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Abstract

Background: The low concentration and highly hydrophobic nature of proteins in lipid raft
samples present significant challenges for the sensitive and accurate proteomic analyses of lipid raft
proteins. Elimination of highly enriched lipids and interfering substances from raft samples is
generally required before mass spectrometric analyses can be performed, but these procedures
often lead to excessive protein loss and increased sample variability. For accurate analyses of the
raft proteome, simplified protocols are needed to avoid excessive sample handling and purification
steps.

Results: We have devised a simple protocol using a 'tube-gel' protein digestion that, when
combined with mass spectrometry, can be used to obtain comprehensive and reproducible
identification and quantitation of the lipid raft proteome prepared from neonatal mouse brain. Lipid
rafts (detergent-resistant membranes using Triton X-100 extraction) prepared from neonatal
mouse brain were directly incorporated into a polyacrylamide tube-gel matrix without prior
protein separation. After in-gel digestion of proteins, nanospray LC-MS/MS was used to analyze the
extracted peptides, and the resulting spectra were searched to identify the proteins present in the
sample. Using the standard 'label-free' proteomics approach, the total number of MS/MS spectra
for the identified proteins was used to provide a measure of relative protein abundances. This
approach was successfully applied to lipid rafts prepared from neonatal mouse brain. A total of 216
proteins were identified: 127 proteins (58.8%) were predicted to be membrane proteins, or
membrane-associated proteins and 175 proteins (~80%) showed less than a 2-fold variation in the
relative abundance in replicate samples.

Conclusion: The tube-gel protein digestion protocol coupled with nanospray LC-MS/MS
(TubeGeLC-MS/MS) offers a simple and reproducible method for identifying and quantifying the
changes of relative abundances in lipid raft proteins from neonatal mouse brain and could become
a useful approach for studying lipid raft proteins from various tissues.
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Background

Lipid rafts are cholesterol- and sphingolipid-enriched spe-
cialized structures present in biological membranes [1-5]
that can be isolated by various techniques. A common
method for the isolation of the rafts is to prepare deter-
gent-resistant membranes (DRMs) by extraction with the
nonionic detergent Triton X-100 at cold temperature.
Recent interest in lipid rafts arises from observations that
some membrane proteins appear to partition preferen-
tially into raft domains, and may require this environ-
ment for their biological activity [4,5]. Many previous
studies have utilized two-dimensional gel electrophoresis
(2DE) for proteomic profiling, but this method is limited
by its lower sensitivity and it is often inefficient when ana-
lyzing raft proteins. Mass spectrometry (MS) has become
a powerful tool for the analysis of complex protein mix-
tures. Proteomics profiling of either protein mixtures frac-
tionated by 1DE or unfractionated protein mixtures by
protease digestion and LC-MS/MS analysis has become
increasingly popular. Peptides are identified by searching
the resulting MS/MS spectra against protein sequence
databases and protein presence is inferred from peptide
presence. This general approach is referred to as 'top-
down' or 'shotgun' proteomics. Several studies utilizing
1D gel filtration or in-solution protein digestion, com-
bined with stable isotope labeling or label-free LC-MS/
MS, have successfully profiled the protein composition
and abundance in lipid rafts prepared from different bio-
logical sources [6-14]. However, quantitation of changes
in the raft protein abundance under various experimental
circumstances remains a major challenge. A number of
technical factors are critical for analytical reliability, such
as sample quality, reproducibility of the raft preparations,
quality of the chromatography system, and the perform-
ance of the mass spectrophotometer. The most pressing
problems for lipid raft proteomic investigations are those
involving sample preparation and handling. Lipid raft
samples prepared by different methods are composed of
highly enriched lipids and low concentrations of hydro-
phobic proteins. Raft preparations also contain many
non-proteinaceous substances including exogenous rea-
gents, such as salts, buffers and detergents employed for
sample preparation. These highly enriched lipids and
non-protein components, or contaminants can often
interfere with proteome analysis and their removal is a
critical step before any proteome analysis can be per-
formed. Although the low protein concentrations in raft
samples do not present a limitation for analysis, methods
used for removing lipids and other interfering substances
from raft samples can lead to excessive protein loss. Thus,
the process of lipid raft preparation suitable for mass spec-
trometry is a major factor in the variability of data
obtained by these powerful proteomic techniques.
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For accurate analyses of the raft proteome, a robust proto-
col avoids excessive purification steps, each of which lead
to additional protein losses, is desirable. To avoid protein
loss during sample preparation for mass spectrometry, a
'tube-gel' protein digestion protocol was adopted in
which the lipid raft samples were directly incorporated
into a polyacrylamide tube-gel without electrophoresis
[15]. Detergents, lipids and other possible LC-MS/MS
interfering materials in the raft samples are eliminated
from the gel matrix while proteins are retained in the gel
matrix. After the in-gel digestion of proteins, automated
nanospray liquid chromatography tandem mass spec-
trometry (nanospray LC-MS/MS) is used to analyze the
extracted peptides for protein identification. This protocol
was used to analyze the protein profile of lipid rafts pre-
pared from neonatal mouse brain. Neonatal mouse brain
was chosen because there have been few proteomic stud-
ies of lipid rafts from neonatal brain [16-21]. Neonatal
brain disorders are an important cause of mortality and
morbidity contributing to the development of autism,
cholesterol biosynthesis disorders, and a myriad of learn-
ing and developmental neurological and cognitive disa-
bilities [22-27]. Developmental membrane defects have
been postulated as one of the pathophysiological proc-
esses in these neonatal brain disorders. Additionally, the
higher sterol content in brain tissue presents an additional
challenge in preparing lipid raft samples for nanospray
LC-MS/MS analysis.

Starting with limited amounts of frozen brain tissue, a
total of 216 raft proteins were identified. Among the iden-
tified proteins, 127 (58.8%) were predicted to be plasma
membrane (PM) or PM associated proteins including a
number of authentic raft and/or GPI and lipid anchoring
proteins, receptors, channel proteins, synaptic proteins,
kinases, heterotrimeric G protein subunits, and some
novel membrane proteins important for neurodevelop-
ment. The major brain raft proteins, reported in previous
investigations [8,18,19,28], were also identified as high
abundance raft proteins in the present study. An advan-
tage of this method is that it allows for raft proteins to be
digested directly, dramatically reducing variations due to
sample preparation prior to mass spectrometry. In this
study, the standard 'label-free' proteomics approach in
which total MS/MS spectral count is utilized to quantify
the relative abundance of the identified proteins was used
[29]. The results showed that the variations of relative
abundance in ~80% of the identified proteins in replicate
samples were less than 2-fold, suggesting that the method
is highly reproducible. This approach offers a simple and
reproducible protocol for identifying and quantifying
changes in the relative abundance of the lipid raft proteins
from neonatal mouse brain and could become a useful
method for studying lipid raft proteins from various tis-
sues.
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Results and Discussion

