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Abstract

Background: Studies of intrinsically disordered proteins that lack a stable tertiary structure but still have important
biological functions critically rely on computational methods that predict this property based on sequence
information. Although a number of fairly successful models for prediction of protein disorder have been developed
over the last decade, the quality of their predictions is limited by available cases of confirmed disorders.

Results: To more reliably estimate protein disorder from protein sequences, an iterative algorithm is proposed that
integrates predictions of multiple disorder models without relying on any protein sequences with confirmed
disorder annotation. The iterative method alternately provides the maximum a posterior (MAP) estimation of
disorder prediction and the maximum-likelihood (ML) estimation of quality of multiple disorder predictors.
Experiments on data used at CASP7, CASP8, and CASP9 have shown the effectiveness of the proposed algorithm.

Conclusions: The proposed algorithm can potentially be used to predict protein disorder and provide helpful
suggestions on choosing suitable disorder predictors for unknown protein sequences.

Background
Identification of regions in proteins that do not have
unique structures, called intrinsic disorders, is addressed
computationally by a number of groups that aim to pre-
dict this property from sequence information [1-10].
Contrary to the lock and key paradigm, disordered
regions were recently found to be involved in many
important functions [11] and in various diseases [12].
Computational characterization of disorder in proteins

is appealing due to the difficulties and high cost
involved in experimental characterization of disorders.
The first predictor of protein disorder was developed by
our group in the year 1997 [13]. Due to the importance
of predicting this property, in the year 2002, protein dis-
order prediction was introduced as a category of the
CASP contests [14], which promoted the development

of new methods for prediction of protein disorder. Con-
sequently, the number of prediction methods available
through the Internet has increased rapidly. More than
50 predictors of intrinsic protein disorder have been
described in a recent review by He et al. [15], enabling
researchers to use a meta approach to predict protein
disorder by integrating the prediction results of several
methods. Recently, four such meta predictors, i.e.
metaPrDOS [16], MD [17], PONDR-FIT [18], and
MFDp [19], have been developed for the purpose of
improving disorder prediction accuracy. They showed
significantly improved performance in performed experi-
ments as compared to using individual component
predictors.
A limitation of these supervised learning based meta

predictors is that they are prone to over-optimization in
their integration processes since they are developed rely-
ing on disorder/order labeled training datasets that con-
tain a very small number of proteins that have not
already been used for development of the component

* Correspondence: zoran.obradovic@temple.edu
Center for Data Analytics and Biomedical Informatics, Temple University,
Philadelphia, PA 19122, USA
Full list of author information is available at the end of the article

Zhang and Obradovic Proteome Science 2011, 9(Suppl 1):S12
http://www.proteomesci.com/content/9/S1/S12

© 2011 Zhang and Obradovic; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:zoran.obradovic@temple.edu
http://creativecommons.org/licenses/by/2.0


predictors (e.g. sets as small as the DisProt [20] or as
specialized as missing coordinates from the PDB [21]).
Therefore, the prediction results of previous meta pre-
dictors may not be so good for proteins that have
sequence patterns very different from cases used for
integration. For example, although it achieved higher
prediction accuracy than all predictors participating in
CASP7 as stated in its paper [16], metaPrDOS failed to
be one of the top predictors in CASP8 [22]. Moreover,
one of metaPrDOS’ component predictors, i.e. DIS-
OPRED [2], was more accurate than metaPrDOS in
CASP8 [22].
To address potential over-optimization problems of

meta predictor development by learning from small
labeled data, here we introduce a new disorder meta
prediction method. By following the idea from Raykar et
al. [23] we derived an iterative MAP and ML estimation
(MAP-ML) based algorithm for the construction of a
meta predictor in a completely unsupervised process
using protein sequences without confirmed disorder/
order annotations. Performance evaluation of the new
meta method is presented by using CASP prediction tar-
gets as the test sets, which enabled us to compare the
prediction results with other methods used in the CASP
contests.

