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Abstract
Background: Parkinson's disease (PD) is the most common neurodegenerative disorder involving
the motor system. Although not being the only region involved in PD, affection of the substantia
nigra and its projections is responsible for some of the most debilitating features of the disease. To
further advance a comprehensive understanding of nigral pathology, we conducted a tissue based
comparative proteome study of healthy and diseased human substantia nigra.

Results: The gross number of differentially regulated proteins in PD was 221. In total, we identified
37 proteins, of which 16 were differentially expressed. Identified differential proteins comprised
elements of iron metabolism (H-ferritin) and glutathione-related redox metabolism (GST M3, GST
P1, GST O1), including novel redox proteins (SH3BGRL). Additionally, many glial or related
proteins were found to be differentially regulated in PD (GFAP, GMFB, galectin-1, sorcin), as well
as proteins belonging to metabolic pathways sparsely described in PD, such as adenosyl
homocysteinase (methylation), aldehyde dehydrogenase 1 and cellular retinol-binding protein 1
(aldehyde metabolism). Further differentially regulated proteins included annexin V, beta-tubulin
cofactor A, coactosin-like protein and V-type ATPase subunit 1. Proteins that were similarly
expressed in healthy or diseased substantia nigra comprised housekeeping proteins such as
COX5A, Rho GDI alpha, actin gamma 1, creatin-kinase B, lactate dehydrogenase B, disulfide
isomerase ER-60, Rab GDI beta, methyl glyoxalase 1 (AGE metabolism) and glutamine synthetase.
Interestingly, also DJ-1 and UCH-L1 were expressed similarly. Furthermore, proteins believed to
serve as internal standards were found to be expressed in a constant manner, such as 14-3-3
epsilon and hCRMP-2, thus lending further validity to our results.

Conclusion: Using an approach encompassing high sensitivity and high resolution, we show that
alterations of SN in PD include many more proteins than previously thought. The results point
towards a heterogeneous aetiopathogenesis of the disease, including alterations of GSH-related
proteins as well as alterations of proteins involved in retinoid metabolism, and they indicate that
proteins involved in familial PD may not be differentially regulated in idiopathic Parkinson's disease.
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Background
Parkinson's disease (PD), being the most frequent neuro-
degenerative motor disorder [1], is characterized by subse-
quent affection of brainstem structures, finally reaching
cortical areas [2], by an as yet unknown pathogen or path-
ogenic mechanism. The severity of the clinical syndrome
comprising motor disturbance (called parkinsonism) and
dementia is associated largely with a reduction of striatal
dopamine content, proportional to the degeneration of
dopaminergic neurons in the substantia nigra. In recent
years, incidence and prevalence of this debilitating disease
have risen greatly [3], thus leading to an ever-rising socio-
economic impact: depending on the stage of the disease,
costs per year and patient varied between 4.736 € and
29.265 € in the UK [4]. Although current therapeutic
regimes have lead to an increase of life expectancy up to
almost normal levels in patients [5], there is no known
curative therapy until now. Therefore, research on the aeti-
opathology of PD is of high importance.

Current research on the aetiology of PD has recognized
mitochondrial and proteasome dysfunction as well as oxi-
dative stress as major factors. Interestingly, all chemical
models of PD, including 1-methyl 4-phenyl 1,2,3,6-tet-
rahydropyridine (MPTP) [6] and rotenone [7], lead to an
increase of oxidative stress as well as mitochondrial and
proteasome dysfunction. Still, they cause an acute and
selective loss of dopaminergic neurons, which might not
exactly mirror the pathology involved in idiopathic PD.
Therefore, additional mechanisms, like inflammation,
have been discussed recently [8]. While genetic forms of
the disease involving mutations in genes for proteins like
alpha-synuclein [9,10], parkin [11] and ubiquitin carbox-
yterminal hydrolase L1 (UCH-L1) [12], have shed sub-
stantial light on possible pathomechanisms such as
failure of the ubiquitine-proteasome-system, these seem
to account for a small minority of cases only [13]. All of
these aetiologic mechanisms have been reported by
numerous groups using a wide array of methods, but still
it has not been possible to convert these advances in
knowledge into therapeutic strategies. It therefore has
been suggested recently that research on PD should move
away from traditional targets and methods [14].

Previous work has shown the high potential of proteom-
ics in analysing the molecular changes in parkinsonian
brains [15,16] without the restrictions imposed by e.g.,
the availability of antibodies against suspected candidate
proteins. Still, current data on human brain tissue are very
scarce [15].

Expanding on this important work, we tried to identify
expression profiles of Substantia nigra pars compacta
(SNPc) in Parkinson's disease as compared to neurologi-
cally unaffected, healthy controls, using larger gels and

utilizing advanced technology in staining, spot detection
and picking [17]. We examined tissue samples from five
patients suffering from (neuropathologically confirmed)
idiopathic Parkinson's disease [18,19] without concomi-
tant neurological or malignant disease, and compared
these samples with tissue samples gained from five age-
and gender-matched controls. We also controlled for the
post-mortem interval (time from death to autopsy). Pro-
tein separation was done by two-dimensional polyacryla-
mide gel electrophoresis (2D-PAGE) followed by
SyproRuby™ gel staining to visualize proteins for auto-
mated spot picking. After that we identified a number of
stable and differentially expressed proteins using matrix-
assisted laser desorption/ionisation time-of-flight mass
spectroscopy (MALDI-ToF-MS).