Characterization of lipid rafts by sucrose density gradient

ultracentrifugation

Biochemical isolation of lipid raft membranes by gradient
ultracentrifugation, as well as their subsequent analysis, is
a useful and simple method to determine if membrane
components are located in raft microdomains. The distri-
butions of total protein, sucrose density, and contents of
sterols, sphingomyelin (SM) and ceramide (Cer), as well
as the lighting-scattering properties at 620 nm, for each of
the sucrose gradient fractions are summarized in Figure 1.
Buoyant low density fractions 2-4 (DRMs/rafts) had the
greatest light-scattering properties at 620 nm, consistent
with a high content of lipids, but the non-raft fractions 8-
11 had little or no absorbance. Conversely, most of the
recovered proteins were present in the non-raft fractions
and the total protein in the lipid raft fractions was too low
to allow for accurate measurement by conventional meth-
ods. The lipid raft fractions 2~4 were highly enriched in
sterols (a mixture composed of ~60% cholesterol, ~40%
desmosterol, and trace amounts of other sterol precursors
such as 7-dehydrodesmosterol and lathosterol), SM, and
Cer compared to plasma membranes. Further characteri-
zation of the known raft and the non-raft marker proteins
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in the sucrose gradients was performed by immunoblot-
ting (Figure 2). Known raft proteins, such as caveolin-1
(cav-1), flotillin-1 (flot-1), contactin-1 (Cntn-1), annexin
-VI (Anx-VI, Anx6A), GTP-binding protein aq (Gagq), and
NAP-22, were present in the low-density fractions (frac-
tions 2~4). Various accepted non-raft markers, such as p-
COP (a Golgi marker), transferrin receptor (TfR) (a non-
raft membrane marker protein), a-tubulin (a cytoskeletal
protein), calnexin (an ER resident membrane protein),
and ATP synthase (a mitochondrial protein), were only
present in the high-density fractions. Collectively, these
results reflect the typical biochemical profiles of lipid rafts
from brain tissue [8,30,31].

Analysis of core raft proteome in neonatal mouse brain by
TubeGelLC-MSIMS

The core protein composition of lipid rafts from neonatal
mouse brain was determined by using a tube-gel protein
digestion coupled with nanospray LC-MS/MS (Tube-
GeLC-MS/MS) analyses. The major benefit of this modifi-
cation is that the raft proteins (usually in limiting
quantities) are digested in a tube-gel matrix without frac-
tionation and purification. Thus, sample losses are mini-
mized compared to in-gel digestion based on SDS-PAGE.
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Biochemical characterization of sucrose density gradient fractions of neonatal mouse brain. Panel A shows the
distributions of protein and sucrose density in membrane fractions from sucrose gradients of neonatal brain. Panel B shows the
light-scattering properties of each fraction by absorbance at 620 nm. The buoyant low density fractions 2~4 showed the great-
est light-scattering properties at 620 nm, consistent with a high content of lipids. Panel C shows the distribution of sterols
(cholesterol, desmosterol, lathosterol, and 7-dehydrodesmosterol (7DHD)) in each fraction from sucrose gradients of neona-
tal mouse brain and Panel D shows total sphingomyelin (SM) and ceramide (Cer).
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Figure 2

Localization of known raft and non-raft marker pro-
teins in sucrose gradients. Post-nuclear homogenates
(PNH) from neonatal brain tissues were extracted using |%
of Triton X-100 (TX) and fractionated in 5-40% discontinu-
ous sucrose-density gradient as described in Methods.
Twelve fractions of each 1.0 ml were collected from the top
to bottom. Twenty g of PNH protein (H) and equal 30 pl of
each fraction of gradient were subjected to immunoblotting
with antibodies against indicated proteins.

Moreover, inclusion of detergents (Triton X-100 and SDS.
See Methods) can facilitate the effective solubilization and
denaturation of hydrophobic lipid raft membrane pro-
teins [32,33]. After proteins are incorporated into the
tube-gel, the detergents, lipids and other interfering sub-
stances can be efficiently eliminated by extensive washing
with acetonitrile prior to protein enzymatic digestion and
subsequent nanospray LC-MS/MS analysis, without any
significant loss of the proteins that are trapped in the gel
matrix [15]. This tube-gel approach has been successfully
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employed for high throughout mass spectrometric analy-
sis of membrane proteins [15].

Two biological replicates (raft preparations from two neo-
natal brains), each with two MS technical replicates, were
analyzed by TubeGeLC-MS/MS method. The peptides and
corresponding proteins that were commonly identified in
two biological samples (total 4 replicates) were consid-
ered as confident protein identifications. All identified
proteins were then searched using UniProtKB/Swiss-Prot
Release 52.3, TMHMM 2.0, and PubMed, to obtain infor-
mation about their subcellular localization. The presence
of predicted or verified transmembrane domains, glyco-
sylphosphatidylinositol (GPI)-anchors and the lipid con-
sensus sequences for myristoylation, pamitolyation,
geranylgeranylation, farnesylation, and prenylation was
used to classify proteins as either a membrane protein, or
a membrane-associated protein [31]. Identified proteins
were also analyzed by UniProtKB for the predicted pres-
ence of these motifs in order to provide an additional cri-
terion for the evaluation. The overall experimental results
for lipid raft core proteome of neonatal mouse brain thus
characterized are shown in Figure 3. The complete lists of
identified proteins, categorized as plasma membrane

Lysosome
0,
ER 1 (0.5%)
6 (2.8%)
Nucleus
10 (4.6%)

Mitochondria
25(11.6%)

Plasma
membrane
127 (58.8%)

Cytoplasm
47 (21.8%)

Figure 3

Cellular localization of identified proteins in lipid
rafts from neonatal mouse brain. Cellular localization
was annotated based on Gene Ontology (GO) terms and the
PubMed literature database. The number of proteins and
their percentage of the total identified proteins associated
with each cellular location are indicated.
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(PM) or PM-associated proteins and non-PM proteins, are
shown in Tables 1 and 2, respectively.