Methods
Problem and statement
Let us define the dataset as D y yi i i

M
i
N= ={ , , , }x 1

1 . Here,
xi is an amino acid composition feature vector which is
derived from the subsequence covered by a moving win-
dow centered at the i-th amino acid within the current
protein. yi

j ∈{ , }1 0 (1 represents a disordered state
while 0 represents an ordered state) is the prediction
label assigned to the instance xi by the j-th predictor. M
is the number of predictors. N is the number of amino
acids in the protein.
The first task of our interest is to estimate the sensi-

tivity (i.e., true positive rate) a = [a1,…,aM] and the spe-
cificity (i.e., true negative rate) b = [b1,…,bM] of the M
predictors. The second task is to get an estimation of
the unknown true labels y1,…,yN.

The proposed MAP-ML algorithm
To fulfill the two tasks defined before, we propose an
iterative algorithm that we will call MAP-ML. Given
dataset D, we use majority voting to initialize the prob-
abilistic labels μi (i.e., the probability when the hidden
true label is 1). Then, the algorithm alternately carries
out the ML estimation and the MAP estimation which
are described in details in the following subsections.
Given the current estimates of probabilistic labels, the
ML estimation measures predictors’ performance (i.e.,
their sensitivity a and specificity b) and learns a

classifier with parameter w. Given the estimated sensi-
tivity a, specificity b, and the prior probability which is
provided by the learned classifier, the MAP estimation
gets the updated probabilistic labels μi based on the
Bayesian rule. After the two estimations converge, we
get the algorithm outputs which include both the prob-
abilistic labels μi and the model parameters θ = {w,a,b}.
The proposed iterative MAP-ML algorithm is sum-

marized in Algorithm 1, and the estimations are
described in the following subsections.
Algorithm 1 (Iterative MAP-ML Algorithm)
Input: Protein sequences with prediction labels from

M predictors.
Output: The estimated sensitivity and specificity of

each predictor; the weight parameter of a classifier; the
probabilistic labels μi; the estimation of the hidden true
labels yi.
Step 1 Convert the protein sequences into amino acid

composition feature vectors.
Step 2 Use majority voting to initialize

m i i
j

j

M

y M=
=

∑
1

.

Step 3 Iterative optimization.
(a) ML estimation – Estimate the model parameters θ

= {w,a,b} based on current probabilistic labels µi using
(1) and (3).
(b) MAP estimation – Given the model parameters θ,

update μi using (8).
Step 4 If θ and µi do not change between two succes-

sive iterations or the maximum number of iterations is
reached, go to the Step 5; otherwise, go back to the Step
3.
Step 5 Estimate the hidden true label yi by applying a

threshold on µi, that is, yi=1 if µi >g and yi=0 otherwise.
Here use g =0.5 as the threshold.

ML estimation of the model parameters
Given the dataset D and the current estimates of µi, the
algorithm estimates the model parameters θ = {w,a,b}
by maximizing the conditional likelihood. According to
the definitions of sensitivity and specificity, we get
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Given probabilistic labels μi, we can learn any classi-
fier using ML estimation. However, for convenience, we
will explain it with a logistic regression classifier. By
using that classifier, the probability for the positive class
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is modeled as a sigmoid acting on the linear discrimi-
nating function, that is,

Pr[ | , ] ( )y T= =1 x w w xs (2)

where the logistic sigmoid function is defined as s(z)
= 1/(1 + e–z). To estimate the classifier’s parameter w,
we use a gradient descent method, that is, the Newton-
Raphson method [24]

w w H gt t+ −= −1 1h (3)

where g is the gradient vector, H is the Hessian
matrix, and h is the step length. The gradient vector is

given by g w w x x( ) [ ( )]= −
=
∑ m si

T
i i

i

N

1

, and the Hessian

matrix is given by

H w w x w x x x( ) [ ( )][ ( )]= − −
=
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MAP estimation of the unknown true labels
Given the dataset D and the model parameters θ = {w,a,
b}, we define probabilistic labels
m qi i i i

