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Abstract
Background: Mitochondrial proteins are central to various metabolic activities and are key
regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with
disease. Large scale protein data are required to capture the mitochondrial protein levels and mass
spectrometry based proteomics is suitable for generating such data. To study the relative quantities
of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic
method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides.

Results: When fibroblast cultures were exposed to mild metabolic stress – by cultivation in
galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of
individual proteins were altered. Proteins of respiratory chain complex I and IV were increased
together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular
strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a
median standard error below 6%, were obtained for the following mitochondrial pathways: fatty
acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism,
mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis.

Conclusion: The robust analytical platform in combination with a well-defined compendium of
mitochondrial proteins allowed quantification of single proteins as well as mapping of entire
pathways. This enabled characterization of the interplay between metabolism and stress response
in human cells exposed to mild stress.

Background
Mitochondrial activity is essential for human health and
the number of disorders known to be related to mito-
chondrial dysfunction is increasing. Defects in mitochon-
drial functionality cause a wide range of diseases [1],
including respiratory chain defects [2], fatty acid oxida-

tion deficiencies [3] and neurodegenerative diseases [4].
Mitochondrial proteins are important regulators of apop-
tosis and mitochondrial dysfunction is an important fac-
tor in aging, diabetes mellitus, cancer [5,6], cardiovascular
disease [7,8] as well as Alzheimer's and Parkinson's dis-
ease [9]. Monogenetically inherited mitochondrial defects
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are commonly detected indirectly from metabolite signa-
tures in blood or urine, or by sequencing of candidate
genes. For more specific assessment of mitochondrial
activity, enzymatic activity can be measured on mitochon-
dria isolated from cultivated patient fibroblasts from
which selected mitochondrial protein markers also can be
quantified using immunological detection. However, a
proteomic survey might be advantageous in the investiga-
tion of complex defects where several factors may contrib-
ute to disease. Relative quantification of proteins from
mitochondrial pathways would enable the detection of
imbalanced metabolism and stress in mitochondria, serve
as a starting point for the selection of disease marker pro-
teins and be used for exploration of disease etiology. The
human mitochondrial proteome has been computation-
ally predicted to contain proteins from at least a thousand
different genes [10,11].

Experimental approaches to define the mitochondrial
proteome using mitochondria purified with gradient cen-
trifugation have yielded more than six hundred mito-
chondria-associated proteins from human mitochondria
[12,13] and even higher numbers in studies on mouse
mitochondria [11,14]. These studies have mainly been
discovery studies targeted to identify as many proteins as
possible from a large amount of purified mitochondria.
From a clinical perspective the proteomic methods should
be applicable to a low amount of patient material and
they should be quantitative. Reliable and fast quantifica-
tion methods for mass spectrometry (MS) based proteom-
ics are being developed and support the growing
applications of proteomic techniques in research and
diagnosis of genetic and metabolic disorders [15]. A suit-
able method for large scale analysis of relative protein
quantities is mass spectrometry analysis of peptides chem-
ically labeled by isobaric tags for relative and absolute
quantification (iTRAQ) [16]. iTRAQ allows simultaneous
determination of both identity and relative abundance of
peptides in tandem mass spectra and has gained popular-
ity due to its high sensitivity and robustness, and because
it allows simultaneous measurement of 4–8 samples [17-
20].

The present work establishes an iTRAQ-based proteomic
method for relative quantification of mitochondrial pro-
teins in human fibroblasts. In order to obtain comprehen-
sive proteome data we manually assembled and curated a
compendium containing proteins from the mitochon-
drial metabolism and stress response systems. Our
method was tested on human skin fibroblasts, which in
many cases is the only tissue material readily available
from patients. Proteomics of cultivated fibroblasts is suit-
able for studying the consequences of human diseases at
the protein level, and cultivation in controlled environ-
ments enables studies conducted under stressful condi-

tions. Characterization of cultivated fibroblasts with
respiratory chain deficiencies has previously been per-
formed by cultivation in galactose. Galactose cultivation
results in altered energy metabolism – a mild metabolic
stress- which enhances the effects of mitochondrial disor-
ders [21,22]. In the current work we studied the mito-
chondrial proteome as a function of cultivation in
galactose versus glucose medium and describe how wild
type cells respond to the metabolic stress.