In accordance with previous data, we measured a stable
expression of housekeeping proteins as well as markers
suitable for detecting differences in postmortem interval.
Furthermore, we also detected changes in proteins regulat-
ing iron and redox metabolism as well as changes in glial
proteins. These changes have been identified as hallmarks
of Parkinson's disease previously. More importantly how-
ever, we identified proteins in metabolic or structural
functions not yet regularly associated with idiopathic Par-
kinson's disease, such as enzymes critical in L-DOPA-
methylation, retinoid metabolism and novel redox pro-
teins such as SH3BGRL, thus paving the way for further
research on new targets in Parkinson's disease.

Results
Sample homogeneity
While the ratio of male to female was exactly equal
between groups (m:w = 3:2), the respective age of patients
and controls had to be subjected to Fisher's exact test in
order to detect any possible differences. No significant dif-
ferences between groups were shown. In a similar vein,
post-mortem interval data were examined. Again, no sig-
nificant differences were shown. This was taken as evi-
dence for matched groups in this regard (see Table 1 for
patient data).

Tissue preparation
All specimens were classified according to current neu-
ropathological criteria. On microscopic examination, we
detected a loss of neurons in the SNpc, depigmentation of
SNpc neurons, extracellular neuromelanin and clusters of
pigment-laden macrophages in all cases of idiopathic Par-
kinson's disease. On light microscopy, only 3 of 5 cases of
idiopathic PD showed Lewy bodies in the remaining neu-
rons. Immunohistochemical examination, however,
revealed Lewy bodies and Lewy neurites in all cases of idi-
opathic Parkinson's disease (see Figure 1).
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2D-PAGE and data analysis
Three gels were produced of each specimen. On average,
the analysis software detected 1923 (± 692) spots per gel.
This is comparable to silver staining protocols and vastly
superior to traditional Coomassie stains. Visual inspec-
tion yielded no significant differences in terms of spot
positions or relative densities. The correlation coefficients
after matching of all gels to the master gel ranged from
0.616 to 0.83 (mean 0.717), indicating a high similarity.
A representative sample gel is displayed in Figure 2, while

the master gel (background removed and smoothed with
a Gaussian kernel) is shown in Figure 3.

Statistical analysis with the Mann-Whitney Test as imple-
mented in PDQuest 7.10 yielded 221 differentially
expressed spots between groups (p ≤ 0.05). Of these, 25
spots were excised, and 16 were successfully identified
with MALDI-MS. Additional file 1 lists all differentially
expressed proteins. Their position on gel is shown in Fig-
ure 4.

Sample raw gel from PD groupFigure 2
Sample raw gel from PD group. Representative sample. 
Colors are inverted and contrast is enhanced for illustration 
purposes. Original size 24 × 19 cm, pH 4 – 7.

Table 1: Patient data.

Code Sex Age (y) post mortem interval (h) Parkinson +/-

MH2 f 94 43 -
MH3 f 89 32 -
MH4 m 66 24 -
MH6 m 64 30 -
MH7 m 74 22 -

mean ± SD. 77.4 ± 13.52 30.2 ± 8.26

MH5 f 92 24 +
MH8 m 81 22 +
MH9 m 91 62 +
MH10 m 73 46 +
MH11 f 84 24 +

mean ± SD. 84.2 ± 7.79 35.6 ± 17.74
Fisher Test p-value 0.48 0.4 0.4

across groups (n.s.) (n.s.) (n.s.)

Patient data of both PD positive and negative samples. f = female; m = male; SD = standard deviation; Fisher Test p-value = p-value according to 
Fishers Exact Test (values smaller than 0.05 are considered significant), n.s. = not significant.

Histological sample of Substantia nigra in Parkinson's diseaseFigure 1
Histological sample of Substantia nigra in Parkinson's 
disease. A. SNpc neuron with a Lewy body, extracellular 
neuromelanin and pigment-laden macrophages. Haematoxy-
lin/Eosin stain, 500×. B. Alpha-synuclein-positive Lewy neurit, 
400×.
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Apart from that, the software identified 321 spots show-
ing a strictly conserved pattern of expression (difference
less than ± 10%). Here we were able to obtain unambigu-
ous database matches for 12 (out of 16 picked) proteins
(shown in Additional file 2, marked with an asterisk [*]).
Nine more proteins that were neither significantly differ-
ent nor strongly conserved were also identified by MALDI-
MS or electro-spray ionisation (ESI, see also Additional
file 2). The respective positions can be taken from Figure
5.

Sequence coverage and accession numbers for all pro-
teins, as well as their mean densitometric values (± stand-
ard deviation) per group and their respective Mann-
Whitney p-values can be taken from Additional file 3.

