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Abstract

Background: Protein complexes are important entities to organize various biological processes in the cell, like
signal transduction, gene expression, and molecular transmission. In most cases, proteins perform their intrinsic
tasks in association with their specific interacting partners, forming protein complexes. Therefore, an enriched
catalog of protein complexes in a cell could accelerate further research to elucidate the mechanisms underlying
many biological processes. However, known complexes are still limited. Thus, it is a challenging problem to
computationally predict protein complexes from protein-protein interaction networks, and other genome-wide
data sets.

Methods: Macropol et al. proposed a protein complex prediction algorithm, called RRW, which repeatedly expands
a current cluster of proteins according to the stationary vector of a random walk with restarts with the cluster
whose proteins are equally weighted. In the cluster expansion, all the proteins within the cluster have equal
influences on determination of newly added protein to the cluster. In this paper, we extend the RRW algorithm by
introducing a random walk with restarts with a cluster of proteins, each of which is weighted by the sum of the
strengths of supporting evidence for the direct physical interactions involving the protein. The resulting algorithm
is called NWE (Node-Weighted Expansion of clusters of proteins). Those interaction data are obtained from the WI-
PHI database.

Results: We have validated the biological significance of the results using curated complexes in the CYC2008
database, and compared our method to RRW and MCL (Markov Clustering), a popular clustering-based method,
and found that our algorithm outperforms the other algorithms.

Conclusions: It turned out that it is an effective approach in protein complex prediction to expand a cluster of
proteins, each of which is weighted by the sum of the strengths of supporting evidence for the direct physical
interactions involving the protein.

Background
Protein complexes are important entities to organize
various biological processes in the cell, like signal trans-
duction, gene expression, and molecular transmission.
In most cases, proteins perform their intrinsic tasks in
association with their specific interacting partners, form-
ing protein complexes. Therefore, an enriched catalog of
protein complexes in a cell could accelerate further

research to elucidate the mechanisms underlying many
biological processes. However, known complexes are
still limited. Thus, it is a challenging problem to compu-
tationally predict protein complexes from protein-pro-
tein interaction (PPI) networks, and other genome-wide
data sets.
Many high-throughput techniques (such as yeast-two-

hybrid) have enabled genome-wide screening of pairwise
PPIs (see [1-5] for example). Those identified PPIs are
accumulated into databases like DIP [6] and BioGRID
[7], which are increasing in size. Those accumulated PPI
data make it more important to develop more efficient
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and accurate intelligent tools for the identification of
protein complexes from such PPI data.
It is known that densely connected subgraphs of a PPI

network are often overlapped with known protein com-
plexes [8]. Based on this observation, a large number of
global clustering algorithms are proposed for protein
complex prediction, like MCL [9], SPC and MC [8],
MCODE [10], RNSC [11], and PCP [12]. Supervised
learning approaches are also investigated by Qi et al.[13]
and Maruyama [Maruyam, O: Heterodimeric Protein
Complex Identification, submitted for publication,
2011]. They construct Bayesian classifiers from positive
and negative examples of protein complexes and applied
them to protein complexes prediction. The extracted
features are shown to be capable to distinguish complex
versus non-complexes. Recently, a survey paper on com-
putational approaches for protein complex prediction
appeared and compared performance of many of the
above mentioned algorithms [14]. This article is useful
to discuss further research directions in the problem of
protein complex prediction.
A random walks with restarts or repeated random

walk on a graph is a kind of a random walk, in which at
every tick time, a random walker has a chance to get
back to one or more start nodes from any current node
with a fixed, common and constant probability [15-17].
Let C be a set of start nodes, which can be a singleton
set. The result of a random walk with restart with C is
the stationary probabilities from C to all the nodes of
the given graph. These probabilities can be considered
to be the affinity or proximity from C to individual
nodes. They are exploited to predict protein complexes
in [15,16] with |C| = 1 and [17] with |C| ≥ 1.
It is known that, in general, the random walk technique

exploits the global structure of a network by simulating
the behavior of a random walker [18]. By introducing the
restart mechanism to a simple random walk, a local

