limitations to the generation of classifiers
resulting in lower sensitivity and specificity of the classifi-
cation success. Bjornstad et al. [8] presented discrimina-
tion models using mussel haemolymph, which were able

to classify oil-exposed mussels with more than 90 % accu-
racy. Yet, statistical constraints resulting from too many
variables in combination with too few samples may have
impaired classifier construction and resulted in overfitting
of the models [22,24]. In general, few sample numbers
per class make it easy to produce seemingly robust classi-
fiers that give excellent results for both LS and TS [13,23].
Accordingly, the reliability of such 'optimal' models may
be illusory, notwithstanding their very good classification
success. In contrast, when reducing the dimensionality of
the dataset prior to classifier construction, the highest
classification success was 80% for the DG dataset and sO
exposure. To improve the extraction of biologically rele-
vant predictors and to guard against overfitting, we
included feature selection as proposed by Levner [22].
Using univariate statistical tests, which rank the variables
according to their significance, we decided to only inte-
grate highly significant peaks (p < 0.001) into the models,
thereby also minimising the risk of including falsely dif-
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ferentiating peaks. In addition, we ranked the robustness
of the models before maximum classification success by
considering only those decision trees with the lowest mis-
classification costs (i.e. low error rates). Consequently, the
poorer classification success as compared to the previous
studies is owed to improved and more prudent data
processing.

From the comparison of gill and DG datasets, as well as
from the investigation of proteins and peptides with sex-
specific differential expression, two major conclusions
could be inferred: (1) As the overall expression changes
observed with gills resulted in fewer peaks with a signifi-
cance level of p < 0.001 (which, in addition, showed nota-
bly lower expression changes than those of DG) the gill
dataset performed relatively poor in the actual classifica-
tion of unknown samples. Besides, none of the m/z values
contained in the classifier reaches a twofold expression
change. Conversely, the DG dataset was able to construct
better decision rules, which were more robust, resulting in
a higher actual classification success. It can thus be con-
cluded, that a sufficient number of peaks statistically cor-
roborated, possibly combined with minimum amplitudes
of differential expression, is required to enhance the dis-
criminatory power and reliability of a biomarker pattern.
Not all datasets will be equally suitable. (2) Splitting the
datasets into male and female for each of the tissue, plus
the requirement to separate them into LS and independ-
ent TS rendered them too small to result in appropriate
class prediction. This clearly emphasises the importance
of sufficient biological replicates and hence large enough
sample sets. Incorporation of gender information into the
entire dataset, did not give any satisfactory results as to
specific sex-dependent proteins and peptides. Eventually,
sex-specifically altered proteins and peptides could only
be deduced from statistical significances, which as well
have been substantially weakened by reduced sample
numbers. Statistical significance by itself, however, does
not provide any indication of the diagnostic value of those
peaks. Concerning the number of biological replicates, it
should be noted that the tree-growing methodology is
data intensive. Thus, even though reducing the number of
variables for the input space (i.e. m/z peaks) by introduc-
ing a filter, eventually much larger datasets would be
needed for classifier validation.

Similar ecotoxicological case-control studies have been
analysed recently, either by SELDI or 2-DE [6,8-10]. Some
of the complex data resulting from those analyses have
then been subjected to various data mining techniques
such as principal component analysis, hierarchical clus-
tering, non-metric multidimensional scaling and CART,
resulting in the conclusion that a set of proteins specific or
indicative of the treatment has been obtained, some of
which were identified as related to the metabolism of
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xenobiotics [7,10]. The strength of those conclusions
largely depends on the study design as well as on data-
acquisition and data-mining methods. With the ebullient
expectations of applying proteomics to ecotoxicology, the
consideration of factors compromising these findings
may have been insufficient. For instance, constitutive pro-
teomic expression changes are not well investigated and
expected to vary widely with differences in age, diet or
developmental stage. Accordingly, the changes due to tox-
icant exposure may not be greater than the noise of pro-
tein expression variability [36]. Secondary experimental
effects, such as reduced food intake and energy depriva-
tion, may also account for the observed proteomic
changes. Many of the alterations are likely to be of a more
general nature and would become manifested with quite
different types of pollutant-derived stress as well as with
otherwise adverse environmental conditions. This might
also be one of the reasons for repeatedly identifying ubiq-
uitous genes and proteins in varying experiments, such as
cytoskeletal proteins (actin, mysion, tropomysion, tubu-
lin [3,6,10]), malate dehydrogenase [6,37], glutathione S-
transferase [38,10] or proteins associated with physiolog-
ical pathways of respiration (e.g. carbonic anhydrase
[39,10]) and oxidative stress (variants of superoxide dis-
mutase [7,10,38]). Experimental repeatability and repro-
ducibility also represent important information that
needs to be investigated and monitored more thoroughly
[40]. Eventually, data analysis protocols including data
processing steps (i.e. filtering of noise, data normalisa-
tion, peak/spot matching, peak/spot detection and quan-
tification) as well as the data-mining methodology can be
largely varied. This in turn will have a significant impact
on the protein patterns generated.