The identified core proteome in the lipid rafts of neonatal
mouse brain covered a wide range of sizes (8.0~319.6
kDa). Up to 216 non-redundant proteins were identified
from 100 pl of a lipid raft fraction by TubeGeLC-MS/MS,
75% of these proteins were identified by at least two pep-
tide matches and 25% of those identified were based
upon a single peptide match. Although protein identifica-
tions based upon a single peptide match may be problem-
atic, this does not necessarily imply a potential false
identification [34]. For example, caveolin-1 (cav-1) was
detected in raft samples from neonatal mouse brain by
immunoblots, but was represented in each of the 4 repli-
cates identified by mass spectrometry by a single peptide
match. Using the Gene Ontology (GO) classifications and
PubMed database searches, 127 (58.8%) of the proteins
identified were PM or PM-associated proteins, with 18
(14.2%) having a GPI-anchoring site and 34 (26.8%) with
other lipid-anchoring sites as described above. Many of
the PM proteins identified were reported previously as
being lipid raft proteins by conventional biochemical pro-
cedures. Typical raft marker proteins, such as caveolin-1,
flotillin-1 and -2, Fyn and Src, were identified in the lipid
raft preparations from neonatal mouse brain. Functional
categories revealed that the identified PM proteins cover a
broad range of neural functions involving neurodevelop-
ment. Several proteins are known to function as part of
the neurotransmitter release and re-uptake machinery; 3
syntaxin (Stx) proteins, Stx1A, Stx1B, Stx7; synaptosomal-
associated protein 25 (Snap25); synaptotagmin (Syt) pro-
teins, Sytl and Sty7; vesicle-associated membrane pro-
teins (Vamp), Vamp1l and Vamp2; regulating synaptic
membrane exocytosis protein 1 (RIM1); and the gluta-
mate receptor (GluR1) were all present in the raft frac-
tions. Relatively large numbers of guanine nucleotide-
binding protein (G protein) isoforms and Ras subfamily
of GTPases were identified; G(s)a, G(i)al, G(i)a2, G(0)o,
G(k)a3, G(olf)a, G(q)a, G(z)a, Gall, Gal2, G(I)/G(S)/
G(T)BL, G(I)/G(S)/G(O)y2, G(I)/G(S)/G(O)v4, G(1)/
G(S)/G(O)y12 and Rab1A, Rab1B, Rab2A, Rab3A, Rab5A,
Rab5C, Rab10, Rab11B, Rab14, Rab15, Rab33B, Rab35,
p21Racl, p21Rac3, Rab GDIa, RIN3, and G3BP. These
proteins have been implicated in a variety of developmen-
tal processes in neonatal brain, including signal transduc-
tion, neurotransmitter release, and membrane trafficking
[2]. Another important group of proteins in the neonatal
brain-raft proteome comprises the cell adhesion/recogni-
tion molecules for cell-cell communication. Twenty-four
such proteins were identified; contactinl (Cntn1), Cntn2,
Cntn4, and Cntn6, neurotrimin, Thyl, neurotractin
(Kilon protein), Nap22, Gap43, paralemmin, desmocol-
lin-2, neurexin-3a, Ncam2, Ncam180, dynactin, glypican
(Gpc)1l, Gpc 2, Gpc4, limbic system-associated mem-
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brane protein (LSAMP), transmembrane phosphoprotein
Cbp, neurofibromin, opioid-binding cell adhesion mole-
cule (Obcam), Alpha-3 catenin, and cadherin-13. These
cell surface communication proteins are known to partic-
ipate in the formation of neuronal networks in the brain
during development, specifically axon growth, synapse
formation, and fasciculation [35-38]. Several transporters
and non-receptor type channel proteins were also identi-
fied; Na(+)/K(+) ATPase (ATP1A1, ATP1A2 and ATP1A3),
small conductance calcium-activated potassium channel
protein 3 (Kcnn3), plasma membrane calcium-transport-
ing ATPase 1, Slc3a2, GDNF family receptor alpha-2,
integrin-associated protein, integral membrane protein
2B, sensory neuron sodium channel, L-type calcium chan-
nel subunit delta, aquaporin-1, and chloride channel pro-
tein 6 (Clc-6). Calcium and phospholipid binding
proteins cupine (Cnpe)2, Cnpe4, Cnpe591, annexin
(Anx)2A, Anx4A, Anx5A, Anx6A, and Anx7A were also
identified. A number of proteins of unknown function
were also identified, such as receptor-type tyrosine-pro-
tein phosphatase gamma, protein C100rf58 homolog,
Coxsackie's virus and adenovirus receptor homologs. As
expected, since these raft proteins are from neonatal
mouse brain, myelin proteins (present in adult brain tis-
sue) such as myelin basic protein (MBP), myelin proteol-
ipid protein (PLP), oligodendrocyte-myelin glycoprotein
(Omg), and 2',3'-cyclic-nucleotide 3'-phosphodiesterase
(CNPase), were not represented. Functional annotation
and grouping of the major neonate-brain raft proteome
will provide a basis for determining the potential targets
of lipid raft disorganization in mouse models of neonatal
brain disorders.

As reported in most raft proteomic studies
[8,10,11,14,19,39-43], non-PM proteins were also found
in the raft samples in the present study (Fig. 2 and Table
2). Eighty-nine of the 216 (41.2%) identified proteins
from neonatal mouse brain rafts were predicted to be
non-PM proteins by their GO terms. They are comprised
of 47 cytoplasmic proteins including 20 cellular structural
proteins (such as tubulins, actins, keratins, and microtu-
bule-associated proteins), 25 mitochondrial proteins, 10
nuclear proteins, 6 ER proteins, and 1 lysosomal protein.
Proteins from other subcellular compartments such as
endosome and Golgi apparatus were poorly represented.
The presence of subcellular membrane and cytoplasmic
proteins in lipid raft fractions have been discussed in sev-
eral proteomic studies [1,8,11,43-46]. One possibility is
the contamination of non-plasma membrane proteins
during gradient purification. The position of membrane
particles in the density gradient ultracentrifugation is
determined mainly by the ratio of its lipid and protein
contents; different ratios of lipids to proteins for the vari-
ous intracellular membrane particles could lead them to
have different buoyant properties in density gradients. In
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Table I: Plasma membrane associated proteins identified in the lipid rafts of neonatal mouse brain

Acc. No. Protein name Pepc % covb MW (KDa) PTM¢ Spectral count!  SDe

P12960 Contactin-1 (Neural cell surface protein F3) 26 35.03 113.4 GPI 174.0 4.0

Q91XV3  Neuronal axonal membrane protein NAP-22 8 66.52 22.1 Liphid 125.0 0.6
anchor

P59216 G-protein G(o), alpha subunit | 7 25.28 40.1 Lipid 101.0 2.0
anchor

P14824 Annexin Aé 21 41.43 75.8 99.0 22.0

Q8BLK3 Limbic system-associated membrane protein 5 17.94 38.0 GPI 66.0 1.0

Q80724  Neuronal growth regulator | (Neurotractin) 4 14.99 379 GPI 56.5 25

Q61330 Contactin-2 13 20.69 113.2 GPI 44.5 5.5

P38401 G-protein G(i), alpha-| subunit 5 19.03 40.4 Lipid 425 10.5
anchor

008917 Flotillin-1 8 29.04 47.5 40.0 0.0

QB8BFZ9  SPFH domain-containing protein 2 3 11.30 389 38.0 1.2

Q97259  Flotillin-2 (Reggie-1) (REG-1) 6 2222 41.7 36.5 1.5

P13595 Neural cell adhesion molecule |, 180 kDa isoform 6 9.43 119.4 325 10.5

P38402 G-protein G(i), alpha-2 subunit 2 8.78 40.5 Lipid 30.0 4.0
anchor

Q9Z1G4  Vacuolar proton pump subunit | 7 9.43 96.5 285 05

Q62188 Dihydropyrimidinase-related protein 3 (DRP-3) 7 20.39 61.9 215 0.5

P27600 G-protein alpha-12 subunit (G alpha-12) 2 8.49 44.0 Lipid 20.5 5.5
anchor

070443 G-protein G(z), alpha subunit (G(x) alpha chain) 4 17.85 40.9 19.5 1.5

Q99PJO Neurotrimin 3 11.95 38.0 GPI 17.0 1.0

QIWTR  Cadherin-13 4 9.26 783 GPI 17.0 2.0

5

P21278 G-protein alpha- 1 | subunit 3 9.78 42.0 15.0 0.6

P51150 Ras-related protein Rab-7 3 19.90 23.5 Lipid 14.5 0.5
anchor

Q8VDN2  Sodium/potassium-transporting ATPase alpha-| chain 5 8.6l 113.0 13.5 0.5

P32736 Opioid-binding protein/cell adhesion molecule 3 13.08 38.1 GPI 13.0 2.0

P21279 G-protein G(q), alpha subunit 3 13.64 41.5 Lipid 13.0 0.0
anchor

PO1831 Thy-1 membrane glycoprotein precursor (Thy-1) 3 26.71 18.1 GPI 12.5 0.5

P59729 Ras and Rab interactor 3 2 3.14 107.3 12.0 2.0

Q6TMKé6  G-protein G(1)/G(S)/G(T) beta subunit 2 8.8l 374 12.0 4.0

P06837 Neuromodulin (Axonal membrane protein GAP-43 2 18.14 23.6 Lip;]id 1.5 0.5
anchor

Q6PIES Sodium/potassium-transporting ATPase alpha-2 chain 3 10.71 112.2 11.0 1.0

P62821 Ras-related protein Rab-1A 2 16.26 227 Lipid 11.0 1.0
anchor

P53994 Ras-related protein Rab-2A 3 20.38 235 Lipid 10.5 0.5
anchor

P38403 G-protein G(k), alpha subunit 3 13.64 40.6 Lipid 10.0 2.0
anchor

Q8BKVI  Glypican-2 precursor 2 5.88 63.3 GPI 10.0 20

Q68FD5  Clathrin heavy chain 5 4.06 191.6 10.0 3.0

Q91X78  SPFH domain-containing protein | 6 24.48 389 9.5 25

P39688 Proto-oncogene tyrosine-protein kinase Fyn 2 3.57 59.9 Lipid 9.5 1.5
anchor