structure centered around the start node is intensively
reflected in the resulting stationary probabilities. Namely,
the restart mechanism makes the local structure of a
start node biased. This feature will make it more promis-
ing the approach of a random walk with restarts in pro-
tein complex prediction. Note that MCL [9] also carries
out a kind of a random walk but not a random walk with
restarts. What the algorithm carries out is an alternate
repeat of the two processes of a simple random walk and
an inflation. Macropol et al.[17] proposed a protein com-
plex prediction algorithm, called RRW, which repeatedly
expands a cluster of proteins according to the stationary
probabilities of a random walk with restarts with the
cluster, where an input PPI network is assumed to be a
graph whose edges are weighted by the strength of sup-
porting evidence for functional association. RRW is
reported to outperform MCL, though MCL is known to
be the most outperforming algorithm in the performance
comparison papers [19,20]. Here is a critical problem on
RRW. The PPI network that RRW used in the work [17]
is WI-PHI, [21], a genome-wide PPI network of S. cerevi-
siae, which is obtained by integrating various heteroge-
neous data sources of PPIs. Thus, the weight of an
interaction in WI-PHI is used as the weight of the corre-
sponding edge of the PPI network. However, inside the
algorithm of RRW, these weights of PPIs are transformed
into the transition probability matrix of the given PPI
network. Namely, in this transformation, original infor-
mation about the given weights of PPIs are lost. An
example is illustrated graphically in Figure 1. The graph
in (a) has relatively high weights and the graph in (b) has
relatively low weights. The corresponding transition
probabilities of them are the same, which is shown in (c).
Therefore, RRW can lose much information of the origi-
nal PPI weights of a given PPI network.
Our motivation of this work is to devise a protein

complex prediction algorithm that can exploit the

Figure 1 The original weights of WI-PHI are lost (a) shows a graph with relatively high weights, and (b) gives a graph with relatively low
weights. (c) represents the same resulting transition probabilities of the graphs of (a) and (b).
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original PPI weights of a given PPI network as much as
possible. In this paper, we propose the method called
node-weighted expansion of clusters of nodes to predict
protein complexes, which can be attained by extending
the RRW algorithm. The random walk we use here is a
random walk with restarts with a cluster whose nodes
are non-uniformly weighted. Our method repeatedly
expands a cluster, C, of nodes to a larger one by adding
the node to which the resulting random walk distance
from C is the highest among all the nodes except ones
in C. Our implementation of this method is called NWE
(Node-Weighted Expansion for protein complex
prediction).
The biological significances of the predicted clusters

by NWE are validated by comparison with manually
curated heteromeric protein complexes of S. cerevisiae
in the CYC2008 database [22]. In performance compari-
son of NWE with RRW and MCL, NWE performs bet-
ter than the others, even on noisy input networks. Thus
we can conclude that the node-weighted expansion
method yields improvement in protein complex predic-
tion. We have also examined the coverage of a predicted
cluster by a gene ontology (GO) term. The result shows
that even a predicted cluster which does not overlap
with any known complexes in CYC2008 often obtains a
high coverage. Thus, some of the predicted clusters are
expected to be true protein complexes.

Methods
In this section, we describe the materials, the problem
we address here, and our method for the problem.

Materials
WI-PHI [21] is an integrated interaction network
derived from various heterogeneous data sources of pro-
tein-protein interactions. The underlying input PPI net-
work on which we simulate a random walk with restarts
is derived from WI-PHI. This database is a list of pro-
tein-protein interactions with 50 000 interactions over 5
955 proteins of yeast. Each interaction has a weight,
which is determined from various heterogeneous data
sources, including results of tandem affinity purification
coupled to MS (TAP-MS), large-scale yeast two-hybrid
studies, and small-scale experiments stored in dedicated
databases. CYC2008 [22] is a comprehensive catalog of
408 curated protein complexes. We use those complexes
of size four or more as gold standards in the evaluation
of the predicted clusters. The number of them is 149.

Problem of predicting protein complexes
Let G = (V,E) be an undirected graph representing a
protein-protein interaction network, where V be the set
of nodes, representing proteins, and E is the set of
weighted undirected edges, where the weight of an edge

should be a positive real and is supposed to show the
strength, reliability, and so on, of the corresponding PPI.
In this work, this graph is derived from WI-PHI. The
problem we address in this study is stated as follows:
Given a protein-protein interaction network, the protein
complex prediction problem is defined as the problem
of finding a set of statistically significant clusters of pro-
teins. The matching statistics of predicted clusters are
calculated with the protein complexes in the CYC2008
database. A predicted cluster which does not share any
common protein with any of the gold standard com-
plexes can be good candidates for new protein com-
plexes because CYC2008 will be not a complete list of
yeast protein complexes.

Random walk with restarts
The random walk with restarts or repeated random
walk is a technique to find an affinity of start nodes C
to all the individual nodes using a random walk. The
algorithm for a random walk with restarts is given in
Figure 2. We here describe a random walk with restarts
with a cluster, C, of start nodes which are equally
weighted[15-17], where the i-th element, bi of the restart
vector, b, of the algorithm in Figure 2 is set to be

b
C i C

i =
∈⎧

⎨
⎪

⎩⎪
1

0

/ if 

otheriwse.