Materials and methods
Cell cultures
Primary normal human dermal fibroblasts (NHDF) from
newborn males (Camprex #CC-2509 annotated NHDF-1
and ATCC #CRL-2429 annotated NHDF-2), were culti-
vated at 37°C and 5% (v/v) CO2 in RPMI 1640 medium
(BioWhittaker) containing 10% (v/v) fetal calf serum
(BioWhittaker). Cells for experiments were used between
passage 9 and 13. After preculturing, the cultures were
transferred to 150 cm2 flasks and harvested at sub-conflu-
ence after approximately 72 h in RPMI 1640 medium
(with 2 g/l glucose), or glucose-free RPMI 1640 medium
supplemented with 2 g/l galactose, both supplemented
with 10% fetal calf serum.

Mitochondrial enrichment
Cells from four 150-cm2 flasks were resuspended in 10 ml
MOPS buffer (10 mM, pH 7.2) containing sucrose (200
mM), EDTA (0.1 mM) and protease inhibitor (Complete
from Roche). The cells were disrupted on ice by 30 strokes
in a Dounce homogenizer. Cell debris was removed by
two centrifugation steps at 600 × g for 7 minutes, where
the pellets were discarded and the resulting supernatant
was centrifuged at 10,000 × g for 15 min. The pellet con-
taining mitochondria was washed in the MOPS buffer
(pH 7.2) without protease inhibitor, centrifuged at
10,000 × g for 15 min and stored at -80°C. After adding a
sample buffer from the iTRAQ kit (Applied Biosystems,
Foster City, California, USA) consisting of 0.5 M triethyl-
ammonium bicarbonate buffer (pH 8.5) with 0.1% SDS,
the samples were treated with ultrasonication (Branson
Sonifier 250, Branson Ultrasonics corp., Danbury, USA) at
output control 3 and 30% duty cycle for three rounds of
10 seconds with one minute on ice between each round.

Western blot analysis
The mitochondrial protein samples, 6 μg per well, were
separated on a 12% SDS-bis-Tris polyacrylamide gel (Bio-
Rad). Each sample was loaded in triplicate, and a standard
dilution series with five concentrations in duplicate was
loaded on each gel for quantitative purposes. Blotting to a
PVDF membrane was performed on a Semi-Dry Transfer
Cell (BioRad). The detection procedure was according to
instructions from the manufacturer of ECL Plus Western
Blotting Detection Reagents (GE Healthcare). The mem-
Page 2 of 10
(page number not for citation purposes)



Proteome Science 2009, 7:20 http://www.proteomesci.com/content/7/1/20
brane was incubated over night with primary antibodies
against NDUFA9 (MitoSciences, Eugene, Oregon, USA)
and VDAC1/porin (Abcam, Cambridge, Massachusetts,
USA). The blots were scanned on ChemiDoc (UVP,
Upland, California, USA) and densitometry was per-
formed in ImageQuant 5.0 software (Molecular Dynam-
ics, Sunnyvale, California, USA). The ratio between the
protein amount of NDUFA9 and the loading control
VDAC1 was calculated for each lane and the three result-
ing values from glucose and galactose samples were com-
pared.