M
iy y y= =Pr[ | , , , , ]1 1  x . Using the Bayesian rule

we have

m
q q
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which is a MAP estimation problem.
Conditioning on the true label yi Î {1,0}, the denomi-

nator of formula (4) is decomposed as
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Given the true label yi, we assume that y yi i
M1, , are

independent, that is, the predictors label the instances
independently. Hence,
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Similarly, we have
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From (2), (4), (5), (6), and (7), the posterior probability
μi which is a soft probabilistic estimate of the hidden
true label is computed as

m i
i i

i i i i
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Analysis of the MAP estimation
To explain how the MAP estimation model works, we
apply the logit function to the posterior probability µi.
From (8), the logit of µi is written as

logit( ) ln ln
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where c j j

j

M

= −
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1

a b is a constant. The first term of
(9) wTxi is a linear combination (provided by the learned
classifier) of the current amino acid’s composition fea-
tures. The second term of (9) is a weighted linear com-
bination of the prediction labels from all the predictors.
The weight of each predictor is the sum of the logit of
the estimated sensitivity and specificity. From (9), we
can infer that the estimates of the hidden true labels (in
logit form) depend both on protein sequence informa-
tion and on the prediction labels from all the predictors.

Results
Evaluation criteria
CASP evaluation was based on per-residue predictions
of the entire set of targets. The performance of predic-
tors was evaluated by three criteria: the average of sensi-
tivity and specificity (ACC), a weighted score (Sw) that
considers the rates of ordered and disordered residues
in the datasets, and the area under the ROC curve
(AUC).
In CASP, predictors were asked to submit a binary

label of “O” or “D” (order or disorder state) and a prob-
ability that the specific position is in a disordered region
(a value in the range of 0 to 1) for each residue. The
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binary classification of each predictor was assessed by
the following scores:

Sensitivity
TP

TP+FN
TP

N

Specificity
TN

TN+FP
TN

N

disorder

orde

= =

= =
rr

where TP is the number of true positives (disordered
residue that were classified correctly), FP false positives
(ordered residues that were classified as disordered), TN
true negatives (ordered residues that were classified cor-
rectly), and FN false negative (disordered residues that
were classified as ordered), respectively. The higher the
two scores, the better the predictions; therefore, they
were combined into a single score, which is the average
of the two:

ACC
Sensitivity Specificity= +

2
.

Since the disordered residues are rare in the targets,
the weighted score Sw was introduced at CASP6 [25]:

S
S

S
W TP-W FP+W TN-W FN

Ww
max

disorder order order disorder

disorde

= =
rr disorder order orderN +W N

where the Wdisorder was the total percent of order and
Worder was the total percent of disorder. Therefore, Sw
ranges from -1 to 1 and predicting all the residues in
the targets to be ordered would result in a zero. As
defined, this measure greatly rewards disordered resi-
dues correctly identified as disordered while heavily
penalizing any disordered residue that is misclassified.
The ROC curve was used to examine the ability of the

predictors to estimate the confidence level of their predic-
tions. The ROC curve is based on the disorder probability
parameter. Once the probability is given, by setting differ-
ent threshold values of the disordered status, the values of
sensitivity and specificity will change accordingly. By tak-
ing (1-specitificity) as the x-axis, and sensitivity as the y-
axis, all the data pairs corresponding to the minimal
threshold value to the maximal threshold value will make
a continuous curve. This is the ROC curve, the area under
this curve (AUC) is a reliable indication for the quality of
the prediction. The value of AUC is between 0 and 1, the
larger the area, the better the predictor.