With this setting of b, the random walker, at every time
tick, traverses from the current node to one of the adja-
cent node according to the weights of the corresponding
edges, or goes back to one of the start nodes in C with

probability ⋅ 1
C

(i.e., the random walker chooses one

Input:
edge-weighted undirected graph G = (V,E);
restart probability α;
a restart vector b;

Output:
stationary vector of a random walk with b

of the given restart vector;
Procedure:

let A be the column-normalized adjacency
matrix defined by G;

initialize x = b;
while (x has not converged):

x = αb+ (1− α)Ax;
return x;

Figure 2 Algorithm of a random walk with restarts This
pseudocode calculates the stationary vector of a random walk with
restarts with a restart vector b.
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of the start nodes in C uniformly at random ). The algo-
rithm stops when the convergence condition (e.g., the L1-
norm between consecutive vectors x is less than 10–10) is
satisfied. The result is a unique stationary vector. This vec-
tor can be considered to be the affinity or proximity from
C to individual nodes. We denote the stationary vector by
pC, and the i-th node, v, of pC, i.e., the stationary probabil-
ity from C to v, by pC(v). We also simply call it the random
walk distance from C to v.
The restart probability a represents the degree of how

a random walker can go far from the start nodes C. In
other words, the closer to 1 a is, the more local struc-
tures around nodes of C the resulting stationary vector
reflects. It should be noted here that when the restart
probability a is smaller, the diameter of the neighbor-
hood comprising of the visited nodes increases, and
more iterations are needed to converge.

Node-weighted expansion of clusters
Trivially, the algorithm in Figure 2 also works for a ran-
dom walk with restarts at a single node, i. In this case, b
is set to be a vector whose i-th element is one and zero
for the others. Macropol et al.[17] proposed a protein
complex prediction algorithm, RRW, which repeatedly
expands a cluster, C, of nodes to a larger one by adding
the node to which the random walk distance from C is
the highest among all the nodes except ones in C. It can
be easily showed that the stationary vector of a random
walk with restarts with C is equivalent to the arithmetic
mean of the stationary vectors of random walks with
restarts at the single nodes in C, i.e., for any node v,

pc v
C

p vs

s C

( ) ( ),=
∈
∑1

(1)

where ps is the stationary vector of a random walk
with restarts at a node s (see [17,23,24] for proofs of
this equation). Thus, the RRW algorithm efficiently
computes the stationary vector of a random walk with
restarts with C using Eq. (1), by precomputing the sta-
tionary vectors of random walks with restarts at all the
single nodes on a given network. It should be noted
here that this idea is equivalent to that of personalized
PageRank in context-sensitive search on the Web
[24-26]. The following example of b in context-sensitive
search on the Web can be found in [24]: A user who
wants to personalize on his bookmarked pages C uni-
formly would have a b where b(s) = 1/|C| if s Î C, and
u(s) = 0 if s ∉ C. This is the same as in RRW.
However, the method of a random walk with restarts

with a cluster is problematic if the nodes of the cluster
are equally weighted. Figure 3 gives an example of the
problem. The ellipse with dashed line represents a clus-
ter, denoted by C, which includes two nodes, u and v.

Assume that u has three edges whose weights are 100,
50, 80, respectively, and v has two edges whose weights
are 1 and 3, respectively. Namely, u is much richer than v
in the supporting evidence for their interactions. Here
consider the random walk distance from C to a node w
which is out of C. In this case, the RRW algorithm takes
the arithmetic mean of pu(w) and pv(w) (i.e., the random
walk distances from u and v to w, respectively) as pC(w).
However, in this case, the arithmetic mean is not appro-
priate because u is much richer than v in the supporting
evidence for their interactions. In other words, the ran-
dom walk distance from v is not relatively reliable than
that from u. This problem is clearly caused by the loss of
the original PPI weights of a given PPI network. Thus, if
the nodes of C were weighted adequately, a more likely
new component to be added to C will be found. Then we
will consider a way to assign to the restart vector b of the
algorithm in Figure 2 a non-uniform vector.
We then extend the RRW algorithm by using a ran-

dom walk with restarts with the cluster whose nodes are
non-uniformly weighted. Suppose that we have a weight,
wv, of a node v Î V . It is a separate issue how to deter-
mine the values of the weights, which will be discussed
later. We then set the restart vector b as follows:

b
w w i C

i
i j

j C=
∈⎧

⎨
⎪

⎩⎪
∈∑/ if 

otherwise.0

Figure 3 A problem of expanding a cluster of nodes which are
equally weighted The ellipse with dashed line represents a cluster,
denoted by C, which includes two nodes, u and v. Assume that u
has three edges whose weights are 100, 50, 80, respectively, and v
has two edges whose weights are 1 and 3, respectively. A node, w,
is assumed to be out of C.
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With this setting of b, a random walker, at every time
tick, traverses from the current node to one of the adja-
cent node according to edge weights, or goes back to i
Î C with the probability of

⋅ = ⋅

∈∑
b

w

w
i

i

j
j C

.