iTRAQ labeling, IEF separation and purification of 
peptides
Protein concentrations in the samples enriched for mito-
chondria were measured by the Bradford assay (Bio-Rad
Laboratories) and 100 μg of each protein sample was
processed according to iTRAQ manufacturer's instruction
(Applied Biosystems). Each protein sample was digested
with 2 μg trypsin (Trypsin Gold from Promega, Madison,
Wisconsin, USA) overnight at 30°C in iTRAQ sample
buffer. Different combinations of the 4-plex iTRAQ labels,
two labels per LC-MS/MS run, were used in the four differ-
ent experiments, to minimize risks of systematic errors.
After iTRAQ-labeling the peptide samples were combined
and subsequently purified using a strong cation exchange
(SCX)-cartridge; Strata from Phenomenex (Torrence, Cal-
ifornia, USA). Before loading, the samples were adjusted
to pH 3.0 by dilution at least a factor ten in 10 mM phos-
phoric acid with 25% acetonitrile (AcN) and pH 3.0,
which also served as washing buffer. The peptides were
eluted with a mixture of 5% of ammonia and 30% meth-
anol and subsequently vacuum-dried. The peptides were
separated by isoelectric focusing (IEF) on a Multiphor II
unit (Pharmacia Biotech AB, Uppsala, Sweden) using an
Immobiline Drystrip Gradient (IPG) pH 3.5–4.5 gel (GE
Healthcare, Uppsala, Sweden), a pH range previously
shown to give high proteome coverage [23]. The sample
was dissolved in rehydration solution, containing 8 M
urea, 0.5% IPG buffer 3.5–5 (GE Healthcare) and 0.002%
bromophenol blue, and the 18 cm Drystrip was rehy-
drated overnight. IEF was run for 59 kVh with the follow-
ing program: 1 min gradient from 0–500 V, 1.5 h gradient
from 500–3500 V followed by 16 h at 3500 V. The gel
strip was wiped with filter paper to remove excess cover oil
from IEF and cut in ten pieces of equal size. Peptides were
extracted from the gel in two steps, of one hour each, with
100 μl 5% AcN, 0.5% trifluoracetic acid (TFA), and puri-
fied on PepClean C-18 Spin Columns (Pierce, Rockford,
Illinois, USA) according to manufacturer's protocol.

Nano-liquid chromatography and mass spectrometry (MS) 
analysis
The peptide mixtures were separated by liquid chromatog-
raphy (Easy nLC from Proxeon, Odense, Denmark) cou-

pled to mass spectrometry (LTQ-Orbitrap, Thermo Fisher
Scientific, Waltham, USA) through a nano-electrospray
source with stainless steel emitter (Proxeon). The peptides
were separated on a reverse phase column, 75 μm in
diameter and 100 mm long, packed with 3.5 μm Kromasil
C18 particles (Eka Chemicals, Bohus, Sweden) at a flow of
300 nL/minute using a 100 minutes gradient of AcN in
0.4% acetic acid; starting with 5% and ending with 35%
AcN. The mass spectrometry detection constituted of full
scan (m/z 400–2000) with Orbitrap detection at resolu-
tion R = 60,000 (at m/z 400) followed by up to four data
dependent MS/MS scans, with linear ion trap (LTQ) detec-
tion of the most intense ions. Dynamic exclusion of 25 s
was employed as well as rejection of charge state +1 and
real time recalibration [24] by lock mass on m/z
445.120025. Pulsed Q dissociation (PQD) fragmentation
was performed with activation time of 0.1 s and activation
Q of 0.7. For efficient fragmentation and detection of
iTRAQ reporter ions, normalized collision energy of 33
was used since optimization experiments showed that it
gave the highest number of identified peptides with
iTRAQ signal. Selected ion monitoring (SIM) was
designed as data dependent scanning targeting m/z values
of proteotypic peptides (typically two peptides per pro-
tein), which had been identified in the previous experi-
mental runs. SIM analyses were performed using full scan
in LTQ, followed by SIM in Orbitrap (with a mass width
window of ± 3 m/z units) and MS/MS in LTQ. Thus the
fragmentation scans and acquisition of iTRAQ signal in
the SIM analyses were performed in the same way as in the
previous standard experimental runs. Approximately 35
peptides were on the inclusion list per run, with retention
time limit of ± 5 minutes.