Figure 1 CASP9 accuracy estimates without using labeled data. Estimated sensitivity and specificity of 15 disorder predictors is obtained by
the MAP-ML algorithm at CASP9 protein sequences without using CASP9 experimentally determined disorder/order labels. The predictors are
sorted in descending order of the average of the estimated sensitivity and specificity.
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Performance evaluation using the CASP data
To assess prediction performance, we used CASP9 data
consisting of 117 experimentally characterized protein
sequences with 23656 ordered and 2427 disordered resi-
dues. To reduce noise due to experimental uncertainty,
in the evaluation process we didn’t consider disorder
segments shorter than four residues. We have also
obtained prediction labels with disorder probabilities of
all predictors which participated in CASP9 from the
contest’s official website [14]. We selected 15 predictors
developed by groups at different institutions assuming
that their errors are independent. We set the size of the
moving window as 21 which is based on our previous
study [26] as well as the ratio of long (>30 residues) dis-
ordered segments to short ones in the data.
In the experiment, as the input of our iterative MAP-

ML algorithm we used the sequences of 117 protein tar-
gets and the prediction labels from the 15 component
predictors. After the algorithm had converged, we used
the estimation of the hidden true labels yi produced by
MAP-ML as the binary disorder/order predictions and
the probabilistic labels µi from MAP-ML outputs as the
disorder probability. We also used the majority voting
method to integrate the component predictors, so that
we can compare that method with the MAP-ML

Figure 2 CASP9 comparison on labeled data. Evaluation scores are shown for the MAP-ML algorithm, majority voting method, and the 15
component predictors at disorder/order labeled CASP9 protein sequences and the corresponding experimentally determined disorder/order
labels. ACC, Sw, and AUC scores are sorted in descending order of the AUC score.

Table 1 CASP9 evaluation scores on labeled data.

Predictor Name Institution* ACC Sw AUC

MAP-ML 0.764 0.513 0.859

PRDOS2 Tokyo Tech, Japan 0.754 0.509 0.855

MULTICOM-REFINE University of Missouri, USA 0.750 0.500 0.822

BIOMINE DR PDB University of Alberta,
Canada

0.741 0.483 0.821

GSMETADISORDERMD IIMCB in Warsaw, Poland 0.738 0.476 0.816

MASON George Mason University,
USA

0.736 0.473 0.743

MAJORITY-VOTING 0.735 0.496 0.776

ZHOU-SPINE-D IU School of Medicine, USA 0.731 0.462 0.832

DISTILL-PUNCH1 UCD Dublin, Ireland 0.726 0.453 0.800

OND-CRF Umea University, Sweden 0.706 0.412 0.737

UNITED3D Kitasato University, Japan 0.704 0.412 0.781

CBRC_POODLE CBRC, Japan 0.694 0.405 0.830

MCGUFFIN University of Reading, UK 0.688 0.402 0.817

ISUNSTRUCT IPR RAS, Russia 0.679 0.396 0.742

DISOPRED3C University College London,
UK

0.670 0.391 0.853

ULG-GIGA University of Liege, France 0.585 0.341 0.726

MEDOR Aix-Marseille University,
France

0.579 0.338 0.688

*Only the first author’s institution is shown here as well as in Tables 2 and 3.
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Figure 3 CASP8 accuracy estimates without using labeled data. Estimated sensitivity and specificity of 13 disorder predictors is obtained by
the MAP-ML algorithm at CASP8 protein sequences without using CASP8 experimentally determined disorder/order labels. The predictors are
sorted in descending order of the average of the estimated sensitivity and specificity.