Data of excised spots, for which a MALDI-MS identifica-
tion failed, are not given.

Differential proteins comprised elements of iron metabo-
lism: both ferritin H and ferritin L showed an increase of
about 33%, although only ferritin H reached significance.

Furthermore, differentially expressed proteins comprised
glutathione-S-transferase (GST) M3, GST P1, GST O1 and
SH3-binding glutamic acid-rich like protein (SH3BGRL),
all of which were expressed higher in PD than in controls.
On the other hand, GST M2, peroxiredoxins 2 and 6 as
well as Cu, Zn-superoxide dismutase (SOD1) showed a
constant pattern of expression. Also, glial and related pro-
teins were found to be differentially upregulated in PD,
such as glial fibrillary acidic protein (GFAP), glial matura-
tion factor beta (GMFB), galectin 1 and sorcin A. Differen-

tially expressed structural proteins comprised V-type
ATPase A1 (downregulated).

Proteins belonging to further metabolic pathways not reg-
ularly associated with PD were also found to be differen-
tially regulated, such as S-adenosyl homocysteine
(SAHcy) hydrolase 1 (L-DOPA methylation), displaying a
higher densitometric profile in PD than in controls. Alde-
hyde dehydrogenase A1 (ADH1A1) and cellular retinol-
binding protein 1 (CRBP1), both involved in aldehyde
metabolism, were also differentially expressed in an
increased manner as compared to controls. Additional
differentially regulated proteins included annexin V, beta-
tubulin cofactor A and coactosin-like protein 1.

Proteins that were similarly expressed in healthy or dis-
eased substantia nigra comprised cytochrome c oxydase
5A (COX5A), Rho GDP dissociation inhibitor (GDI)
alpha, actin gamma 1, creatine kinase B, lactate dehydro-
genase B, disulfide isomerase ER-60, Rab GDI beta, apoli-
poprotein D (ApoD) and glutamine synthetase. Other
constantly expressed proteins were 14-3-3 epsilon, crystal-
lin Mu1, methyl glyoxalase 1 (GLO1) and human col-
lapsin response mediator 2 (hCRMP2).

Finally, DJ-1 and UCH-L1 also belonged to the group of
proteins that showed no difference in their expression
profiles, both exhibiting a difference across groups of less
than 10%.

Post hoc correlation of densitometry with age and post-
mortem interval
Only densitometric values of Rho GDI alpha showed a
significant correlation with the post-mortem interval (rs =
0,7 [critical value of 0,632], p ≤ 0.05). No other proteins
were significantly associated with post-mortem interval or
age, respectively.

Discussion
Methods
Groups were matched for age and sex, as well as for the
post-mortem-interval (PMI). Besides, no diabetes mellitus
or malignant disease was known at the time of death in
any of the specimens.

Although sample MH9 demonstrated a higher PMI than
all other samples, we still believe our results to be valid, as
preparative work on substantia nigra from pig brains
stored for 24, 48 and 72 hours at 4°C did not show signif-
icant pattern changes (data not shown). Previous studies
showed that most post-mortem changes take place during
the first 24 hours [20], with only little changes after that.
More importantly, however, evidence for highly compara-
ble specimens stems from our proteome analysis itself: in
our study we show similar expression profiles for classical

Master gel from PD groupFigure 3
Master gel from PD group. Smoothed image (Gaussian 
kernel) of the group master gel after background removal. 
pH 4–7, 24 cm.
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household proteins, for which no relative difference in
expression was expected. Among these, we identified cre-
atine kinase B, lactate dehydrogenase B and glutamine
synthase, the last two of which showed an densitometric
difference of less than 10% across groups. Also, other
non-differentially regulated proteins like COX5A, actin
gamma 1, disulfide isomerase ER60, rab GDI beta, rho
GDI alpha and 14-3-3 epsilon all are part of basic meta-
bolic pathways, or they are ubiquitiously expressed struc-
tural or signalling proteins, for which a differential
expression could not be expected. We also assign crystal-
lin Mu1 to this group, as it might be implicated in cellular
osmoregulation or aminoacid metabolism [21]. In addi-
tion, proteins for which a positive correlation with post-
mortem interval or sample storage time (even at 4°C) had
been demonstrated previously, could be shown to be

expressed in a constant manner across groups. These pro-
teins comprised hCRMP2 [22], 14-3-3 epsilon and neuro-
filament L [20], all of which are part of neuronal or
general cell metabolism (hCRMP2 [23], 14-3-3 epsilon
[24]) or structure (neurofilament L). Finally, as in our
data we show a correlation with post-mortem interval for
rho GDI alpha only (which is very similarly expressed
across groups), we take this as evidence for a good match
between groups in this regard.