Q61735 Integrin-associated protein (IAP) 2 4.64 33.1 9.5 05

P97792 Coxsackievirus and adenovirus receptor homolog 2 6.04 39.9 Lipid 9.5 1.5
anchor

3Q9WUC Lymphocyte antigen Ly-6H precursor 2 12.32 14.67 GPI 9.5 1.5

Q6PIC6 Sodium/potassium-transporting ATPase alpha-3 chain 3 4.45 1.7 9.0 1.0

Q8BMT4  Leucine-rich repeat-containing protein 33 2 2.75 77.1 9.0 1.0

P48036 Annexin A5 5 21.07 358 9.0 1.0

P17182 Alpha-enolase 3 11.57 47.1 9.0 0.6

008532 L-type calcium channel subunit delta 2 2.75 124.6 85 2.5

P63044 Vesicle-associated membrane protein 2 (VAMP-2) 3 35.09 12.7 8.0 0.0

P54227 Stathmin (Phosphoprotein p19) 2 14.97 17.3 8.0 1.0

P61027 Ras-related protein Rab-10 3 16.58 225 Lipid 8.0 1.0
anchor

Q9QZF2  Glypican-| precursor 3 8.99 61.4 GPI 8.0 2.0

Q3UIF9  Transmembrane phosphoprotein Cbp 2 7.48 46.5 Lipid 7.0 0.6
anchor

Q69726  Contactin-4 3 2.15 117.5 GPI 7.0 1.0

Q9RON7  Synaptotagmin-7 (Synaptotagmin VII) (SytVIl) 2 7.71 455 6.5 0.5

Q9Z0P4  Paralemmin 3 10.73 41.6 Lipid 6.5 1.5
anchor

035454 Chloride channel protein 6 (CIC-6) 4 6.56 97.0 6.5 1.5

P51863 Vacuolar ATP synthase subunit d 2 6.86 40.3 6.0 0.6
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Table I: Plasma membrane associated proteins identified in the lipid rafts of neonatal mouse brain (Continued)

P62814 Vacuolar ATP synthase subunit B, brain isoform 3 8.04 56.6 6.0 1.0
Q9ER00  Syntaxin-12 2 11.72 3119 6.0 2.0
Q7SIG6 Development and differentiation-enhancing factor 2 2 2.84 106.8 6.0 1.0
Q6PHN9  Ras-related protein Rab-35 2 5.50 23.0 Lipid 55 0.5
anchor
P63213 G-protein G(1)/G(S)/G(O) gamma-2 subunit 2 8.78 374 5.5 0.5
P140%94 Sodium/potassium-transporting ATPase beta-1 chain 2 8.25 35.2 5.0 2.0
Q6PCX7  Repulsive guidance molecule A 2 6.62 50.0 GPI 5.0 2.0
P70296 Phosphatidylethanolamine-binding protein (PEBP) 3 28.65 20.7 5.0 3.0
P59108 Copine-2 (Copine Il) 3 6.76 61.0 5.0 1.7
Q9WV55  VAMP-associated protein A 2 498 273 45 0.5
P46096 Synaptotagmin-| 2 5.71 47.4 Lipid 45 1.5
anchor
QI9DIGI  Ras-related protein Rab-1B 2 16.50 222 Lipid 4.5 0.5
anchor
P07356 Annexin A2 (Annexin Il) 3 13.95 385 4.5 1.5
Q99KR6é6  RING finger protein 34 2 4.53 42.0 4.0 1.0
Q91V4lI Ras-related protein Rab-14 2 12.62 239 Lipid 4.0 1.2
anchor
P10852 4F2 cell-surface antigen heavy chain 2 5.14 583 4.0 0.6
P35279 Ras-related protein Rab-6A (Rab-6) 2 5.34 23.6 Lipid 35 1.5
anchor
Q9CQD  Ras-related protein Rab-5A 2 10.28 23.6 Lipid 35 0.5
| anchor
035963 Ras-related protein Rab-33B 2 4.82 25.8 Lipid 35 0.5
anchor
Q8K386 Ras-related protein Rab-15 2 521 243 Lipid 35 1.5
anchor
P60764 Ras-related C3 botulinum toxin substrate 3 2 7.33 214 Lipid 35 0.5
anchor
Q9QXL2  Kinesin family member 21A 2 1.14 186.53 35 0.5
QB8R4A8  G-protein G(s), alpha subunit 3 13.64 45.7 Lipid 35 1.5
anchor
Q9JMB8  Contactin-6 3 321 113.8 GPI 35 25
Q65CLI Alpha-3 catenin (Alpha T-catenin) | 1.79 99.8 35 1.5
Q60547 Synaptonemal complex protein 3 3 6.01 27.1 3.0 0.6
QIDAS9  G-protein G(1)/G(S)/G(O) gamma-12 subunit 4 22.86 787 Liphid 3.0 1.0
anchor
P97449 Aminopeptidase N (Membrane protein pl161) | 1.87 109.7 3.0 1.0
QIJHS3 Late endosomal/lysosomal Mp | -interacting protein 2 14.52 13.48 3.0 1.0
P31324 Prkar2b | 4.11 46.04 3.0 1.5
P61264 Syntaxin-1B2 (Syntaxin |1B) 2 8.01 333 25 1.5
P35278 Ras-related protein Rab-5C 2 6.51 234 Lipid 2.5 0.5
anchor
P6301 | Ras-related protein Rab-3A 2 8.68 25.0 Lipid 25 0.5
anchor
P97855 Ras-GTPase-activating protein binding protein | | 3.02 51.8 2.5 0.5
Q9CYH2  Protein Cl0orf58 homolog 2 5.99 244 25 0.5
P11505 Plasma membrane calcium-transporting ATPase | | 1.43 138.7 2.5 0.5
P05480 Neuronal proto-oncogene tyrosine-protein kinase Src 2 5.38 60.6 Liphid 2.5 0.5
anchor
Q07310 Neurexin-3-alpha | 4.11 174.0 25 0.5
035136 Neural cell adhesion molecule 2 | 1.56 932 GPI 25 1.5
089051 Integral membrane protein 2B 2 6.04 303 2.5 0.5
008842 GDNF family receptor alpha-2 | 3.68 51.6 GPI 25 0.5
008545 Ephrin-A3 precursor 2 8.60 21.2 GPI 25 0.5
Q9RIT7  Inducible T-cell co-stimulator (CD278 antigen) 2 8.54 225.30 25 0.5
P60879 Synaptosomal-associated protein 25 2 6.83 233 Lipid 2.0 1.0
anchor
P80236 Ras-related C3 botulinum toxin substrate | 3 18.42 88 2.0 1.0
P68404 Protein kinase C beta type | 2.38 76.9 2.0 0.6
Q04690 Neurofibromin 2 3.8l 319.6 20 0.6
Q60437 Insulin receptor substrate p53 2 6.15 57.64 2.0 0.6
Q61411 GTPase HRas 2 12.77 213 Lipid 2.0 0.6
anchor
P51655 Glypican-4 precursor (K-glypican) 2 4.86 62.6 GPI 2.0 1.0
P23818 Glutamate receptor | (GIuR-1) | 221 101.57 2.0 0.6
Q8VBX4  C-type lectin domain family 4 member K | 4.24 37.6 2.0 0.6
Q8JZW4  Copine-5 (Copine V) | 2.53 65.6 20 1.0
Q8BLR2  Copine-4 (Copine IV) | 2.70 62.4 2.0 0.6
Q02013 Agquaporin-| I 749 28.66 2.0 1.2
Q07076  Annexin A7 I 3.46 49.9 2.0 1.7
P97429 Annexin A4 (Annexin [V) 3 10.09 359 20 0.6
Q9DBE8  Alpha-1,3-mannosyltransferase ALG2 | 3.86 474 2.0 1.0
P84078 ADP-ribosylation factor | 2 6.15 20.6 2.0 1.0
Page 7 of 15