Figure 4 CASP8 comparison on labeled data. Evaluation scores are shown for the MAP-ML algorithm, majority voting method, and the 13
component predictors at disorder/order labeled CASP8 protein sequences and the corresponding experimentally determined disorder/order
labels. ACC, Sw, and AUC scores are sorted in descending order of the AUC score.
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algorithm method to see which one is more effective.
The majority voting method assumes all predictors are
equally good.
Estimated sensitivity a and specificity b of 15 compo-

nent predictors using our MAP-ML meta predictor
without relying on true disorder/order labels are shown
in Figure 1. The obtained estimates are sorted according

to the average of their estimated sensitivity and specifi-
city and were quite consistent with evaluations reported
by the CASP9 committee [27] who used labeled data of
confirmed disorder/order residues for their evaluations.
A comparison of 15 predictors, the majority voting

method, and our MAP-ML meta predictor on CASP9
labeled data with confirmed disorder/order is shown in
Figure 2. The details of evaluation scores are summar-
ized in Table 1. On this comparison our iterative MAP-
ML algorithm had an ACC score of 0.764, a Sw score of
0.513, and an AUC score of 0.859. These scores were
superior to the 15 component predictors in the CASP9
contest and also superior to the majority voting integra-
tion. In addition, Figures 1 and 2 could be used to
assess similarity of accuracies and rankings of 15 predic-
tors obtained by MAP-ML algorithm without any
labeled data versus their evaluation on true labels by
CASP9 committee.
Using the same measures and procedures, we assessed

the accuracy of 13 CASP8/11 CASP7 disorder predictors
on CASP8 data [22]/CASP7 data [28] without using the
corresponding experimentally determined disorder/order
labels. Similar to CASP9, most of the predictors’ ranks
obtained by the MAP-ML algorithm were quite consis-
tent with their true accuracy on CASP8/CASP7 data.
The scores of our MAP-ML meta predictor were better

Table 2 CASP8 evaluation scores on labeled data.

Predictor Name Institution ACC Sw AUC

MAP-ML 0.843 0.686 0.922

GS-MetaServer2 IIMCB in Warsaw, Poland 0.831 0.662 0.908

Majority-Voting 0.826 0.651 0.856

McGuffin University of Reading, UK 0.822 0.644 0.908

mariner1 George Mason University, USA 0.811 0.621 0.886

MULTICOM University of Missouri, USA 0.809 0.619 0.918

CBRC POODLE CBRC, Japan 0.794 0.588 0.895

DISOPRED University College London, UK 0.792 0.583 0.876

CaspIta University of Padova, Italy 0.790 0.579 0.891

OnD-CRF Umea University, Sweden 0.786 0.572 0.848

metaprdos University of Tokyo, Japan 0.760 0.520 0.871

Distill-Punch1 UCD Dublin, Ireland 0.756 0.513 0.843

Oka IPR RAS, Russia 0.755 0.509 0.768

Biomine University of Alberta, Canada 0.731 0.461 0.840

LEE KIAS, Korea 0.724 0.447 0.837

Figure 5 CASP7 accuracy estimates without using labeled data. Estimated sensitivity and specificity of 11 disorder predictors is obtained by
the MAP-ML algorithm at CASP7 protein sequences without using CASP7 experimentally determined disorder/order labels. The predictors are
sorted in descending order of the average of the estimated sensitivity and specificity.
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than the corresponding scores of component predictors
in the CASP8/CASP7 contest and their majority voting
integration. The details of the CASP8 experiment are
summarized in Figure 3, Figure 4, and Table 2. The
details of the CASP7 experiment are summarized in Fig-
ure 5, Figure 6, and Table 3.

The relationship between the number of component
predictors and the prediction performance
Although our MAP-ML meta predictor outperformed
each component predictor at CASP9, CASP8, and
CASP7, in general it may not be the case that integra-
tion of all available component predictors is the best
choice as some predictors may negatively influence the
combination results. To analyze effects of possible com-
bination choices on the accuracy of the MAP-ML algo-
rithm, we studied the relationship between the number
of component predictors and the prediction perfor-
mance of different combinations among CASP9, CASP8,
and CASP7 predictors.
For CASP9 data, any number out of 15 individual pre-

dictors can be combined by using our algorithm. By
considering all subsets, we have constructed 32767 dif-
ferent meta predictors using the MAP-ML algorithm.
The relationship between the number of component
predictors and the prediction performance (Sw) by the