Familial Parkinson's Disease
We identified two proteins that are involved in certain
forms of familial PD, namely DJ-1 and UCH-L1. Both are
found to be expressed in a highly similar manner in both
groups (difference of means less than 10%, respectively).
This is in congruence with the results by Basso and col-

Differentially expressed proteinsFigure 4
Differentially expressed proteins. Gaussian representation of differentially expressed spots, n = 16. ppm = parts per mil-
lion, SSP = Standard Spot Number, blue bar = average density of the Parkinson group, red bar = average density of the Control 
group.
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leagues [15], who also found a constant expression of
UCH-L1 in an experiment using a similar approach to
ours. Similarly, a recent genetic analysis has found no
association between UCH-L1 and Parkinson's disease
[25]. On the other hand, Choi and colleagues [26]
described oxidative modifications and a decrease of UCH-
L1 in frontal cortex of PD patients. Yet, there is the caveat
that frontal and nigral pathology might differ signifi-
cantly, as will be shown again below. As for DJ-1, it has
been demonstrated that only one of the pathogenic muta-
tions actually leads to a downregulation of this mitochon-
drial protein [27]. Therefore, mere changes in the protein
level do not seem to be responsible for its pathogenic
potential. Regarding our results, we do not find any evi-
dence for a differential involvement of both DJ-1 or UCH-
L1 levels in idiopathic PD.

Neuronal Cell Death
ApoD is regarded to be a marker of neuronal cell death.
Increases in protein levels have been described in Alzhe-
imer's disease [28,29], and very recently in Parkinson's
disease [30]. In our study, we find an increase of about
33% in PD, which, however, does not reach significance.

Annexin V, on the other hand, is expressed significantly
higher in PD. This protein plays a role in apoptotic cell
death (but also necrosis) by shielding exposed phosphati-
dyl serine (PS) groups [31], a function which also has
been demonstrated in neuronal cell death [32]. In PD,
one previous study has demonstrated a decrease in
Annexin V concentrations in cerebrospinal fluid (CSF) of
patients [33]. The authors argue that this was due to a con-
sumption of Annexin V following neuronal cell death in

Non-differentially expressed proteinsFigure 5
Non-differentially expressed proteins. Gaussian representation of non-differentially expressed spots, n = 21. ppm = parts 
per million, SSP = Standard Spot Number, blue bar = average density of the Parkinson group, red bar = average density of the 
Control group.
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PD. While this nicely complements our findings, it
remains to be elucidated whether the amount of neuronal
death in PD brains is sufficient to lead to a measurable
consumption of Annexin V in CSF.

Iron Metabolism
The involvement of iron and iron storage metabolism has
been clearly established in idiopathic Parkinsons's dis-
ease, although the exact mechanisms remain unknown.
Altered levels of ferritin proteins have been shown con-
sistently in PD in a multitude of experiments [34-36]. Our
results confirm these findings: both ferritin L and H are
upregulated by about 33% in PD, although a statistically
significant increase can be demonstrated for ferritin H
only. As iron is mostly stored in nigral neuromelanin [37],
it can be speculated that the upregulation of iron-storing
ferritins is a compensatory mechanism against rising
nigral iron levels [38] in the face of a progredient decrease
in neuromelanin storage facilities.

Glutathione and Related Enzymes/Redox Metabolism
It has been shown consistently that levels of reduced glu-
tathione (GSH) are decreased in Parkinson's disease [39-
42]. Sporadically, changes have been reported in activity
(gamma-glutamyl transpeptidase, [43]) or immunoreac-
tivity (glutathione-peroxidase, [44]) of glutahione-related
enzymes. Therefore, it is a significant finding of our study
that several members of a class of GSH-related detoxifica-
tion enzymes are significantly increased in PD: glutath-
ione-S-transferase Mu3 (GST M3), glutathione-S-
transferase Pi1 (GST P1) and glutathione-S-transferase
omega1 (GST O1) all are affected. Interestingly, GST M2,
which we also identified, shows no differential regulation.
The observed increase in GST M3 and GST P1 could there-
fore mirror the attempt of surviving neurons and glial cells
to keep up redox defense mechanisms in a subenzyme-
specific manner, possibly due to substrate specifity in
detoxification reactions [45,46]. Particularly, polymor-
phisms in the GST P1 gene have been associated with PD
[47,48]. Additionally, it has been demonstrated that
increased levels of GST enzymes are neuroprotective in a
drosophila model of PD [49], further illustrating the
importance of GST enzymes in PD. We also would assign
GST-omega1 to this family of proteins. Little is known
about its functions, but it seems to be involved in the recy-
cling of ascorbic acid [50], which also has antioxidant
properties. Interestingly, the omega class of GSTs has been
implicated in modifying the age at onset for both Alzhe-
imer's and Parkinson's disease [51,52].

Finally, SH3-binding domain glutamic acid-rich like
(SH3BGRL) could be another enzyme with antioxidant
properties using GSH, because its sequence shows some
analogy to E. coli glutaredoxin 1 [53], although its exact
function again remains unknown. Structural analyses,

however, seem to indicate that SH3BGRL represents a
novel class of the thioredoxin fold proteins. It is thought
to be involved in redox-related bioprocesses in a unique
way, as it is structurally very dissimilar to the known
classes of thioredoxins [54]. This finding merits further
attention, as little is known about this novel enzyme class,
particularly about its possible involvement in neuropro-
tection and Parkinson's disease. Additionally, this multi-
tude of altered GSH-related proteins seems to warrant
further research on this topic, particularly in the light of
potentially GSH-preserving and neuroprotective
approaches that have been described just recently [55].