Database searches and statistics
The raw data files were processed using extract_msn.exe
(Thermo Fischer Scientific) to generate peak lists of the
tandem spectra. The processed data was searched with
Mascot http://www.matrixscience.com version 2.2.04
(Matrix Science, London, UK), which was used for protein
identification and iTRAQ reporter quantification. Full
scan tolerance was 5 ppm, MS/MS tolerance was 0.9 Da,
and up to two missed cleavages were accepted. Fixed mod-
ifications were those originating from iTRAQ protocol:
iTRAQ-4plex of lysine and N-terminal and methylthio
modification of cysteines, whereas oxidation of methio-
nine and iTRAQ-4plex of tyrosine were set as variable
modifications. The threshold of significance was set to
0.001, which resulted in a false discovery frequency of less
than 0.003 when searched in Mascot against the decoy
database of random sequences. In each study, all gener-
ated peak lists, from standard analyses as well as from SIM
analyses, of the ten different fractions of peptides were
merged together. The merged files were searched against
the IPI human database version 3.45 (71,983 sequences,
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released 6/10/2008) using the MudPIT scoring algorithm
of Mascot. Protein identification data can be found in
additional files [see Additional files 1, 2, 2 and 4].
Throughout the manuscript the HGNC symbol http://
www.genenames.org/ obtained from the IPI-database was
used to refer to protein hits. iTRAQ values were reported
for proteins with three or more measured iTRAQ values,
where each peptide should have an expectation value of
0.02 or below. iTRAQ quantitation was performed in Mas-
cot, were normalization to summed intensities was
applied to compensate for possible variation in starting
material. For details see http://www.matrixscience.com/
help/quant_config_help.html. Three iTRAQ-studies were
performed comparing galactose and glucose cultivation of
the fibroblast NHDF-1. The three studies were performed
at different times and on independent cultivations. The
iTRAQ-ratio of galactose to glucose values were calculated
for each protein from the three independent studies giving
independent triplicate values. Average galactose to glu-
cose ratios for each protein was reported as significantly
different from 1.0 if they passed two tests 1) a threshold
test of two times the global standard error (2 × 0.055 =
0.11) and 2) a two-tailed student's T-test for equal vari-
ance data.

Results
We have performed proteomic analyses on mitochondria
from cultivated human skin fibroblasts to obtain an over-
view of the mitochondrial protein levels and thus detect
stress response and unbalanced metabolism. The method,
including all steps from cultivation to data analysis, was
developed and standardized to obtain robust and easily
interpretable data.

Amount of mitochondrial proteins in galactose and glucose 
cultivations
Cultivation in the slowly metabolized sugar galactose is a
way of inflicting metabolic stress on the cell [21,25].
Fibroblasts were cultivated in galactose medium or in
standard glucose medium, and mitochondria were subse-
quently enriched by differential centrifugation and sub-
jected to proteomic analysis. The purpose of galactose
cultivation was to investigate the effect of metabolic stress
and at the same time estimate analytical sensitivity and
reproducibility of the proteomic method. The first step in
the process of achieving mitochondrial proteome data
was to enrich mitochondria. This organelle enrichment
was instrumental since it decreased the complexity of the
samples, and thus favored mass spectrometry detection of
the mitochondrial proteins. The enrichment by differen-
tial centrifugation was relatively quick and was thus likely
to be gentle to the mitochondria and their proteins. By
assessing the enrichment factor an estimate of the amount
of mitochondrial proteins in the cell was obtained. For
this purpose an initial iTRAQ experiment was carried out,

where the levels of mitochondrial proteins in enriched
mitochondria were compared with those in total cell
extracts (Figure 1). We detected 39 mitochondrial pro-
teins with quantitative iTRAQ-ratios in all analyzed sam-
ples, and the average enrichment factor was 9.9 (SEM =
0.5) and 9.8 (SEM = 0.5) for cultivation in glucose and
galactose, respectively [see Additional file 5].

The fibroblasts exhibited decreased growth rate in galac-
tose medium; with approximately fifty percent longer gen-
eration time (data not shown). Since the mitochondria
from galactose and glucose cultivation had similar enrich-
ment ratios, it indicates that the slow growth rate in the
cultures with galactose was not due to altered mitochon-
drial protein amount. Subsequent studies were conducted
to explore the protein profiles of individual proteins
sorted into mitochondrial pathways.