MAP-ML algorithm using CASP9 data is shown at Fig-
ure 7. Similarly, for CASP8/CASP7 data, we build all
8191/2047 meta predictors by considering all subsets of
13/11 component predictors and combining these using
the MAP-ML algorithm. The relationship between the
number of component predictors and the prediction
performance (Sw) by the MAP-ML algorithm using

Figure 6 CASP7 comparison on labeled data. Evaluation scores are shown for the MAP-ML algorithm, majority voting method, and the 11
component predictors at disorder/order labeled CASP7 protein sequences and the corresponding experimentally determined disorder/order
labels. ACC, Sw, and AUC scores are sorted in descending order of the AUC score.

Table 3 CASP7 evaluation scores on labeled data.

Predictor Name Institution ACC Sw AUC

MAP-ML 0.798 0.595 0.881

ISTZORAN Temple University, USA 0.781 0.564 0.860

Fais University of Tokyo, Japan 0.740 0.484 0.844

Majority-Voting 0.734 0.455 0.819

DISpro UC Irvine, USA 0.726 0.453 0.822

GeneSilicoMetaServer IIMCB in Warsaw, Poland 0.720 0.446 0.804

BIME@NTU_serv National Taiwan University 0.715 0.429 0.798

CBRC-DR CBRC, Japan 0.710 0.423 0.850

DISOPRED University College London,
UK

0.689 0.375 0.837

Distill UCD Dublin, Ireland 0.673 0.346 0.724

IUPred Institute of Enzymology,
Hungary

0.672 0.342 0.777

DRIPPRED Imperial College London,
UK

0.646 0.290 0.758

Softberry RHUL, UK 0.586 0.173 0.704
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Figure 7 The prediction performance of MAP-ML algorithm vs. the number of component predictors on CASP9 data. The lowest,
average, and highest performance for each group with the same number of individual predictors is shown.

Figure 8 The prediction performance of MAP-ML algorithm vs. the number of component predictors on CASP8 data. The lowest,
average, and highest performance for each group with the same number of individual predictors is shown.
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CASP8 and CASP7 data is shown at Figure 8 and Figure
9.
The results of our experiments (Figure 7, Figure 8,

and Figure 9) provide evidence that the average and the
lowest prediction performances improve as the number
of component predictors increases. Also, the difference
between the highest and the lowest performance
decreases as the number of component predictors
increases. However, the curves representing the highest
prediction performances suggest that it is not the case
that employing more component predictors will result
in improved highest prediction performance. For exam-
ple, a combination of five CASP8 predictors (MULTI-
COM, GS-MetaServer2, McGuffin, mariner1, and
DISOPRED) had the highest overall prediction perfor-
mance (Sw=0.691).

Conclusions
In this study, we proposed an iterative MAP-ML algo-
rithm to predict protein disorder. The algorithm alter-
nately provides the MAP estimation of disorder
prediction and the ML estimation of the quality of mul-
tiple component disorder predictors. We evaluated the
performance of the MAP-ML algorithm versus the per-
formance of other predictors using CASP datasets. The
results showed that our meta predictor not only

outperformed other predictors but also appropriately
ranked other predictors without knowing the true labels.
The proposed algorithm assumed that the accuracy of

each predictor did not depend on the given protein
sequences and that the predictors make their errors
independently. Therefore, in our experiments we used
the component predictors developed by groups at differ-
ent institutions. We emphasize that in practice the inde-
pendence assumption might not be always true, which is
the limitation of the proposed algorithm. To relax the
independence assumption and to make even more accu-
rate disorder predictions by the probabilistic meta
model, our research in progress includes additional
parameters such as disorder flavor and difficulty of a
prediction task.

List of abbreviations used
CASP: Critical Assessment of Techniques for Protein Structure Prediction;
DisProt: Database of Protein Disorder; PDB: Protein Data Bank; ROC: receiver
operating characteristic.
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