The next theorem shows that, even if nodes of a clus-
ter are non-uniformly weighted, the stationary vector of
a random walk with restarts with the cluster can be
computed efficiently from the precomputed stationary
vectors of random walks with restarts at the single
nodes of the cluster. The proof is also trivial by the Lin-
earity Theorem [23] as the case where the start nodes
are equally weighted.
Theorem 1The stationary vector,xC, for a random

walk with restarts starting with the set of weighted
nodes, C, is

1
w

w
C

i i

i C

x .
∈
∑

We next describe the overall algorithm of our method,
shown in Figure 4. Notice that our algorithm, NWE, is
almost the same as RRW. The difference between them
is that NWE expands a current cluster according to the
stationary vector of a random walk with restarts with
the cluster whose nodes are non-uniformly weighted.
Those nodes are equally weighted in RRW. We use the
same statistical significance of a cluster, C, which is
defined as

1 − ⋅score C C( ) ,

where score(C) is the score of C, which is the mean of
all the random walk distances from a node in C to a
node in C[17]. We also use the same overlap ratio
between two clusters, C1 and C2, is defined as

C C

C C
1 2

1 2


min ,

.{ }
If there are two clusters whose overlap ratio is greater

than a specified threshold, the cluster with a less signifi-
cance is removed.

Matching statistics
In this work, we introduce quantitative matching statis-
tics, called quantitative precision, recall, and f-measure,
to evaluate a set of predicted clusters with known pro-
tein complexes. For two arbitrary sets of proteins, s1 and
s2, which will be a pair of a predicted cluster and a

known complex, the concordance rate between s1 and s2
is defined as

concordance s s
s s

s s1 2
1 2

1 2

, .( ) =
⋅



The rate is one if s1 and s2 are identical to each other
and zero if any proteins are not shared by s1 and s2.
Thus this statistic is a fairly rigorous index to see how
much the two sets are similar to each other in size and
membership of components because even if s1 is a
proper subset of s2 the score is not optimal, and vice
versa.
Let C be a set of predicted clusters and K a set of

known complexes. The quantitative cluster-wise preci-
sion of a cluster c Î C with K is defined as

precision c concordance c kK
k K

( ) max ( , ).=
∈

Input:
node-weighted, edge-weighted undirected graph
G = (V,E);
restart probability α;
minimum cluster size sizemin;
maximum cluster size sizemax;
early cutoff ratio λ;
overlap ratio δ;

Output:
set of clusters of nodes, D;

Procedure:
for each u ∈ V :

calculate the stationary vector of a random walk
with restarts at u with restart probability α on G;

D = ∅ /* set of clusters found. */
for each u ∈ V :

C = {u} /* initial cluster */
C.distance = 0;
if (C.size < sizemax)

let v = maxw∈V \C pC(w);
let C ′ = C ∪ {v};
let C ′.distance = pC(v);
if (C ′.distance ≥ λ C.distance)

C = C ′

if (|C ′| ≥ sizemin)
add C ′ to D;

sort the clusters in D according to their significance;
remove overlapping clusters with less significances
using the overlap ratio δ;

Figure 4 Algorithm NWE This pseudocode represents the overall
algorithm, NWE, which is an extension of RRW. The difference
between them is that NWE expands a current cluster, C, according
to the stationary vector of a random walk with restarts with the
cluster whose nodes are non-uniformly weighted. That stationary
vector is represented by pC. On the other hand, RRW weights the
nodes in C equally.
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The quantitative complex-wise recall of a complex k Î
K with C is defined as

recall k concordance c kC
c C

( ) max ( , ).=
∈

The quantitative precision of C with K is defined as

precision C
c

Z
precision cK

Cc C

K( )
log

( ),= ⋅
′∈ ′

∑
where C′={c Î C|precision K(c) > 0}, and ZC’ = ∑cÎC′

log |c|. Note that, a predicted cluster which does not
overlap with any complexes in K is excluded because K,
a reference set of known complexes, may be incomplete,
i.e., not all the true protein complexes may be included
in K. If predicted clusters which do not overlap with
any known complexes were under consideration, the
interpretation of the resulting value is not trivial. This
issue is also mentioned by Brohée and van Helden [19].
Another feature of the definition of quantitative preci-