Once established in the laboratory where natural varia-
tion is reduced, as for any other biomarker, an expression
signature has to be confirmed in field situations, most
likely with varying sources and compositions of chemicals
as it is typically the case for mixture pollution as well as
involving different populations. Natural biotic and abi-
otic conditions will influence the differential expression
of proteins at the various sites. These confounding factors
already complicate the application of many biomarkers in
the field. As an example, Arts et al. [41] have reported very
high variability of heat shock protein levels and discussed
their suitability for field studies. With mussels, tidal, diur-
nal and seasonal effects are likely to change baseline pro-
teomic expressions similar to the expression changes
observed with specific proteins [42-44]. Even though a
pattern of multiple marker proteins is expected to have a
higher predictive value than a single biomarker [18], in
ecotoxicology the problematic of multifactorial action of
confounding factors along with possible non-monoto-
nous concentration response relationships [41] may be
actually magnified in the multivariate proteomic profiles.
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On the other hand, supervised learning methods could
possibly ignore non-informative biological variance in
the datasets and segregate unspecific from specific
responses, thereby selecting those variables only that are
able to indicate the particular character of an exposure.
Additionally, randomisation and matching of potential
confounding factors (age, sex, etc.) prior to data analysis
would be likely to prevent biases in the obtained results
[36]. As such, the proteomics based biomarker pattern,
could integrate specific as well as secondary effects, all of
which are part of the organisms' combat against toxic
action.

Despite the potential of proteomic patterns as sensitive
markers that comprise multiple molecular endpoints with
high discriminatory and ideally explanatory power, a care-
ful approach has to be taken in each step of proteomic
profiling, biomarker discovery and validation. Errors in
study design and execution can lead to misleading results,
especially when exploiting the vast datasets using complex
multivariate analyses [13]. It then has to be demonstrated
whether these patterns are robust enough to be retrieved
in the face of biological variability and if they can be
related causally or at least linked statistically to higher lev-
els of biological organisation [45], before proteomics may
be involved into risk assessment.

Conclusion

Machine learning and classification algorithms may repre-
sent a powerful means to extract relevant information
from the large data sets obtained by MS proteomics. How-
ever, supervised training of classifiers is prone to overfit-
ting, resulting in excellent classification success and thus
has to be conducted with caution. Moreover, CART per-
forms better with larger sample sizes, which could be
processed by SELDI due to its high-throughput capacities
and the possibilities for standardisation and automatisa-
tion of procedures, but may not be available from sample
collection. Consequently, the optimal strategy to screen
proteomics MS data from similar ecotoxicological studies
has yet to be elaborated.

Methods

Organisms

Adult M. edulis were collected in November 2002 along
the Forlandsfjord nearby Stavanger, Norway. Norwegian
authorities had previously classified the Fjord as non-con-
taminated. The animals were transferred to the laboratory
and placed in 123 L tanks per group with a flow rate of 3
L seawater per min. For the continuous flow-through sys-
tem, natural fjord water of 4°C was taken from a depth of
80 m in the water column [46]. Each tank, one per expo-
sure and control, contained 250 individuals with a size
range of 6.2 to 9.0 cm. The mussels were fed every second
day with an algae mixture consisting of Rhodomonas sp.
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and Isochrisis sp. Acclimation to laboratory conditions
lasted for 13 days prior to starting the experiment.

Exposure

The Blue mussels were allocated into three groups: i) con-
trol mussels (C), ii) mussels exposed to 0.5 mg/L of crude
oil (oil) and iii) mussels exposed to 0.5 mg/L crude oil
spiked with a mixture of 0.1 mg/L combined APs and
PAHs (sO) as nominal concentrations for 21 days. Prior to
the insertion of the animals, the surfaces of the exposure
tanks have been pre-absorbed with the exposure media
for three days. A minimum of 30 males and 30 females
were sampled for each group. The determination of the
gender was carried out by smeared probes of the gonads
observed by light microscopy.