(page number not for citation purposes)



Proteome Science 2007, 5:17

http://www.proteomesci.com/content/5/1/17

Table I: Plasma membrane associated proteins identified in the lipid rafts of neonatal mouse brain (Continued)

Q6QIY3
P49817
P18708
070439
P16546
Q9QZB0
Q9JIR4
Q05909
P46638

P05696
035764

Q8CGK
7

P50153

Q99K]8

Sensory neuron sodium channel

Caveolin-|

Vesicle-fusing ATPase

Syntaxin-7

Spectrin alpha chain, brain

Regulator of G-protein signaling 17

Regulating synaptic membrane exocytosis protein |
Receptor-type tyrosine-protein phosphatase gamma
Ras-related protein Rab-11B

Protein kinase C alpha type(PKC-alpha)
Neuronal pentraxin receptor

G-protein G(olf), alpha subunit

G-protein G(I)/G(S)/G(O) gamma-4 subunit

Dynactin subunit 2

NN — =N — —

3.09
791
2.69
5.41
1.24
6.22
6.07
9.72
9.72

2.09
2.84
20.74
9.35

4.75

220.6 2.0 0.6
20.54 2.0 0.6
82.54 1.5 0.5
29.8 1.5 0.5
274.7 1.5 0.5
243 1.5 0.5
179.7 1.5 0.5
161.2 1.5 0.5
24.5 Lipid 1.5 0.5
anchor
76.8 1.5 0.5
52.37 1.5 0.5
443 1.5 0.5
84.| Lipid 1.5 0.5
anchor
44.0 1.5 0.5

aPep: peptide counts; P % cov: protein coverage%; ¢ PTM: posttranslational lipid modification, GPI and lipid anchor: myristoylation, pamitolyation,
geranylgeranylation, farnesylation, and prenylation; ¢ Spectral count: total MS/MS spectral counts. Number represents mean value of 4 replicates; ¢
standard deviation of spectral counts in 4 replicates.

Table 2: Non-PM proteins identified in the lipid rafts of neonatal mouse brain

Acc. No.

P69893
P68361
Q71FK5
Q03265
P56480
PO4104
P62629
P19378
Q92212
P14873
Q8IFZ6
P97427
Q62188
P14733
P68372
Q6IG00
Q60932
P48962
Q922F4
Q04447
P67778
Q10758
Q61696
008553
P46633
P63101
Q60930
Q9ERD7
P50672
Q9DCT2
P18760
P07823
P11497
Q60931
P09445
P62977

Protein name

Tubulin beta-1 chain

Tubulin alpha-| chain

Actin, cytoplasmic | (Beta-actin)

ATP synthase alpha chain

ATP synthase beta chain

Keratin, type Il cytoskeletal |

Elongation factor |-alpha |

Heat shock cognate 71 kDa protein

Keratin, type Il cytoskeletal 5
Microtubule-associated protein |B (MAP |IB)
Keratin, type Il cytoskeletal 1b
Dihydropyrimidinase-related protein |
Dihydropyrimidinase-related protein 3

Lamin-B1

Tubulin beta-2C chain

Keratin, type Il cytoskeletal 4

Voltage-dependent anion-selective channel protein |
ADP/ATP translocase |

Tubulin beta-6 chain

Creatine kinase B-type

Prohibitin

Keratin, type Il cytoskeletal 8

Heat shock 70 kDa protein 1A
Dihydropyrimidinase-related protein 2

Heat shock protein HSP 90-alpha (HSP 86)

14-3-3 protein zeta/delta

Voltage-dependent anion-selective channel protein 2
Tubulin beta-3 chain

Cytochrome c oxidase subunit 2
NADH-ubiquinone oxidoreductase 30 kDa subunit
Cofilin-1 (Cofilin, non-muscle isoform)

78 kDa glucose-regulated protein

Acetyl-CoA carboxylase |

Voltage-dependent anion-selective channel protein 3
Elongation factor 2

Ubiquitin

Pep?

v o5

IS

=N W —UNPNNNNWNMNMNUONMNMNRAWONWNDNDNMNONANDNDNDNDDNWwWwO

% Covb

38.60
30.44
21.39
26.63
20.83
5.59
9.33
10.39
4.15
4.34
4.20
8.93
20.39
12.80
6.76
1.68
38.31
1115
3.8l
12.63
21.03
333
5.78
13.84
3.56
12.30
14.29
9.35
11.50
6.35
15.24
11.18
424
13.83
2.92
21.33

MW (KDa) Locc Spectral count! SDe
49.67 cyto 262.0 14.0
50.15 cyto 175.0 20.0
41.74 cyto 102.5 45
59.75 mc 63.0 4.0
56.30 mc 51.5 55

65.1 cyto 37.0 4.0
50.11 cyto 36.0 5.0
70.8 cyto 33.0 1.0
61.8 cyto 26.5 6.5
27041 cyto 255 35
61.4 cyto 25.5 35
62.17 cyto 25.0 0.0
61.94 cyto 21.5 0.5
66.66 nuc 19.0 3.0
49.83 cyto 18.5 1.5
57.7 cyto 18.0 1.0
32.35 mc 16.5 35
32.77 mc 15.0 2.0
50.09 cyto 14.5 0.5
4271 cyto 13.5 2.5
29.82 mc 12.5 1.5
53.9 cyto 12.5 0.5
70.08 cyto 12.0 1.0
62.17 cyto 1.5 2.5
84.72 cyto 10.5 2.5
27.77 cyto 10.5 0.5
31.73 mc 10.0 0.0
50.42 cyto 10.0 1.0
25.82 mc 9.0 0.0
34.00 mc 8.5 0.5
18.43 nuc 85 1.5
72.38 er 8.5 1.5
37.62 cyto 8.0 1.0
30.75 mc 7.5 0.5
95.27 cyto 75 0.5
8.57 cyto 7.0 1.0
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Table 2: Non-PM proteins identified in the lipid rafts of neonatal mouse brain (Continued)

P19783 Cytochrome c oxidase subunit IV isoform |
P14152 Malate dehydrogenase

P11499 Heat shock protein HSP 90-beta

P12787 Cytochrome c oxidase polypeptide Va
P31253 Ubiquitin-activating enzyme El X

P35564 Calnexin

Q91VD9 NADH-ubiquinone oxidoreductase 75 kDa subunit
P56135 ATP synthase f chain, mitochondrial

P51881 ADP/ATP translocase 2

Q8R429 SR Ca(2+)-ATPase |

Q9DB20 ATP synthase O subunit

Q8R429 Calcium pump | (SERCAI)

QolVvel Sideroflexin-3

P03995 Glial fibrillary acidic protein, astrocyte (GFAP)
Q9CQvs8 14-3-3 protein beta/alpha

P68368 Tubulin alpha-4 chain

P62962 Profilin-1 (Profilin )

Q8QZTI  Acetyl-CoA acetyltransferase

P62962 Profilin-1

Q02053 Ubiquitin-activating enzyme E| |

P42932 T-complex protein | subunit theta

035129 Prohibitin-2

P31324 Prkar2b

P20357 Microtubule-associated protein 2 (MAP 2)
P34926 Microtubule-associated protein |A (MAP |A)
P52480 Pyruvate kinase isozyme M2

