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Abstract

localization by computational means.

perturbational discriminant analysis (PDA).

Background: The functions of proteins are closely related to their subcellular locations. In the post-genomics era,
the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular

Results: This paper proposes mitigating the computation burden of alignment-based approaches to subcellular
localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the
informative segments of protein sequences are identified by a cleavage site predictor using the information in
their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the
shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently
predicted by a profile-to-profile alignment support-vector-machine (SVM) classifier. To further reduce the training
and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the

Conclusions: Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can
make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable
to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both
profile creation time and profile alignment time can be reduced without significant reduction in subcellular
localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We
advocate that the method will be important for biologists to conduct large-scale protein annotation or for
bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.

Background

Motivation of subcellular localization prediction

For a protein to function properly, it must be trans-
ported to the correct organelles of a cell and folded into
correct 3-D structures. Therefore, knowing the subcellu-
lar localization of a protein is one step towards under-
standing its functions. However, the determination of
subcellular localization by experimental means is often
time-consuming and laborious. Given the large number
of un-annotated sequences from genome projects, it is
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imperative to develop efficient and reliable computation
techniques for annotating biological sequences.

In recent years, impressive progress has been made in
the computational prediction of subcellular localization.
A number of approaches have also been proposed in the
literature. These methods can be generally divided into
four categories, including predictions based on sorting
signals [1-6], global sequence properties [7-10], homol-
ogy [11-13] and other information in addition to
sequences [14,15]. Methods based on sorting signals are
very fast, but they typically suffer from low prediction
accuracy. Homology-based methods are more accurate,
but they are very slow. Therefore, fast and reliable pre-
dictions of subcellular localization still remain a
challenge.
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Approaches to subcellular localization prediction
Signal-based methods predict the localization via the
recognition of N-terminal sorting signals in amino acid
sequences. PSORT, proposed by Nakai in 1991 [2], is
one of the early predictors that use sorting signals for
protein’s subcellular localization. PSORT and its exten-
sions — WoLF PSORT [3,4] — derive features such as
amino acid compositions and the presence of sequence
motifs for localization prediction. In the late 90’s,
researchers started to investigate the application of
neural networks [16] to recognize the sorting signals. In
a neural network, patterns are presented to the input
layer of artificial neurons, with each neuron implement-
ing a nonlinear function of the weighted sum of the
inputs. Because amino acid sequences are of variable
length, the input to the neural network is extracted
from a short window sliding over the amino acid
sequence. TargetP [17,18] is a well-known predictor that
uses neural networks.

Another type of approaches relies on the fact that pro-
teins of different organelles have different global proper-
ties such as amino-acid composition. Based on amino-
acid composition and residue-pair frequencies, Naka-
shima and Nishikawa [10] developed a predictor that
can discriminate between soluble intracellular and extra-
cellular proteins. Another popular predictor based on
amino acid composition is SubLoc [7]. In SubLoc, a
query sequence is converted to 20-dim amino-acid com-
position vector for classification by support vector
machines (SVMs). Recently, Xu et al. [19] proposed a
semi-supervised learning technique (a kind of transduc-
tive learning) that makes use of unlabelled test data to
boost the classification performance of SVMs. One lim-
itation of composition-based methods is that informa-
tion about the sequence order is not easy to represent.
Some authors proposed using amino-acid pair composi-
tions (dipeptide) [8, 9, 20] and pseudo amino-acid com-
positions [21] to enrich the representation power of the
extracted vectors.

The homology-based methods use the query sequence
to search protein databases for homologs [11,12] and
predict the subcellular location of the query sequence as
the one to which the homologs belong. This kind of
method can achieve very high accuracy when homologs
of experimentally verified sequences can be found in the
database search [22]. A number of homology-based pre-
dictors have been proposed. For example, Proteome
Analyst [23] uses the presence or absence of the tokens
from certain fields of the homologous sequences in the
Swiss-Prot database as a means to compute features for
classification. In Kim et al. [24], an unknown protein
sequence is aligned with every training sequences (with
known subcellular locations) to create a feature vector
for classification. Mak et al. [13] proposed a predictor
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called PairProSVM that uses profile alignment to detect
weak similarity between protein sequences. Given a
query sequence, a profile is obtained from PSI-BLAST
search [25]. The profile is then aligned with every train-
ing profile to form a score vector for classification by
SVMs.