North Sea crude oil (Stratfjord B) was dispersed into sea-
water mechanically by a mixing valve and a Dispax® rota-
tor, running at a speed of 10 000 rpm. The droplet size
was monitored frequently by a Coulter® II particle size
analyser. Oil concentrations in the water were calculated
from the estimated particle size and number [47]. The
spike of APs + PAHs represented an additional boost of
low molecular size PAHs (Naphthalene plus C1-C3 alkyl
homologues, Fluorene, Phenanthrene plus C1-C2 alkyl
homologues, Dibenzothiophene plus C1-C2 alkyl homo-
logues; sumPAH: 0.018 mg/L]) and the most common
APs found in produced water (p-cresol, m-ethylphenol,
3,5-dimethylphenol, 2,4,6-trimethylphenol, 2-tert-butyl-
phenol, 3-tert-butylphenol, 4-n-butylphenol, 4-pentyl-
phenol; sumAPs: 0.082 mg/L). Both the APs and the PAHs
were based upon previous studies of their composition in
PW discharges and monitored by HPLC analysis [47,48].
More detailed analysis information can be obtained from
Bjornstadt et al. [8]. A general description of the experi-
mental design is given in Sundt et al. [49].

Protein extraction and chip preparation

Gills and DG were dissected from live mussels, snap fro-
zen and stored at -80° C until further processing. Previous
method optimisation revealed strong anionic exchange
chip surface to yield in a maximum number of peaks with
both tissue types und thus represented the surface chem-
istry of choice for proteomic expression profiling [5].
Although not assessed in this study, reproducibility has
been evaluated prior to method implementation and was
found to be satisfactory. Coefficients of variance for SELDI
applications have been reported to be reasonably below
20% indicating that SELDI experiments are consistent at
the level of common proteins expressed [8,9,50]. How-
ever, according to Listgarten and Emili [14] these are no
absolute indicators of quality as coefficients of variance
are less informative when feature detection is part of the
analytical process. In a quality assessment study con-
ducted by Hong et al. [50] systematic variability across
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spot position as well as across chips or plates has not been
detected, demonstrating good reproducibility of SELDI
experiments.

Protein extraction and chip preparation were carried out
as described previously [5]. Briefly, tissues were homoge-
nised with 50 mM Tris, pH 7.6, 150 mM NaCl, 0.1% Tri-
ton X-100, 10 mM DTT (1:4 w/v for gills and 1:8 w/v for
DG) on ice and centrifuged three times for 20 min at 20
000 g, 4°C. To avoid protein breakdown during prepara-
tion, a protease inhibitor cocktail (Sigma-Aldrich) was
added to the samples. Because lipids generally disturb the
binding of proteins to the chip surface, they were
absorbed in the lipid rich DG homogenates by Liposorp™
(Calbiochem; 1.5:1 v/v). Total protein content of the
supernatant was determined according to the Bradford
method [51]. Protein concentration was adjusted to 1 mg/
mL prior to sample dilution with binding buffer (50 mM
sodium acetate, 0.1% Triton X-100, pH 5.5) resulting in a
final protein concentration of 1 ug/mL. Per spot, 20 ug of
protein was incubated overnight at 4°C in a 96-well bio-
processor (Ciphergen Biosystems Inc.) on a platform
shaker. Three washes with binding buffer devoid of Triton
X-100 and two quick washes with ultra pure H,O subse-
quently removed unspecific bound proteins. Sinapic acid
resolved in 50% ACN/0.1% TFA was applied as a matrix.
The arrays were processed according to an automated data
collection protocol in a PBS-II protein chip MS reader.
Mass accuracy was calibrated externally using the 'All-in-1'
molecular mass standard (Ciphergen Biosystems Inc.).

Spectral processing

The raw intensity data were pre-processed prior to subse-
quent protein expression profiling using ProteinChip®
software version 3.1.1 (Ciphergen Biosystems Inc.). All
spectra of the three different groups were assembled and
examined for two separate regions on account of different
noise levels [52,53]. Normalisation of peak intensities to
total ion current was from m/z 3000 to 20 000 for the low
molecular weight area and from m/z 20 000 to 100% of
the spectrum size for the high molecular weight range.
Despite generally good overall consistency among spectra
for SELDI experiments, the reproducibility does not
define the quality of individual spectra [50]. Hence, low
quality spectra need to be identified [40,50] by defining
outliers and should be removed prior to data analyses.
This was carried out by using the quartile method on the
basis of calculated normalisation factors. For mass-nor-
malisation, identical peaks were utilised in the low and
high molecular weight area to assure the compatibility of
peak detection. Gill spectra were internally calibrated with
three peaks found in all of the spectra (m/z 9242, 16 284
and 40 454). For the calibration of DG spectra four prom-
inent peaks could be utilised (m/z 7206, 9538, 21 643 and
35 687). Peak detection was similar for low and high
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molecular weight ranges, except for the cluster mass win-
dow which was 0.5 % up to m/z 20 000 and 1 % for the
rest of the spectral region. The S/N was set at three for the
first and two for the second pass with baseline subtraction
on. Peaks were required to be present in a minimum of all
spectra, equivalent to approximately two-thirds of the
spectra of one group (i.e. 20 % when peaks of C, oil and
sO where clustered or 12 % if the spectra where addition-
ally divided into male and female groups). Estimated
peaks were added by the software.