sion is that the quantitative precision is formulated as
the weighted mean of non-zero quantitative cluster-wise
precisions. It is mentioned by King et al.[11] that any
overlap proportion of a small predicted cluster and a
known complex is more likely to be by chance than the
same overlap proportion involving a larger predicted
cluster. In order to correct this problem, we have intro-
duced the weighted mean of non-zero quantitative clus-
ter-wise precisions, where the weight of a cluster is set
to be proportional to the logarithm of the cluster size.
On the other hand, the quantitative recall of C is just

the weighted mean of all known complexes in K. The
quantitative recall of C with K is defined as

recall C
k

Z
recall kK

Kk K

C( )
log

( ),= ⋅
∈
∑

where ZK = ∑kÎK log |k|.
Using quantitative precision and recall, we define the

quantitative f-measure of C and K as follows:

accuracy C
precision C recall C

precision C recalK
K K

K

( )
( ) ( )
( )

= ⋅ ⋅
+

2
ll CK( )

.

Note that the f-measure is the harmonic mean of pre-
cision and recall. For simplicity we omit the term “quan-
titative” from the quantitative measures defined above
hereafter.

Results and Discussion
We here report a performance comparison of our algo-
rithm, NWE, with two existing algorithms, RRW, and
MCL. The reason why MCL is selected here is that it is

reported in the literature that MCL outperforms other
clustering algorithms [19] and the Affinity Propagation
algorithm [20]. RRW is selected because NWE is an
extended algorithm of RRW. It is also a reason that all
of the three algorithms can take as input an edge-
weighted graph and exploit the weights to predict
clusters.

Node weight
The weight of a node is necessary for NWE, and a way
to determine the value of it will be critical. However, in
this work, we adopt the following simple way: We set
the weight, wv, of a node, v, to be the total sum of the
weights of all the edges adjacent to v in a given PPI net-
work. This choice would be rational because of the
example in Figure 3. If a more appropriate data source
was available in the determination of node weights, it
will contribute to more accurate predictions of our
method.

Parameter optimization of algorithms
Brohée and van Helden [19] carried out parameter opti-
mization of four clustering algorithms, including MCL,
with several randomized graphs derived from protein
complexes of MIPS protein complex catalog [27], and
compared performance of the algorithms with the opti-
mized parameter sets of those algorithms. Note that
edges of the graphs generated there are unweighted.
This means that their scheme is not enough to our
purpose.
We then extend their scheme by introducing a ran-

dom assignment of weights to edges of those randomly
generated graphs. An overview of the scheme we take
here is as follows.
At first, in the same way as the work [19], we generate

an underlying PPI graph, called the test graph, derived
from MIPS protein complex catalog [27], which is a
comprehensive catalog of manually curated protein
complexes of S. cerevisiae. It contains 220 complexes,
excluding complexes derived from high-throughput
experimental data sets [3-5]. The list of those complexes
can be found at the Brohée’s site [28]. The node set of
the test graph consists of all the proteins belonging to
some of the 220 protein complexes. Any pair of nodes
within a single complex has an edge between them. The
resulting graph is the test graph. It has 1 095 nodes and
14 343 edges.
In the next step, we derive from the test graph an

altered graph by combining random edge deletions and
additions on the test graph. The ratio of deleted edges,
denoted by del, is set to either 40 or 80 percent. The
ratio of added edges, denoted by add, is set to either 40
or 100 percent. Note that these percentages are w.r.t.
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the number of edges of the original test graph. As a
result, we have four altered graphs. For a pair of del and
add, we denote the resulting altered graph by Aadd, del.
Notice that an altered graph is edge-unweighted. It is

required that an edge is weighted in our parameter opti-
mization. A reasonable way to realize it is that, if an
edge of an altered graph is also an original edge of the
test graph, a relatively high weight is randomly assigned
to the edge, and a relatively low weight is randomly
assigned to the edge otherwise. We then take the follow-
ing procedures. We prepare two uniform distributions
on the intervals [umin, 100] and [1, umax], respectively,
where umin and umax are integers in the interval [1, 100].
These distributions are denoted by UDhigh and UDlow,
respectively. For an altered graph, Aadd, del, if an edge is
also one existing in the test graph, an integer sampled
from UDhigh is assigned, and an integer sampled from
UDlow is assigned otherwise. This procedure is applied
to each of the four altered graphs with each combina-
tion of umin = 30,70 and umax = 30,70. As a result, we
obtain a series of 16 further altered graphs. We denote
these resulting graphs by Aadd, del, umin, umax