Definition of mitochondrial pathways
Many mitochondrial pathways have been thoroughly
studied and the gene products to a large extent are known.
In order to facilitate interpretation of the proteome data
we divided the main mitochondrial activities into nine
different categories and defined the proteins belonging to
the respective categories [see Additional file 6]. In addi-
tion to four metabolic categories there are three categories
related to stress response, one to mitochondrial transla-
tion and one contains miscellaneous proteins. A criterion
for inclusion into the sorted lists was that the proteins had
previously been demonstrated or predicted to be localized
to mitochondria [11]. For energy metabolism the path-
ways of the KEGG database [26,27] were adopted as an
initial framework and manually curated using data from
Gene Ontology [28] and literature data. The metabolic
pathways are fatty acid oxidation (FAO), tricarboxylic (or
citric) acid cycle (TCA) merged with pyruvate dehydroge-
nase (PDH), respiratory chain (RESP) and amino acid
metabolism (AA). The other categories were primarily
built bottom-up from literature data. The antioxidant sys-
tems (ANTIOX) category is composed of proteins that
protect against oxidative stress; the translation (TRANS)
category contains proteins of the mitochondrial transla-
tion machinery and protein quality control (PQC) cate-
gory lists molecular chaperones and proteases. The
apoptosis and mitochondrial morphology (APOP) cate-
gory is composed of proteins known to play an important
role for mitochondrial stress response and for influencing
apoptosis regulation.

Robust protein profile data
The mitochondrial protein samples were digested and
labeled with iTRAQ reagent to obtain quantitative protein
profiles comparing the two metabolic states. Protein iden-
tifications with low signal intensities might result in false
positives and high analytical variance, and strict criteria
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were therefore applied to filter out such protein hits. First,
three independent cultivation studies were performed fol-
lowed by separate proteomic analyses. Second, only pro-
teins that passed strict MS data criteria in all three
experiments were included (see materials and methods).
The statistical criteria on the MS data comprised both the
protein identification probability and the peptide quanti-
fication procedure. Altogether, high quality data were
obtained for relative quantification of more than one
hundred mitochondrial proteins belonging to the path-
ways initially defined. For additional 30 proteins the ini-
tial experiments had quantitative data in only one or two
of the three studies. To obtain triplicate values and to
improve ion statistics, samples were subsequently re-ana-
lyzed on the MS using Selected Ion Monitoring (SIM), by
which those 30 proteins were preferentially measured.
Two peptides of each protein were put on an inclusion list
and the samples were re-analyzed with the SIM MS-
method. Following reanalysis, 136 instead of 116 proteins
had sufficient data for inclusion into the dataset of mito-
chondrial proteins (Figure 2).

Galactose versus glucose
A fibroblast line (NHDF-1) was cultivated on three occa-
sions in galactose and glucose and the mitochondrial pro-
tein profiles were compared. Figure 3 and Additional file
7 contains galactose to glucose ratios of the identified pro-
teins belonging to the defined functional categories. Sev-
eral respiratory chain proteins exhibited increased levels
as a function of galactose cultivation. The 13 detected
complex I proteins had between 4 and 55% increased lev-
els and for five of them the increase was statistically signif-

icant (Figure 3B). Proteins from all five respiratory chain
complexes were detected and three proteins of complex IV
and one of complex V also had significantly increased lev-
els. In other pathways the ratios were close to unity for the
majority of the proteins indicating that galactose did not
significantly distort those pathways [see Additional file 7].
Single proteins with altered levels in galactose grown cells
were NAD-dependent isocitrate dehydrogenase (HGNC
symbol IDH3A) of the TCA cycle (26% increment, p <
0.01) and dienoyl-CoA isomerase (ECH1) of FAO (37%
increment, p < 0.05). The other enzymes of TCA and FAO
were only mildly influenced in response to galactose (Fig-
ure 3A and 3C).

To assess the reproducibility an additional fibroblast cell
line (referred to as NHDF-2) was cultivated and analyzed
using the same proteomic method. All of the 136 previ-
ously detected proteins were successfully detected, and
only three of them had insufficient signal for quantifica-
tion. Moreover, 13 of the 16 proteins with statistically sig-
nificant change in the first study exhibited change in the
same direction in the second study. Two of the three pro-
teins that could not be confirmed (NDUFC2 and ATP5D)
deviated in the opposite direction only weakly (less than
six percent deviation from 1.0). For the third protein
(OXCT1) no data was obtained due to insufficient quan-
tification signal.

The MS based relative quantification of the complex I
component NDUFA9 consistently resulted in more than
35% elevation during galactose cultivation, although
some of the other proteins of complex I were not elevated.