P63209 S-phase kinase-associated protein |A

P60879 Synaptonemal complex protein 3

088809 Neuronal migration protein doublecortin
P17156 Heat shock-related 70 kDa protein 2
Q9EQF6 Dihydropyrimidinase-related protein 5
Q8BH59 Calcium-binding mitochondrial carrier protein Aralar|
P48670 Vimentin

P80315 T-complex protein | subunit delta

P11984 T-complex protein | subunit alpha A

QIJKK8 Serine-protein kinase ATR

Q04899 Serine/threonine-protein kinase PCTAIRE-3
Q99PTI Rho GDP-dissociation inhibitor | (Rho GDI I)
Q61879 Myosin-10

P24638 Lysosomal acid phosphatase

070251 Elongation factor |-beta

Q9CPQ8  ATP synthase g chain, mitochondrial
035627 Orphan nuclear receptor NR113

P53026 60S ribosomal protein L10a

P97524 Very-long-chain acyl-CoA synthetase
Q01853 Transitional endoplasmic reticulum ATPase
Q99)RI Sideroflexin-|

Q62627 PRKC apoptosis WTI regulator protein
QI9DCS9  NADH-ubiquinone oxidoreductase PDSW subunit
P08249 Malate dehydrogenase

Q8BGUS5  Cyclin fold protein |

QB8CEE6 PAS-kinase (PASKIN)

P35980 60S ribosomal protein L18

| 7.14 19.53 mc 7.0 20
| 3.6l 36.35 mc 6.5 0.5
2 3.88 83.20 cyto 6.5 0.5
| 10.42 16.03 mc 6.5 0.5
2 7.35 50.99 cyto 6.0 3.0
2 4.92 67.28 er 6.0 1.0
2 3.99 79.75 mc 5.5 2.5
2 26.74 10.21 mc 5.5 1.5
2 8.11 32.80 mc 5.5 0.5
2 3.12 109.43 er 5.0 1.0
2 9.91 23.36 mc 5.0 1.0
2 3.12 109.43 er 5.0 1.0
I 4.06 35.41 mc 45 0.5
| 2.56 49.92 cyto 4.5 1.5
| 543 21.22 cyto 4.5 2.5
2 3.1 50.14 cyto 35 0.5
2 21.74 14.83 cyto 35 0.5
2 7.09 44.82 mc 35 0.5
2 21.74 14.82 cyto 35 0.5
3 4.82 117.81 cyto 3.0 1.0
3 6.59 59.43 cyto 3.0 2.0
4 21.03 29.82 mc 3.0 1.0
| 4.11 46.04 cyto 3.0 0.0
2 1.20 198.98 cyto 3.0 0.0
2 2.36 299.53 cyto 3.0 0.0
4 12.48 57.76 mc 3.0 2.0
| 9.32 18.53 cyto 3.0 1.0
3 6.01 27.1 nuc 3.0 1.0
| 3.56 40.61 cyto 2.5 0.5
2 3.01 69.74 cyto 25 1.5
| 3.20 61.52 cyto 25 0.5
2 4.59 74.57 mc 25 0.5
| 4.25 51.85 cyto 2.5 1.5
| 2.98 57.94 cyto 2.0 0.0
| 4.14 60.34 cyto 2.0 0.0
| 2.36 84.26 nuc 2.0 0.0
| 3.78 51.85 nuc 20 1.0
| 7.88 23.41 er 2.0 0.0
| 3.09 49.59 cyto 2.0 0.0
| 2.13 48.51 lysos 2.0 1.0
ome
2 12.56 24.56 cyto 20 0.0
| 18.63 11.43 mc 20 0.0
| 2.52 40.89 nuc 2.0 1.0
| 6.98 24.78 nuc 2.0 1.0
| 2.58 70.69 er 1.5 0.5
2 3.11 89.18 cyto 1.5 0.5
| 5.63 35.52 mc 1.5 0.5
| 4.53 35.87 nuc 1.5 0.5
| 10.92 20.89 mc 1.5 0.5
2 9.79 35.60 mc 1.5 0.5
| 5.00 39.39 nuc 1.5 0.5
| .16 151.27 cyto 1.5 0.5
| 6.99 21.5 nuc 1.5 0.5

aPep: peptide counts; P % cov: protein coverage%; ¢ Loc.: subcellular localization. mc. mitochondria, cyto. cytoplasm, er. endoplasmic reticulum;
eSpectral count: total MS/MS spectral counts. Number represents mean value of 4 replicates; ¢ standard deviation of spectral counts in 4 replicates.

this context, any method used for preparing cell mem-
brane 'lipid rafts' is likely to generate a fraction containing
membranes from a number of sub-cellular membranes,
but not necessarily one enriched specifically in plasma

membrane lipid rafts [8]. Certain subcellular proteins
highly enriched in raft samples may be structurally
involved and play critical roles in cell membrane lipid raft
organization. For example, the cellular structural proteins
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such as tubulins, actins, keratins, and microtubular pro-
teins, are highly enriched in lipid raft samples including
brain-rafts as shown in this study and many other reports
[7,8,13,28]. These cytoskeletal proteins not only contrib-
ute to the structural organization of cytoplasm but also
play important roles in regulating the topography of the
plasma membrane and trafficking and in modulating the
localization of lipid raft proteins in eukaryotic cells
[47,48]. Additionally, many proteins could have multiple
cellular localizations regulated by multiple mechanisms.
For example, cytoplasmic microtubule-associated pro-
teins and 14-3-3 proteins, histones, and mitochondrial
ATP synthases and voltage-dependent anion-selective
channel 1 (VDACL1), have also been identified in cell
plasma membranes [44,49-52]. Thus, enrichment of cer-
tain non-PM proteins in lipid rafts (DRMs) may represent
a true observation of protein localization in different bio-
logical conditions and not necessarily be due to cross-con-
tamination acquired during purification.

Compilation of proteins into abundance lists

All proteins identified as PM protein or non-PM proteins
in lipid rafts of neonatal mouse brain by TubeGeLC/MS/
MS are compiled in Tables 1 and 2, respectively, and were
sorted by their relative abundance calculated from the
MS/MS spectral counts. Mass spectrometry of proteins
and peptides is not quantitative, therefore, it is difficult to
assess the abundance of a particular protein from the MS
data per se. However, recent studies with label-free LC-MS/
MS shotgun proteomics [29,53-57] revealed a relation-
ship between protein abundance and sampling statistics,
such as sequence coverage, peptide count, and spectral
count. The use of sampling statistics is a promising
method for measuring the relative protein abundance and
detecting differentially expressed proteins. In general, the
greater the amount of protein, the greater the MS signal
intensity, number of spectral counts, sequenced peptides/
sequence coverage, total ion current (TIC), and total Xcorr
or scores that combine these values. Label-free proteomics
has emerged as an alternative to stable isotope labeling for
protein quantitation. The MS/MS spectral count, which
compares the number of MS/MS spectra assigned to each
protein, was selected for relative protein abundance in
this study. Although this method has a tendency to over-
estimate the abundance of large proteins because they
yield more peptides and therefore more spectral counts
than the smaller proteins, the results indicate that this
may not be a fundamental problem [29]. In the current
study, contactin-1 (113.4 kDa) had a MS/MS spectral
count of 174, but the sodium/potassium-transporting
ATPase alpha-3 chain, a protein of almost identical size
(111.7 kDa), had a spectral count of 9 (Table 1). It is rea-
sonable to assume that the former protein is much more
abundant than the latter. When plotting MS/MS spectral
count versus protein size for all proteins identified (data