.
We next describe the search space of parameter sets

of algorithms, which is shown in Table 1. The search
spaces of parameter sets of NWE and RRW are deter-
mined based on the default parameter set of RRW.
MCL is optimized in the inflation parameter, whose
default value is 2.0.
What we should discuss here is the minimum size of

predicted clusters and known complexes which we con-
sider in computational experiments. It is known that
any overlap proportion between a small predicted clus-
ter (known complex, resp.) and a known complex (pre-
dicted cluster, resp.) is more likely to be by chance than
the same overlap proportion involving a larger known
complex (predicted cluster, resp.) [11,12]. We then

consider clusters and complexes of size 4 and above,
since the minimum size of clusters and complexes is
often set to be four (see, for example, [12]). This is the
reason why the minimum size of predicted clusters by
NWE and RRW is set to be four (see Table 1). MCL
has no option to set the minimum size of predicted
clusters. Note that the number of protein complexes in
the MIPS catalog is 118, which are used as gold stan-
dards in this parameter optimization.
All the combination of values of the parameters listed

in Table 1 is considered and evaluated on the 16 altered
graphs, Aadd, del, umin, umax

. For each parameter set, the
mean of the f-measures on the 16 graphs is calculated.
The parameter set with the optimal mean f-measure is
adopted for further studies. Those optimal parameter
sets are shown in Table 1. Notice that the optimal para-
meter set of NWE is the same as that of RRW.
Lastly, we must mention the parameter optimization

of RRW. Instead of the software of RRW given by [17],
we used our implementation of RRW, whose output is
nearly the same as that of RRW. The reason is that the
original RRW software has no function to save the
result of random walk with restarts at single nodes. On
the other hand, our program always saves the result if it
is not stored in a specified directory, and reload it
whenever the same input network, convergence thresh-
old, and restart probability are given again. Thus, this
function is very helpful to repeatedly execute an algo-
rithm on the same input network with huge different
sets of parameters. Actually, we have to execute RRW 1
296 times due to 16 altered graphs and 81 parameter
sets. We were able to save much time by this strategy.
Note that we used only the original RRW in further
studies.

Performance comparison on WI-PHI
With the optimal parameter sets determined in the pre-
vious section, the three algorithms are executed on the
PPI network derived from WI-PHI. Table 2 shows the
resulting performance measures of the three algorithms
as well as the total number of predicted clusters and the
number of predicted clusters which overlap with a com-
plex of CYC2008.
The row labeled with “# clusters” shows the total

number of predicted clusters. Notice that even though
NWE is just an extended algorithm of RRW and the
same parameter set is applied to them, those numbers
are unexpectedly different between NWE and RRW,
which have 462 and 871, respectively. Namely, the num-
ber of predicted clusters by RRW is nearly twice as
large as that of NWE. This fact implies that the method
of node-weighted expansion has a significant impact on
the behavior of the algorithms. The next row, labeled
with “# overlaps,” shows the number of predicted

Table 1 Optimal parameter sets of algorithms

Algorithm Parameter Search range Optimal value

NWE restart probability 0.6,0.7,0.8 0.6

early cutoff 0.5, 0.6, 0.7 0.5

overlap ratio 0.1, 0.2, 0.3 0.3

minimum cluster size 4 4

maximum cluster size 11, 50, 100 100

RRW restart probability 0.6,0.7,0.8 0.6

early cutoff 0.5, 0.6, 0.7 0.5

overlap ratio 0.1, 0.2, 0.3 0.3

minimum cluster size 4 4

maximum cluster size 11, 50, 100 100

MCL inflation 1.1, 1, 2, ... , 3.0 1.6

The search spaces of parameter sets of NWE and RRW are determined based
on the default parameter set of RRW [17]. MCL is optimized in the inflation
parameter, whose default value is 2.0. All the combination of values of the
parameters listed is evaluated.
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clusters which overlap with a complex of CYC2008. We
can see that the ratios of them are similar to those of
the previous row.
The last three rows of Table 2 show precision, recall,

and f-measure, respectively. The best value in each row
is highlighted in bold. In precision, NWE has the best
value, 0.57, which is 42.5 percent greater than that of
RRW, 0.40, and 54 percent greater than that of MCL,
0.37. In recall, NWE has the second best value, 0.71.
The best value is given by RRW, 0.75. However, since
the value of NWE is 5.3 percent lesser than that of
RRW, the difference between them is little. The value of
NWE is still 48 percent greater than that of MCL, 0.48.
Summary of the above observations is as follows: (i)

NWE predicted lesser clusters than RRW, (ii) NWE has
a higher precision than RRW, and (iii) NWE has nearly
the same recall as RRW. Since this summary, it turns
that NWE better avoids wrong predictions of clusters
than RRW.
In f-measure, NWE attains the best value, 0.63, which

is 21 percent greater than that of RRW, and 50 percent
greater than that of MCL. As a conclusion, NWE has an
ability of doing more balanced prediction than RRW. As
a result, the introduction of the method of node-
weighted expansion achieves significant and essential
improvement to the algorithm of RRW.
The output of NWE with the optimal parameter set is

shown in Additional file 1.