Schematic picture describing the mitochondrial enrichment factorFigure 1
Schematic picture describing the mitochondrial enrichment factor. The mitochondrial enrichment factor was calcu-
lated as the average amount of 39 mitochondrial proteins (n = 39) in mitochondrial sample compared with the total cell sam-
ple. The enrichment factor represents an indirect measure of the relative amounts of mitochondrial proteins in the different 
fibroblast cultivations.
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To further confirm the NDUFA9 data we performed West-
ern blot analysis and densitometry on samples from
NHDF-1 and NHDF-2 (Figure 4). According to the data
from this analysis the protein level of NDUFA9 was ele-
vated 35% (p = 0.3) and 45% (p < 0.05) for NHDF-1 and
NHDF-2, respectively, corroborating the MS analysis.

Diseases related to mitochondrial function
Many mitochondrial proteins are involved in human dis-
eases and their corresponding genes have been listed in
the OMIM database of human diseases [29]. Additional
file 8 shows the 38 gene products identified in the present
study also described in OMIM. The detected proteins are
involved in a wide range of diseases; spastic paraplegia
(HSPD1), cancer (BAX, PHB), optic atrophy (OPA1),
ethylmalonic encephalopathy (ETHE1) and Parkinson's
disease (NDUFV2). The majority of the proteins are
involved in metabolic diseases [see Additional file 8].
Moreover, a couple of the proteins linked to disease,
NDUSF3 and NDUFS1 of respiratory complex I, were
found to be galactose regulated.

Discussion
Cultivated fibroblasts are commonly used for analyzing
mitochondrial enzymatic activity and for detection of res-
piratory chain defects. In this study we applied proteomics
for relative quantification of mitochondrial proteins and
managed to cover the main pathways of mitochondrial
activity obtaining in-depth data on energy metabolism
and stress response. We analyzed the response of fibrob-
last cells to galactose cultivation and found that galactose
resulted in increased levels of respiratory chain proteins.
Respiration is crucial for growth in the slowly metabo-
lized galactose [30] and fibroblast cells have previously
been shown to be unable to grow in galactose when com-
plex I or IV are defective [21,22]. Proteins of respiratory
chain complex I, and to some extent complex IV, were in
the present study found to be up-regulated in response to
galactose. This might be a way for the cell to cope with the
energy imbalance caused by galactose. Interestingly, a few

proteins of complex I (e.g. NDUFA9, NDUFS3 and
NDUFB9) were elevated to a higher degree than the rest,
indicating sub-stoichiometric regulation of these proteins.
Recently, it was shown that NDUFS3 was present in a
matrix-soluble assembly and in several membrane-bound
assemblies, including the holo-enzyme [31]. Further stud-
ies will have to elucidate whether the various complex I
subunits are present in different subassemblies, which
would explain the sub-stoichimetric relationship
observed in the present study.

Protein profiles from the other functional categories dis-
played less difference between galactose and glucose cul-
tivated cells. However, IDH3A, a part of the NAD+

dependent isocitrate dehydrogenase (NADH-IDH) of the
tricarboxylic acid cycle (TCA) was clearly increased when
galactose was used as carbon source. NADH-IDH cata-
lyzes the first NADH-yielding reaction of the TCA cycle,
described to have a high impact of the overall rate of the
TCA cycle and to be allosterically regulated, so that its
activity can be increased in response to, for example, a low
ATP to ADP ratio [32]. During galactose cultivation it
seems that the allosteric activation was insufficient so that
the protein amount of IDH3A enzyme also had to be
increased, whereas the levels of the other TCA enzymes
were close to unaffected. Diseases related to IDH3 are not
described in the OMIM database. This could be related to
the existence of the parallel and compensatory activity of
NADP+ -dependent IDH [33], which is able to compen-
sate for the NADH-dependent activity of IDH3A.
Recently, a loss-of-function of IDH3B, the β-subunit of
NADH-IDH, was found in patients with retinitis pigmen-
tosa. It is thus likely that deficient NADH-IDH activity is a
contributory factor in energy deficiency disorders, causing
severe symptoms only in certain tissues [33].