http://www.proteomesci.com/content/5/1/17

not shown), both the maximum spectral count distribu-
tion was highest for proteins with a size distribution of
20~50 kDa. Therefore, the bias that may be potentially
caused by size towards larger proteins may not be overly
large, when using MS/MS spectral counts as a measure of
abundance [29]. About 50% of proteins were identified
with fewer than 5 total spectral counts, presumably due to
their relatively low abundances. A total of 11 identified
proteins with > 40 spectral counts were arbitrarily catego-
rized as the most abundant proteins in the lipid rafts from
neonatal mouse brain. These include contactin-1, NAP-
22, Ga(0), annexin-A6, Lsamp, neurotractin, contactin-2,
Go(i), and flotillin-1, as well as intracellular structural
and mitochondrial proteins such as tubulins, actins, and
ATP synthases. Proteins with total spectral counts from 5
to 40 were arbitrarily categorized as medium abundance
proteins. The relative abundances agree well with pub-
lished data [7,18,19,30,39,40,42,43,45,49,58-71] and
support our contention that the TubeGeLC-MS/MS
approach provides a fair representation of the protein
composition of the lipid rafts from neonatal mouse brain.
The spectral count data for each identified protein pro-
vides proteome-wide semi-quantitative information on
the relative abundance of lipid raft proteins.

Comparison of protein identifications between GeLC-MS/
MS and TubeGelLC-MS/IMS

In-gel digestion can be efficiently employed after protein
mixtures are resolved by SDS-PAGE or directly polymer-
ized into a 'tube-gel' without electrophoresis [7,15]. Both
of these in gel-based protein digestion protocols give
clean LC-MS/MS baselines as interfering substances, such
as detergents, salts and lipids, can be effectively removed
during washing steps. To compare the GeLC-MS/MS ver-
sus the TubeGeLC-MS/MS, four separate experiments
were conducted using 100 pl of sucrose-gradient isolated
rafts that were subjected to a 1D SDS-PAGE combined
with nanospray LC-MS/MS spectrometry (GeLC-MS/MS)
modified by an established protocol [72], as described in
Methods. The results for the peptides and corresponding
proteins that were identified in a minimum of 2 of 4 inde-
pendent experiments were used for comparative analyses.
The comparison showed that about 200 proteins could
also be identified by GeLC-MS/MS approach, with similar
protein identifications, especially for high and medium
abundance proteins, as compared to TubeGeLC-MS/MS
(data not shown). However, the reproducibility of protein
identified by GeLC-MS/MS was less than TubeGelLC-MS/
MS (see below).

Reproducibility of raft proteome characterization by
TubeGeLC-MS/MS

To test the reproducibility of proteins identified, 3 raft
samples from 3 separate neonatal brains prepared by
identical methods at the same time were processed by
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both TubeGeLC-MS/MS and GeLC-MS/MS protocols, and
the resulting protein identifications for within technique
variations compared. There was a 68.8 + 6.5% (SD) con-
cordance in the proteins identified by TubeGeLC-MS/MS
protocol among the 3 raft samples. As expected, the high
abundance proteins showed a higher reproducibility of
identification. The non-concordant proteins of ~30% may
reflect some false identification because 55% of the non-
concordant proteins had single or two peptide identifica-
tions. In addition, lipid raft isolations per se have a degree
of variability. The results from the GeLC-MS/MS protocol
yielded 45 + 11% of concordance for within technique
protein identifications.

A MS/MS spectral-count method was employed as a semi-
quantitative measure for comparing proteins in different
samples. Variability in protein abundance, calculated as
MS/MS spectral counts, between the brain raft samples
from two separate animals was evaluated and compared
between the two approaches. The ratio of the spectral
count per protein between these two samples was pre-
sented as fold-change and plotted against the average of
the spectral count of the two samples. With the Tube-
GeLC-MS/MS method the fold-change was less than 2 for
~80% of the identified proteins; the higher the abun-
dance, the lower of fold changes as shown in Figure 4A.
However, greater variations for low abundance proteins
were evident, indicating that the sensitivity of quantifying
changes for low abundance proteins was generally lower.
The fold-change results of the same samples analyzed by
the GeLC/MS/MS protocol are shown in Figure 4B; greater
variations were evident for both high and low abundant
proteins. These results suggested that there was larger
experimental variation associated with 1D gel protein sep-
aration and extraction from the gel slices prior protein
digestion and mass spectrometry using the GeLC/MS/MS
method. One of the explanations is that lipid associated
proteins and other hydrophobic proteins may not fully
enter the gel lanes in the GeLC/MS/MS protocol, causing
variations in quantitative analyses. Employing the Tube-
GeLC-MS/MS approach, despite the experimental varia-
tion in isolating the lipid rafts, the protein composition
from replicate samples was less variable, indicating that
this simple change in sample handling results in more
reproducible results.

Conclusion

We have successfully combined a 'tube-gel' protein diges-
tion protocol with nanospray LC-MS/MS analysis to carry
out a high throughput proteomic mapping of lipid raft
proteins isolated from neonatal mouse brain. Characteri-
zation of analytically difficult lipid raft proteins was sim-
plified by this method. The MS/MS spectral count
information from mass spectrometric analyses allowed
for the label-free quantitation of relative protein abun-

http://www.proteomesci.com/content/5/1/17

dances of more than 200 raft proteins from a single sam-
ple. The major advantage of this protocol is that the raft
proteins are directly digested in a gel matrix without frac-
tionation and purification, thus dramatically minimizing
variation in protein yields due to losses during sample
manipulation prior to mass spectrometry. With careful
isolation of rafts, this protocol should allow for a repro-
ducible quantitation of relative protein abundance in
lipid rafts. This methodology should allow the investiga-
tion of the role of these specialized membranes under var-
ious biological conditions.

Methods

Reagents and antibodies

Sources for antibodies were as follows: caveolin-1 (Cav-
1), contactin-1 (Cntn-1), annexin-VI (Anx VI, Anx6A),
GTP-binding protein oag (Gog), NAP-22, calnexin, o-
tubulin from Santa Cruz Biotechnology, CA USA; flotillin-
1 (flot-1): BD Transduction Laboratories, CA USA; mouse
monoclonal antibody against -COP: Sigma-Aldrich, MO
USA; and mouse anti-human transferrin receptor anti-
body: Zymed Laboratories, CA USA. Trypsin Gold (MS
grade) was obtained from Promega, WI, USA. All other
reagents were from ThermoFisher Scientific, MA, USA.