In contrast to the differential expression of several mem-
bers of the GST class of enzymes, we identified peroxire-
doxines 2 and 6 (PRDX2, PRDX6) to be expressed in a
constant manner, with PRDX6 differing less than 10%
between groups. Support for our finding stems from a
study performed by Power and colleagues, who showed
comparable levels of immunoreactivity in SN of patients
and controls [56]. Levels of PRDX6 were increased in cor-
tical tissue of PD patients, however, again pointing
towards different pathoaetiological mechanisms across
the brain. Interestingly, PRDX6 has membrane-antioxi-
dant properties [57] which depend on both GSH and GST
P1 [58], the latter of which we show to be elevated in PD.
It should be the aim of further studies to elucidate the
relationship between these enzymes and GSH levels in
Parkinson's disease.

Another enzyme with potentially important antioxidant
properties is SOD1, which is implicated in certain forms
of amyotrophic lateral sclerosis (ALS). Similarly to
PRDX6, we find a constant level of expression. This is in
congruency with previous work that demonstrated that
polymorphisms in the SOD1 gene seem to play no role in
both familial [59] and idiopathic PD [60]. On the other
hand, a Western Blot analysis of affected cortical tissue in
PD showed an increase of SOD1 [61], once more demon-
strating differences in pathology between cortex and SN.

Glial Activation
Mirroring increased glial activity in PD-affected nigral tis-
sue [62], we show an increase of glia maturation factor
beta (GMFB), which has neuroprotective properties by
inducing brain derived neurotrophic factor (BDNF) [63].
GMFB also promotes neuronal and glial maturation, lead-
ing to an increase in expressed GFAP in astrocytes [64].
GFAP also is increased in PD samples in our study, thus
nicely complementing the former finding. Most interest-
ingly, we also identified a second protein with neuropro-
tective properties: galectin 1 (GAL1, [65]), which is
overexpressed in our PD samples. Notably, galectin 1 ful-
fils its role by (again) inducing BDNF, but only when
present in a reduced state [66], illustrating the susceptibil-
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ity of this system against oxidative insults. Supplementing
our findings, we show an increase of sorcin A in PD tis-
sues. Sorcin A is involved in maintaining astrocyte home-
ostasis [67] and has been already been described to be
elevated in PD by Jin and colleagues [16]. In summary, we
find indicators of astrocytic activation, possibly exerting
neuroprotective effects in an attempt to salvage remaining
neurons.

AGE Metabolism
Metabolism of advanced glycosylation endproducts
(AGEs) has been debated previously in pathology of neu-
rodegenerative diseases like Alzheimer's disease (AD)
[68]. In particular, methyl glyoxalase 1 (GLO1) has been
shown to be an important enzyme detoxifying AGEs [69].
In our study we show an increased expression of GLO1 in
the Parkinsons's diesease group, which, however, does not
reach significance. It is worth of note in this regard that
the corresponding spot could not be detected in two out
of five samples of the control group, thus influencing
Mann-Whitney statistics. GLO1 expression levels have
been shown to be associated with AD stages previously
[69]. GLO1 activity, again, is limited by the availability of
reduced glutathion [70]. It has been shown previously
that reduced GSH levels lead to an increase in cellular
damage by protein glycation [71]. AGEs themselves can
be demonstrated to be associated with Lewy bodies in so-
called "Incidental Lewy body disease", which is viewed as
a preclinical form of PD by some authors, although this is
very much a matter of debate and final proof is lacking. It
could be speculated in analogy that AGE formation is part
of very early processes in the course of PD [72,73].
Although we could not show a significantly differential
expression of GLO1, its dependence on GSH could lead to
a reduced activity. Therefore, research on AGEs and
GLO1-mediated detoxification and its dependence on
GSH should provide helpful insights on early PD pathol-
ogy, maybe even leading to new therapeutic strategies as
proposed for AD [74].

Retinoid Metabolism
Cytosolic aldehyde dehydrogenase (ALDH1A1) has been
described to be expressed specifically in dopaminergic
neurons in the human substantia nigra [75]. There, it is
involved in dopamine metabolism [76] and in detoxifica-
tion of aldehydes such as 4-hydroxynonenal [77,78].
Therefore, it is worth of note that ALDH1A1 is signifi-
cantly reduced in PD in our samples. Similar findings
have been reported by several other authors using differ-
ent techniques [16,79,80]. This might reflect the fact that
dopaminergic neurons, of course, are reduced in number
in PD, but it also constitutes an additional vulnerability
against neurotoxins. In this context, it is an interesting
finding that cellular retinol binding protein 1 (CRBP1) is
elevated in our PD samples. CRBP1 binds retinol and ret-

inal and transports them to specific aldehyde dehydroge-
nases, where e.g., retinal is metabolized to retinoat [81].
This latter agent is essentially involved in dopaminergic
transmission in mice [82], therefore an increase in CRBP1
could reflect a compensatory mechanism for the afore-
mentioned loss of ALDH1. Additionally, CRBP1 upregu-
lation is thought to be the driving mechanism to increase
retinol influx into cells [81]. Retinoids are essential in
midbrain dopaminergic homeostasis, as demonstrated by
Nurr1-deficient mice. Nurr1, an orphan nuclear receptor
that forms heterodimers with the retinoic acid receptor
RXR, has been shown to be crucial for DA neurons in the
midbrain: knockout mice lacking the gene for Nurr1 fail
to develop dopaminergic neurons in the mesencephalon
[83]. Both findings highlight the importance of retinoid
metabolism in PD, which received relatively little atten-
tion in Parkinson research until now.