Data analysis

For an initial statistical evaluation of the two datasets,
nonparametric Kruskal-Wallis One-way ANOVA was per-
formed on all profiles (C vs. oil vs. sO). For the identifica-
tion of sex-specific peaks, the datasets were split into the
male and female fraction of each group. A protein or pep-
tide was considered to be differentially expressed if a sta-
tistically significant alteration in its intensity was observed
when compared to the control group. The overall signifi-
cance level was set at 5 % and the variables were ranked
according to their statistical significance with three levels
of significance (0.05 > p > 0.01; 0.01 > p > 0.001 and p <
0.001).

In view of the variance of peak intensities between indi-
vidual spectra, and the prevalent low expression changes,
we focussed on the highest level of significance (p <
0.001) for the most informative and robust variables [54].
According to the range of expression changes found in this
and earlier studies with SELDI and Blue mussels [5], the
ones with more than two-fold up- or-down-regulation
were considered more likely to be steadily discriminable
from random variation [55]. This empirical cut-off value,
corresponding to a log ratio with an absolute value bigger
than 0.3, is widely found in literature [e.g. [25,55] and has
been statistically confirmed by Sabatti et al. [26].

To determine the diagnostic value of marker candidates,
the LS was subjected to supervised classification analysis
using BiomarkerPattern™ software, version 4.01 (Cipher-
gen Biosystems Inc.). BiomarkerPattern™ software is an
implementation of CART, a nonparametric statistical pro-
cedure based on the binary recursive partitioning algo-
rithm introduced by Breiman et al. [56], with cost-
complexity pruning by 10-fold cross-validation. Details of
CART analysis have been described elsewhere [13], [57].
Briefly, CART begins with a root node and, through a
series of yes/no questions, generates descendent nodes
until final classification is reached or further splitting is
terminated (e.g. too few cases). Each split separates a par-
ent node into exactly two child nodes using one rule at a
time. Here, the splitting rules depend on the normalised
intensity levels of the m/z values obtained from the SELDI
protein expression profile. Once maximal trees are grown,
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smaller sub-trees are generated by pruning away the
branches of the maximal tree and the best tree is deter-
mined by testing for error rates (i.e. costs of misclassifica-
tion). The intuitive presentation of decision rules in a tree-
structured form facilitates the interpretation and applica-
bility of the obtained classifiers.

For the construction of decision tree models, the datasets
were divided randomly into a LS which comprised about
two thirds of the spectra of the respective groups and a TS
consisting of the remaining third (Table 2). Sample statis-
tics, defining the input variables for classifier generation
were performed on the LS for C vs. oil and C vs. sO by
Mann-Whitney U-test. In order to reduce the dimension-
ality for model construction and to obviate false positive
discoveries of potentially discriminating variables [13] the
input matrix was restricted to normalised intensity levels
with p < 0.001.

Different models were constructed by varying user-
defined criteria (e.g. Gini power), whereby CART selects
the variables in an independent manner for each model.
Optimal model selection was carried out by the analyst,
not merely for maximum predictive success but obligatory
involves low 'error costs' and few decision nodes within
the tree-building algorithm in order to ascertain the
robustness of the model. Moreover, estimated classifica-
tion success was supposed not to differ too much between
the respective groups. Subsequently, the chosen models
were independently tested with the TS, a set of spectra not
involved in the generation of the classifier. This was done
to verify whether the actual and estimated classification
success would be in good agreement, thus signifying the
concluding criterion for applicable decision models.

In this study we have examined tree-structured classifica-
tion with respect to two-class problems only. Theoreti-
cally, there is no limitation to the number of categories for
classifier generation; also additional information, such as
gender can be included. However, in our trials the out-
come resulted in poor prediction success or did not pro-
vide any valid additional information; consequently
those approaches were not included.
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