Performance comparison on randomly shuffled graphs of
WI-PHI
We next examine how robust the algorithms is to noise.
We make a series of noisy networks from the WI-PHI
network by the following way. The initial network is the
original network derived from WI-PHI. A current net-
work is repeatedly modified by shuffling edges of the
network while preserving the degree of each node. For
an integer k = 10, 20, 30, 40, the number of times of
shuffling edges is set to be k percent of the number of
interactions (50 000) of the original WI-PHI network.
We thus have four types of noisy networks w.r.t.

shuffling ratio. For each type, 10 random networks are
generated. Performance measures of precision, recall,
and f-measure are averaged over those 10 networks.
Figure 5 shows how much noise can affect perfor-

mance of the three algorithms. Note that the parameter
sets used here is again the ones determined in the para-
meter optimization. It can be seen that the ranking of
the algorithms is unchanged from the case with the ori-
ginal WI-PHI network, in each of precision, recall, and
f-measure. In addition, we can observe that all of preci-
sion, recall, and f-measure decrease with increasing
shuffling ratio. This result implies that the quality of a
PPI network is very important for algorithms aggres-
sively utilizing the weights of edges.

Semantic homogeneity of predicted complexes
Lastly, we examine the richness of a GO term within a
cluster to see the quality of predicted clusters, especially
predicted clusters which have no overlap with any of
the known complexes in CYC2008. It is useful to iden-
tify the GO term shared by most of the proteins within
a cluster in order to characterize the cluster. We use the
terms in a GO slim, instead of the whole GO. A GO
slim is cut down to a subset of the terms in the whole
GO. The purpose of it is to give a broad overview of the
ontology content without the detail of the specific fine
grained terms (see the site [29] for details of them). We
here use the mapping of all yeast gene products to a
GO-Slim term compiled by the SGD (Saccharomyces
Genome Database) project. A file of the mapping is
downloadable at the site [30]. The version of the file we
used is dated March 26 2011.
For a cluster, C, and a GO term, t, the coverage of C

by t is defined as the ratio of the number of proteins in
C annotated with t to the size of C. The coverage of C
over an ontology of a GO slim is defined as the maxi-
mum of the coverages of C by the terms of the ontology
of the GO slim. For each of the ontologies, cellular
component, biological process, and molecular function,
the frequency distribution of the coverages of predicted
clusters over the yeast GO slim is shown in Figure 6.
Note that predicted clusters we use here are ones that
are generated by NWE with the optimal parameter set
on the PPI network derived from WI-PHI.
Figure 6(a) shows the frequency w.r.t. the cellular

component ontology. We can see in the graph that
there are three peaks in the coverage ranges, (0.4, 0.5],
(0.7,0.8], and (0.9, 1.0], respectively. The reason is as fol-
lows: The majority size of predicted clusters is four.
Actually, 76.8 percent (355) of all the 462 predicted
clusters are of size four. As a result, the possible cov-
erages of a cluster of size four are 1.0, 0.75, 0.5, 0.25,
and 0. Roughly speaking, in any coverage range, both
bars do not make much difference in the heights. In the

Table 2 Performance comparison of algorithms on WI-PHI

Algorithm NWE RRW MCL

# clusters 462 871 372

# overlaps 204 (0.44) 421 (0.48) 171 (0.46)

Precision 0.57 0.40 0.37

Recall 0.71 0.75 0.48

F-measure 0.63 0.52 0.42

The row labeled with “# clusters” shows the total number of predicted
clusters and the next row gives the number of predicted clusters which
overlap with a complex of CYC2008. The number in parentheses is the ratio of
the number of those overlapping clusters to the total number of predicted
clusters. The following rows show precision, recall, and f-measure, respectively.
The best performance in each row is highlighted in bold.
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range of (0.9, 1.0], there are 127 and 96 predicted clus-
ters which do and do not overlap with the protein com-
plexes in CYC2008. Since they have high coverages, it
can be expected that many of them form the whole or

Figure 5 Performance comparison on randomly shuffled
graphs (a), (b), and (c) show quantitative precision, recall, and f-
measure, respectively. Input PPI networks are 10, 20, 30, and 40%
edge-shuffled graphs of the network derived from WI-PHI. With
each of the shuffle ratios, 10 shuffled graphs are generated
randomly, on which performance is measured. An error bar shows
the standard deviation.