Structure and Cytoskeleton
Altered levels of structural proteins have been demon-
strated in neurological and psychiatric disorders using
proteomic assays before [15,16,84]. Therefore, the
increase of beta tubulin cofactor A (binding to tubulin)
and coactosin-like protein 1 (binding to F-actin) could be
indicative of a structural reorganisation of parkinsonian
substantia nigra. Additionally, we find a decrease in V-
type ATPase subunit A1 (V-ATPase A1). This protein is
adressed specifically to nerve terminals, where it presum-
ably is involved in synaptic vesicle maintenance [85].
Therefore, a decrease of this synapse associated protein
could nicely mirror the reduction of afferent synaptic ter-
minals to substantia nigra, which has been described in
PD using PET just recently [86], and the consequences of
which have not been studied in detail so far.

L-DOPA Methylation
The observed increase of S-adenosyl homocysteine hydro-
lase (SAHcy hydrolase) in the Parkinson group can be
explained by an increased methylation metabolism of L-
3,4-dihydroxyphenylalanine (L-DOPA), mediated by cat-
echol-O-methyl transferases (COMTs). These enzymes
use S-adenosyl-methionine (SAM) as a methyl donor,
leaving S-adenosyl-homocysteine (SAH) as a residue [87].
SAH is then converted to homocysteine by the aforemen-
tioned adenosyl homocysteine hydrolase. Although seem-
ing paradoxical at first, this increased L-DOPA
methylation metabolism in PD can be explained itself by
the usually applied external supplementation of L-DOPA:
patients treated with L-DOPA show a decrease of SAM
[88] and an increase in methylation products and homo-
cysteine [89], while patients treated with dopamine ago-
nists [90,91] or patients additionally treated with COMT
inhibitors [92] do not exhibit such changes. We are able
to demonstrate the missing link between these findings
for the first time by showing an increase of an essential
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enzyme is this metabolic chain. Although the clinical rel-
evance of increased homocysteine levels, a known cardio-
vascular risk factor, is not known currently for Parkinson's
patients [93], this evidence could be taken to advocate a
concurrent treatment with COMT inhibitors early in the
disease, although further studies are needed on that
account.

Conclusion
Our study leads to several conclusions. First of all, we
demonstrate the suitability and potential of this approach
in investigating neurodegenerative diseases. We also
describe a set of epiphenomena involving tissue structure
and L-DOPA metabolism that can be expected given the
known changes of parkinsonian substantia nigra, but
which may also have clinical implications, as seen in the
case of L-DOPA methylation and homocysteine levels.
Beyond that, we show that a multitude of proteins could
be involved in the pathogenesis of Parkinson's disease,
many of which interact.

Particularly, we show that in Parkinson's disease, redox
mechanisms are altered severely, but in a distinct manner.
While it is obvious that GSH dependent enzymes or pro-
teins are affected the most (with GSH independent redox
enzymes being relatively spared), there seems to be a dif-
ferentiation within the class of GST enzymes itself, as
illustrated by the constant expression of GST-M2. This cer-
tainly warrants further investigation. It is interesting to
note that the broadly recognized strain on the GSH system
has impacts well beyond the known GST class of enzymes,
as shown by the differential regulation of the novel pro-
tein SH3BGRL, which we demonstrate for the first time,
and its possible implications for GLO1 activity. Particu-
larly, AGE formation and detoxification and their depend-
ance on GSH should receive further attention, as these
factors could be very early contributors in the course of
Parkinson's disease. We also would like to put some
emphasis on examining changes in retinoid metabolism,
as we are able to demonstrate the differential expression
of two related proteins, both of which can be implied in
dopaminergic neuronal homeostasis.

Finally, a differential expression of proteins involved in
familial PD, such as DJ-1 and UCH-L1, does not seem to
play a prominent role in the pathoaetiology of our sam-
ples. Therefore, research should not concentrate on famil-
ial patterns of this neurodegenerative disease alone.

Future work should expand both on examining the whole
brain and focussing on subcellular fractions of idiopathic
Parkinson's disease brains, as has been shown just
recently [16,94]. Pursuing such an approach should shed
further light on the aetiology of Parkinson's disease, hope-

fully paving the way to developing disease modifying or
even therapeutic strategies.