Single mitochondrial proteins might result in disease
when they are present at an insufficient level, often caused
by genetic variations resulting in protein misfolding and/
or degradation [34]. Several of the proteins in Additional

Venn diagram showing the number of proteins with quantitative data in one, two or all three triplicate analysesFigure 2
Venn diagram showing the number of proteins with quantitative data in one, two or all three triplicate analy-
ses. A) Standard MS-setting and B) after addition of MS runs with 30 proteins targeted by SIM-analysis.
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Profiles of proteins belonging to six categories of mitochondrial pathwaysFigure 3
Profiles of proteins belonging to six categories of mitochondrial pathways. The pathways are: A) Citric acid cycle 
together with pyruvate dehydrogenase (PDH), B) Respiratory chain, C) Fatty acid oxidation, D) Antioxidant systems, E) Pro-
tein quality control and F) Apoptosis and mitochondrial morphology. The galactose to glucose ratio, derived from the protein 
levels of the cells cultivated in galactose and glucose, respectively, is depicted on the x-axis. Black bars indicate ratios calculated 
from the average of three independent cultivation studies of a control fibroblast (NHDF-1). The grey bar indicates ratio from 
one cultivation study of a second control fibroblast (NHDF-2). The ratio of a protein was reported as significantly different 
from 1.0 if it passed two tests 1) a threshold test of two times the global standard error (2 × 0.055 = 0.11) and 2) a two-tailed 
student's T-test for equal variance data. The error bar is the standard error of three values and "*" and "**" indicate statistically 
significant deviation from 1.0 with a t-test probability value below 0.05 and 0.01, respectively. A few proteins have activity in 
two pathways and are then depicted two times. The proteins in pathway A, B and C were sorted according to their position in 
the pathway, whereas the proteins in pathway D, E and F were alphabetically sorted based on the HGNC symbol, i.e. the let-
ters that precedes the protein description.
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file 8 are associated with metabolic diseases, a group of
diseases in which synergistic heterozygosity has been
described, i.e. diseases resulting from multiple partial
defects in one or more metabolic pathways [35,36]. For
these diseases, the simultaneous quantification of several
metabolic proteins is highly valuable for identification of
the components of the synergistic effects. The present
study detected 38 proteins related to disease according to
the OMIM database. Since these disease-related proteins
were detected in all of our experiments, their relative
amounts are likely to be detectable in future, similar stud-
ies. Furthermore, there is growing evidence of links
between metabolic defects, protein misfolding, oxidative
stress, and disease [37]. It is therefore highly relevant to
obtain protein profiles from multiple, well-defined path-
ways of metabolism and stress response to be able to
study diseases involving multiple components.

Conclusion
Quantitative mitochondrial proteomics of cultivated
patient fibroblasts show promising results for exploring
the consequences of genetic diseases at the protein level.
Moreover, this type of method is suitable for environmen-
tal stress studies on cultivated human cells, as exemplified
here by metabolic stress. Mapping of the interplay
between various proteins and pathways might serve as a
powerful tool for elucidation of the effects of disease and
cellular stress. It was shown that when the cells had lim-
ited access to energy sources through cultivation in galac-
tose, the amount of mitochondria did not seem to change;
instead, the cells up-regulated parts of their respiratory
pathway and specific metabolic proteins to compensate
for the compromised energy state.
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Experimental protein identification data from the first experiment of 
fibroblast NHDF-1. Mass spectrometry data including peptide list.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-
5956-7-20-S1.txt]

Additional file 2
Experimental protein identification data from the second experiment 
of fibroblast NHDF-1. Mass spectrometry data including peptide list.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-
5956-7-20-S2.txt]

Additional file 3
Experimental protein identification data from the third experiment of 
fibroblast NHDF-1. Mass spectrometry data including peptide list.
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Experimental protein identification data from the experiment of 
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Click here for file
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Western blot detection of NDUFA9 and the loading control VDAC1 (porin)Figure 4
Western blot detection of NDUFA9 and the loading control VDAC1 (porin). The samples were loaded in triplicate 
(6 μg protein/well) and the protein levels, NDUFA9 in relation to VDAC1, were compared for glucose versus galactose culti-
vation, for two different normal fibroblasts; NHDF-1 and NHDF-2.
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