Figure 6 Frequency distribution of coverages of predicted
clusters by GO slim terms The graphs, (a), (b), and (c) show the
frequency distribution of coverages of predicted clusters over the
yeast GO slim terms of the ontologies of cellular component,
biological process, and molecular function, respectively. The “w.o.”
bars represent the frequencies of coverage of predicted clusters
with overlaps with some CYC2008 complexes. The “wo.o.” bars
represent the frequencies of coverage of predicted clusters without
any overlaps with all CYC2008 complexes. A real, r, on the
horizontal axis indicates the range of coverage, (r – 0.1, r].
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part of individual protein complexes. Actually, we can
easily show such an example. A protein cluster consist-
ing of VTI1/YMR197C, SYN8/YAL014C, YKT6/
YKL196C, and PEP12/YOR036W is predicted by NWE
of statistical significance 0.05. This cluster does not
overlap with any of the CYC2008 protein complexes
including ones of sizes two and three. The four proteins
share the GO slim term, “cytoplasm.” Actually, VTI1/
YMR197C and YKT6/YKL196C are directly annotated
with the GO term, “SNARE complex,” which is a pro-
tein complex involved in membrane fusion.
Figure 6(b), which is the frequency w.r.t. the biological

process ontology, looks nearly the same as (a). Thus, we
can expect comparable results. For example, all the pro-
teins of the predicted cluster taken above as an example
share the GO slim term, “transport.” Figure 6(c), shows
the frequency w.r.t. the molecular function ontology.
This graph looks slightly different from the above two
graphs. The bars in the range (0.9, 1.0] get lower and
those in (0.4, 0.5] get higher.
This difference is also reflected in the Pearson correla-

tion coefficience between the statistical significances of
all the 462 predicted clusters and their coverage values
over each ontology of cellular component, biological pro-
cess, and molecular function, shown in Table 3. We have
obtained the following interesting results. By the defini-
tion of the statistical significance, the negative sign of a
Pearson correlation coefficience means a positive rela-
tionship between the statistical significance and the cov-
erage. Here, a positive relationship means that a lower
statistical significance corresponds to a higher coverage.
Thus, the coverages over the biological process and
molecular function ontologies have positive relationships
with the statistical significance, though the coverage over
the cellular component ontology unexpectedly does not.
We also calculated the p-value of the t-test of a Pearson
correlation coefficience on both sides, in which the null
hypothesis is that the population correlation coefficient is
zero. As can be seen, the Pearson correlation coefficience
with the molecular function ontology is strongly signifi-
cant. As a result, the null hypothesis can be rejected at
appropriate significance levels, like 0.01. However, the
remaining correlation coefficiences are not significant
with any practical significance level.

We can consider a few reasons of this result. First of
all, the GO is an ongoing project. The above correlation
coefficients can be higher with more sophisticated GO
annotations. The next reason is related to the GO term
set we used, which is the GO slim of yeast. The seman-
tic level of them can be a bit too general. Perhaps we
should use the whole GO and calculate some semantic
similarity of predicted clusters. Lastly, the statistical sig-
nificance of a predicted cluster might be too simple
because it is essentially the product of the size of a clus-
ter and the mean of the single-start-node random walk
distances between the nodes within the cluster. It may
have room to improve.

Conclusions
Our motivation of this work was to devise a protein
complex prediction algorithm that can exploit the origi-
nal PPI weights of WI-PHI as much as possible. We
have introduced a way of assigning a weight to a node
using the PPI weights of WI-PHI, and a random walk
with restarts with a cluster of nodes whose are non-uni-
formly weighted. Our algorithm, NWE, expands a cur-
rent cluster to a larger one by adding the node to which
the resulting stationary probability from the cluster is
the highest to the current cluster. In addition, we have
also formulated fairly rigorous performance measures,
quantitative precision, recall, and f-measure in order to
evaluate biological significance of predicted clusters
more accurately.
In performance comparison of NWE with RRW and

MCL, NWE performs better than the others, even on
noisy input networks, where the gold standards are
manually curated heteromeric protein complexes of
yeast in the CYC2008 database. Thus we can conclude
that the node-weighted expansion method yields
improvement in protein complex prediction. We have
also examined the coverage of a predicted cluster by a
GO term. The result shows that even a predicted cluster
which does not overlap with any known complexes in
CYC2008 is often covered widely by a common GO
term. Thus, the predicted clusters are expected to be
true protein complexes to some extent.

Additional material

Additional file 1: NWE output This file contains the output of NWE
with the parameter set determined in the parameter optimization. Each
line corresponds to a predicted cluster of proteins, whose statistical
significance is attached at the end.
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Table 3 Pearson correlation coefficient and p-value

CC BP MF
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ontology of cellular component (CC), biological process (BP), and molecular
function (MF). It is also given the p-value of the t-test of a Pearson correlation
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