Methods
Chemicals
Immobilized pH gradient (IPG) strips and IPG buffer
were obtained from Amersham Pharmacia (Freiburg, Ger-
many). Agarose, Bradford stain, TRIS buffer and acryla-
mide (Rotiphorese 30) were purchased from Roth
(Karlsruhe, Germany). Alpha-cyano cinnamic acid and
iodoacetamide were obtained from Sigma (Deisenhofen,
Germany), CHAPS buffer was obtained from AppliChem
(Darmstadt, Germany), while bromophenol blue and
Sypro-Ruby were purchased from Bio-Rad (Munich, Ger-
many). The "complete mini" proteinase inhibitor kit was
provided by Roche (Mannheim, Germany) and was used
as indicated by the manufacturer's instructions. All other
chemicals were obtained from Merck (Darmstadt, Ger-
many) and were used without further purification.

Tissue specimens
Midbrain specimens were obtained with patients'
informed consent in the course of regular clinical autop-
sies performed at the Department of Pathology, Klinikum
Darmstadt. All procedures were performed according to
the Helsinki Declaration. We included five specimens of
clinically diagnosed and neuropathologically confirmed
cases of idiopathic Parkinson's disease (3 m, 2 w, aged
84.2 ± 7.8 years, post-mortem interval [PMI] 35.6 ± 17.4
h). Current neuropathological diagnostic standards were
applied [18,19]. Exclusion criteria were concurrent dis-
eases of the CNS or malignant diseases as well as diabetes
mellitus. Furthermore, we included five age- and gender-
matched controls without any known neurological dis-
ease, as confirmed by autopsy (3 m, 2 w, aged 77.4 ± 13.5
years, PMI 30.2 ± 8.2 h). Age and PMI were subjected to
Fisher's exact test to detect significant differences between
groups.

One slide of the left part of the midbrain (2 mm thick)
including parts of the left sided substantia nigra and
nucleus ruber was excised for histologic examination in
each case. Tissues were processed by fixation in 10% buff-
ered formalin, followed by paraffin embedding for rou-
tine light microscopy and immunohistochemical studies.

4 μm sections were stained with haematoxylin and eosin.
Immunohistochemical staining was performed by using a
Ventana Benchmark automated slide stainer (Ventana,
Tuscon, AZ) and an avidin-peroxidase detection kit (Ven-
tana, Tuscon, AZ). The applied antibody was directed
against alpha-synuclein (Zytomed Systems, Berlin, Ger-
many).
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The remaining tissue was frozen at -80°C until further
analysis.

Protein extraction
Substantia nigra pars compacta (SNpc) was extracted from
deep-frozen brain samples using microscopic sights and
ice-cooled sterile surgical instruments at a room tempera-
ture of 4°C. Tissue samples (0.125 g – 1.018 g) were
homogenized by 10 strokes of an ice-cooled Dounce
homogenisator with 7 μl lysis buffer (7 M urea, 2 M thiou-
rea, 4% CHAPS, protease inhibitor "complete mini" 1×)
per mg tissue. DNA desintegration was achieved by 3
cycles of sonication (30 s, with 30 s ice cooling in
between). Insoluble components were removed by cen-
trifugation at 40.000 g for 30 minutes at 4°C. Superna-
tants were recovered, and protein content was estimated
by the method of Bradford [95].

2D-PAGE and data analysis
2D-PAGE was performed according to standard protocols,
with some slight modifications. Three gels were produced
of each specimen to ensure reproducibility. 100 μg pro-
tein were diluted to 360 ml with 7 M urea, 2 M thiourea,
4% CHAPS, 2.5% IPG buffer pH 4–7, 18 mM dithiothrei-
tol (DTT), 1× "complete mini" protease inhibitor mix and
traces of bromophenol blue. 90 μl basis buffer (7 M urea,
2 M thiourea, 4% CHAPS, 2.5% IPG buffer pH 4–7, 91
mM dithiothreitol and traces of bromophenol blue) were
added. The resulting 450 μl were loaded on 24 cm IPG
strips with a linear pH 4–7 by in-gel rehydration (14 h).
IEF was performed in an IPG-Phor (Amersham Pharma-
cia) with the following protocol: 1 h at 200 V, 1 h at 500
V, 1 h at 1000 V, 53 min at a linear gradient to 8000 V and
9 h at 8000 V resulting in 77,700 Vh, with a constant tem-
perature of 20°C. Prior to SDS-PAGE, the strips were
equilibrated and alkylated 20 min each with 12.5 ml 6 M
urea, 50 mM Tris-HCl pH 8.8, 30% glycerol, 4% SDS and
65 mM DTT in the first step and 260 mM iodoacetamide
and traces of bromophenol blue in the second step. SDS-
PAGE was performed using gels sized 25.5 × 20.5 × 0.01
cm3, with 12.8% acrylamid/bisacrylamid produced in a
Hoefer DALT vertical casting system (Amersham Pharma-
cia). The second dimension was carried out in an Ettan
DALT system (Amersham Pharmacia) using 5 W/gel for
50 min followed by 15 W/gel for 300 min. The run was
interrupted when the bromophenol blue front reached
the lower end of the gel. Gels were fixated with 10% meth-
anol and 7% acetic acid and stained with Sypro Ruby flu-
orescent dye according to manufacturer's instructions.
Gels were digitized using a Fujifilm FLA-5000 laser scan-
ner (excitation wavelength 473 nm, emission wavelength
≥580 nm) with a resolution of 100 × 100 μm2 and a pixel
depth of 16 bit (gray values). Images were saved in TIFF
format without further manipulation. Data were analyzed
using the commercial PDQuest package, version 7.10