Preparation of raft-enriched detergent-resistant
membranes from neonatal mouse brain

All animal experiments were performed with the approval
of the Institutional Animal Care and Research Advisory
Committee at the Clement Zablocki Veterans Medical
Center. Neonatal mice (postnatal day 1, C57Bl/6], Jack-
son Laboratories) were sacrificed by decapitation. Details
of protocols used to prepare the raft-enriched detergent-
resistant membranes have been described previously
[30,73]. Briefly, frozen brains from neonatal mice, 50~60
mg of wet brain tissue, were homogenized in an ice-cold
lysis buffer containing 5% glycerol in buffer A (50 mM
Tris-HCI, pH 8.0, 10 mM MgCl,, 0.15 M NaCl, 20 mM
NaF, 1 mM Na;VO,, 5 mM B-mercaptoethanol, 10 pg/ml
aprotinin, 10 pg/ml leupeptin, 1 mM PMSF), using a tis-
sue homogenizer (PRO Scientific Inc., Oxford, CT USA)
by three pulses of 10 seconds each, followed by 20 strokes
of a Dounce homogenizer, pestle A. Tissue debris and
nuclei were removed by centrifugation at 1,000 g for 5
minutes and the pellet was re-extracted. The protein con-
centration of the post-nuclear homogenates (PNH) was
measured using Protein Reagent (Bio-Rad, CA USA),
adjusted to 2 mg/ml and 2 ml of the homogenates
extracted with 1% Triton X-100 (TX) on ice for 30 min.
The samples were mixed with an equal volume of ice-cold
80% (w/v) sucrose in buffer A, and then overlaid with 2.0
ml each of 35, 30, 25, and 5% (w/v) sucrose (all in buffer
A). The sucrose gradient was centrifuged at 36,000 rpm in
a Sorval 90 ultracentrifuge using a TH-641 rotor for 15 hr
at 4°C. After ultracentrifugation, TX-resistant lipid rafts
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Figure 4

Variations of quantification by spectral counting. The
variations in spectral counts for each protein were compared
between the TubeGeLC/MS/MS and the GeLC/MS/MS proto-
cols. The ratio of the spectral count per protein between
two samples is presented as fold-change and plotted against
the average of the spectral count of two samples. Panel A
shows the results from the TubeGeLC/MS/MS method and
panel B from the GeLC/MS/MS protocol.

appeared as an insoluble white light-scattering band at the
interface between the 5% and 25% sucrose layer. Twelve
1.0 ml fractions were collected from the top to bottom,
with fractions 2-4 containing the rafts (density range of
1.055~1.115 g/ml). Non-raft fractions 8-11 were col-
lected in the density range 1.130~1.180 g/ml.

Tube-gel protein digestion

A Tube-Gel digestion method has been successfully used
for high throughput analysis of membrane proteins and
proven to be compatible with detergents in protein sam-
ples [15]. In these experiments, fraction 3 of the sucrose
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gradient was used as the lipid raft fraction. The raft frac-
tion was directly incorporated into a polyacrylamide gel
matrix as follows: 100 ul of the raft solution, 25 pl of acr-
ylamide solution (40%, 29:1), 1.0 ul of 10% SDS, 0.5 pl
of 10% ammonium persulfate, and 0.1 pl of TEMED were
mixed in a 0.5 ml Eppendorf tube. The co-polymerization
reaction was carried out for 30 min at room temperature.
Post-polymerization, no liquid was extruded from the
tube-gel, indicating that all of the materials were trapped
in the gel matrix. The gel block was removed, cut into
small pieces, and washed five times with 50% acetonitrile
(v/v) in 25 mM ammonium bicarbonate for 15 min, using
sonication and agitation. The gel pieces were dried using
a SpeedVac, subjected to in-gel digestion using 100 pl of
10 ng/pl trypsin dissolved in 25 mM AMBIC and incu-
bated at 37°C overnight. Peptides were then extracted
from the gel using 500 pl of 0.1% formic acid in MS-grade
water followed by 2 extractions with the same volume of
0.1% formic acid in 70% acetonitrile. Corresponding frac-
tions were combined and dried using a SpeedVac. The
dried samples were resuspended in 6 M guanidine-hydro-
chloride and 5 mM potassium phosphate, pH 6.0, puri-
fied using C-18 zip-tips from Millipore Corp., and
subjected to nanospray LC-MS/MS analysis. This protocol
is referred to as TubeGeLC-MS/MS.

Alternatively, lipid raft proteins were digested using an
established protocol with some minor modification by 1-
D electrophoresis coupled with nanospray LC-MS/MS
(GeLC-MS/MS) [72]. Rather than conventional SDS-
PAGE separation and multiple LC-MS/MS analyses, pro-
teins in 100 pl of raft fractions, were first separated on 6%
SDS-PAGE gels, long enough for the protein mixtures to
penetrate the separation gel and then stained with silver.
The stained areas of the gel containing the complex mix-
ture of proteins were excised, digested with trypsin and
applied to the nanospray LC-MS/MS to analyze raft pro-
teome as described above.

Nanospray LC-MS/MS spectrometry and data Analysis

Automated nanospray liquid chromatography tandem
mass spectrometry (nanospray LC-MS/MS) was per-
formed using an LTQ-LC/MS from ThermoFisher Scien-
tific. Peptide mixtures were separated using a C18 reverse
phase column (0.75-A internal diameter at a flow rate of
1 pl/min) in line with the mass spectrometer. The mobile
phases consisted of 0.1% formic acid containing 5% ace-
tonitrile (A) and 0.1% formic acid in 95% acetonitrile (B),
respectively. A 260-min linear gradient was typically used.

The MS data obtained were searched using the SEQUEST
algorithm against the UniProt Rodent database v49.1. The
search was limited only to tryptic peptides, and identifica-
tions were filtered from the search results using the Epito-
mize program [74]. Epitomize reads all the SEQUEST.out
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files in a directory, filters the files based on user-defined
levels of Xcorr, and outputs the proteins identified. The
Xcorr versus charge state filter used was set to Xcorr values
of 1.8, 2.3 and 3.0 for charge states +1, +2 and +3, respec-
tively. These filter values are similar to others previously
reported for SEQUEST analyses [75]. Protein hits that
passed the filter were annotated using the generic Gene
Ontology (GO) slim. All proteins were identified by two
or more peptides, and those identified with single peptide
were included in the analysis if identified in two or more
scans. Finally, the peptides listed were manually verified
for correct identification by comparing the experimental
spectra with the theoretical band ion spectra. Quantitative
analyses were done using the open-source software pro-
gram ZoomQuant, which provides a validation and a
quantization platform for protein mass spectrometry
[74,76].

Biochemical analysis of lipids in gradient fractions

Sterol composition in each of the 12 fractions was quanti-
tatively determined by gas chromatography/mass spec-
troscopy (GC/MS). An aliquot of ethanol containing the
internal standard 5a-cholestane (25 ng) was added to
each sample tube, and samples were hydrolyzed at 50°C
in ethanol containing 1 M NaOH for 1 hour. Sterols were
extracted in hexane (final volume 30 ml), dried under
nitrogen, and derivatized with HMDS-TMCS. GC-MS
analysis was performed using a Focus DSQ system (Ther-
moFisher Scientific). The trimethylsilyl-derived sterols
were separated on a TR-35MS capillary column (35 m x
0.25 mm internal diameter x 0.25 pm film) with helium
as the carrier gas at the rate of 1.8 ml/min. The tempera-
ture program was 150°C for 1 minute, followed by
increases of 20°C/min up to 310°C, which was then held
for 6 minutes. The injector was operated in the splitless
mode at 250°C. Standard curves were generated by MS
analysis of various amounts of each sterol. The contents of
sphingomyelin (SM), ceramide (Cer) in each of the 12
fractions was quantitatively determined by LC/ESI/MS/
MS on a Thermo Finnigan TSQ 7000 triple quadrupole
mass spectrometer, operating in a Multiple Reaction Mon-
itoring (MRM) positive ionization mode, as described
previously [77].

SDS/PAGE and immunoblots

A 30 pl aliquot of each fraction from the sucrose gradient
was analyzed by SDS/PAGE on 10 or 12% (w/v) acryla-
mide gels. Separated proteins were transferred to nitrocel-
lulose membranes for immunoblotting analyses.
Membranes were blocked in 5% (w/v) non-fat milk in
TBS-Tween [0.05% (w/v) Tween 20 in 10 mM Tris/100
mM NaCl, pH 7.5], and then incubated with the primary
antibodies of choice. Membranes were subsequently incu-
bated with HRP-conjugated second antibodies, and spe-
cific interactions were revealed using the ECL® (Enhanced
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Chemiluminescence) detection system (Amersham, CA,
USA).
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