(BioRad). Background and noise were removed and gels
were transformed to "Gaussian Images", fitting spots to a
Gaussian distribution. Spots were quantitized by their rel-
ative volume (spot volume divided by volume of all valid
spots) in ppm in order to account for any differences in
total protein content. A representative master gel was cho-
sen, to which all other gels were matched. Statistical anal-
ysis was carried out by performing the Mann-Whitney
Signed Rank Test (U-Test) on each group of spots with a
significance level of p ≤ 0.05 ("differential spots") within
the software package PDQuest 7.10, highlighting differen-
tially expressed spots across the groups "Parkinson" and
"Controls". As PDQuest only allowed filtering for spots
with a certain level of significance and did not return dis-
crete p-values for each comparison, spot intensities also
were analyzed separately with the "WinSTAT" add-in (R.
Fitch Software, Bad Krozingen, Germany) for "Excel
2000" (Microsoft Deutschland GmbH, Untersch-
leißheim, Germany) in order to calculate precise p-values.

Additionally, spots with a highly similar expression pro-
file were identified by highlighting spots with a expression
difference of less than ± 10% ("strictly conserved spots").
Finally, a random set of similarly expressed spots were
chosen across the gel in order to sample additional infor-
mation on non-differentially expressed spots over the
whole range of pI and MW values ("conserved spots").

Spot excision and tryptic digestion
All differentially expressed spots with a densitometric
amount of 500 ppm or more were marked for cutting.
From the conserved or strictly-conserved group of spots
only a random sample of about 35 spots were marked for
excision. Spots were excised from a Sypro-Ruby dyed pre-
parative gel loaded with 200 μg protein using the "Pro-
teome Works" robotic spot cutter (BioRad). Spots were
excised avoiding cross-contamination. Gel pieces were
washed as follows: 1 × 20 min methanol 10%, 2 × 20 min
HPLC grade water, 2 × 20 min acetonitrile 50%, 1 × 15
min acetonitrile 100% with 100 μl each per spot. The
supernatant was removed, spots were dried for 5 min. Pro-
teolysis was performed by adding 15 μl NH4HCO3 (50
nM) and 1 μl trypsin (50 ng/μl, solved in 1 mM HCl) and
incubating the spots for 6 h.

MALDI MS
Due to resource restrictions, only 25 differentially
expressed (but all 34 non-differentially expressed) spots
were analysed in the spectrometer. The hydrolysate was
acidified with 15 μl trifluoroacetate (TFA) 0.2% and
shaken for 30 min. ZipTip C18 pipette tips were equili-
brated with acetonitrile 50% followed by TFA 0.1%. 10 μl
peptide mixture were loaded onto the ZipTips. The pep-
tides were eluted onto the MALDI target plate with a satu-
rated solution of alpha-cyano-4-hydroxycinnamic acid
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40% in 30% acetonitrile and 0.06% TFA 0.2%. The target
plate was allowed to dry for 10 min before measurement.
MALDI spectra were acquired using a "Voyager DE Pro"
mass spectrometer (Perseptive Biosystems) fitted with a
UV laser (wavelength 337 nm) and delayed extraction
technology in reflector mode. Acceleration voltage was set
to 20 kV, grid voltage percentage was set to 75% and guide
wire voltage to 0.02%. Spectra were obtained by averaging
1000 laser shots, sweeping the whole plate homogene-
ously. Calibration was achieved by measuring a standard-
ized peptide mixture (Sequazyme Mix 1 and Mix 2,
Perseptive Biosystems) with monoisotopic m/z of
904.4681, 1296.6853, 1570.6774, 2093.0867 and
2465.1989. Additionally, autotryptic trypsin fragments
with m/z 842.50 and 2211.10 were used for calibration. In
one case (protein SSP 5133), electrospray ionization (ESI)
technology was employed to identify the protein.

Database search
Peptide masses were matched against NCBI and SwissProt
databases using MASCOT [96] and ProFound [97] algo-
rithms. Peptide tolerance was set to ± 100 ppm and up to
2 missed cleavages. A protein was considered as identified
when a significant hit was scored in at least one search
engine and there was a large gap in score to the next best
protein. In MASCOT, the sequence coverage had to equal
or exceed 20% for the protein to be considered a signifi-
cant hit. For the ESI data search peptide mass tolerance
was set to ± 2 Da and fragment mass tolerance was set to
± 0.8 Da.

Post-hoc analysis using Spearman's Rho
Spot volumes of all identified spots were subjected to
Spearman's Rho rank order test to test for significant asso-
ciations with patients' respective age and/or post mortem
interval.
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