Some predictors not only use amino acid sequences as
input but also require extra information such as lexical
context in database entries [14] or Gene Ontology
entries [15] as input. Although studies have shown that
this type of method can outperform sequence-based
methods, the performance has only been measured on
data sets where all sequences have the required addi-
tional information.

Limitations of existing approaches

Among all the methods mentioned above, the signal-
based and homology-based methods have attracted a
great deal of attention, primarily because of their bio-
logical plausibility and robustness in predicting newly
discovered sequences. Comparing these two
approaches, the signal-based methods seem to be more
direct, because they determine the localization from
the sequence segments that contain the localization
information. However, this type of method is typically
limited to the prediction of a few subcellular locations
only. For example, the popular TargetP [5,6] can only
detect three localizations: chloroplast, mitochondria,
and secretory pathway signal peptide. The homology-
based methods, on the other hands, can in theory pre-
dict as many localizations as available in the training
data. The downside, however, is that the whole
sequence is used for the homology search or pairwise
alignment, without considering the fact that some seg-
ments of the sequence are more important or contain
more information than the others. Moreover, the com-
putation requirement will be excessive for long
sequences. The problem will become intractable for
database annotation where tens of thousands of pro-
teins are involved.

Our proposal for addressing the limitations

Our earlier report [26] has demonstrated that computa-
tion time of subcellular localization based on profile
alignment SVMs can be substantially reduced by align-
ing profiles up to the cleavage site positions of signal
peptides, mitochondrial targeting peptides, and chloro-
plast transit peptides. Although 20-fold reduction in
total computation time (including alignment, training
and recognition time) has been achieved, the method
fails to reduce the profile creation time, which will
become a substantial part of the total computation time
when the database becomes large. In this paper, we pro-
pose a new approach that can reduce both the profile
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creation time and profile alignment time. In the new
approach, instead of cutting the profiles, we shorten the
sequences by cutting them at the cleavage site locations.
The shortened sequences are then presented to PSI-
BLAST to compute the profiles. To further reduce the
training and recognition time of the classifier, we pro-
pose replacing the SVMs by kernel perturbation
discriminants.

Fusion of signal- and homology-based methods

Fig. 1 shows the histograms of the length of signal pep-
tides (SP), mitochondrial transit peptides (mTP), and
chloroplast transit peptides (cTP). The length is the
number of amino acids from the N-terminus up to the
cleavage site. It is obvious that the lengths of these pep-
tides are rather short. Given the fact that the majority of
proteins in the Swiss-Prot database have about a few
hundred amino acids and that some proteins could have
length longer than 5,000 amino acids, tremendous com-
putational saving can be achieved by combining the sig-
nal-based and homology-based methods described
below.

Truncation of profiles/sequences
We have investigated two fusion schemes (see Fig. 2):

I: Truncating Profiles. Given a query sequence, we pass
it to PSI-BLAST [25] to determine a full-length profile
(PSSM and PSFM [13]). The profile is then truncated at
the cleavage site position. The truncated profile is
aligned with each of the training profiles to create a vec-
tor for classification. Note that the training profiles are
also created by the same procedure.

II: Truncating Sequences. Given a query sequence, we
truncate it at the cleavage site and pass the truncated
sequence to PSI-BLAST to determine a short-length
profile. The profile is then aligned with all of the train-
ing profiles to create a vector for classification. All train-
ing profiles are also created by the same procedure.
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Note that as the time taken by PSI-BLAST search
(profile-creation time) is proportional to the query
sequence, Scheme II is expected to provide more com-
putation saving than Scheme I. However, as the
sequences are truncated at an early stage, important
information may be lost if cleavage site prediction is
inaccurate. The “Results and Discussion” Section pro-
vides experimental evidences suggesting that Scheme II
can provide significant computation saving without suf-
fering from severe information loss.

Cleavage site prediction

This work investigated two cleavage site predictors: con-
ditional random fields (CRFs) [27,28] and TargetP [5,6].
CRFs [29] were originally designed for sequence label-
ling tasks such as Part-of-Speech (POS) tagging. Given a
sequence of observations, a CRF finds the most likely
label for each of the observations. To use CRFs for clea-
vage site prediction, amino acid sequences are treated as
observations and each amino acid in the sequences is
labelled as either Signal, Cleavage, or Mature, e.g.,
SSSSSSCMMMMMM,, as illustrated in Fig. 3. The clea-
vage site is located at the transition between C and M.
Amino acids of similar properties can be categorized
according to their hydrophobicity and charge/polarity as
shown in Table 1. These properties are used because
the h-region of signal peptides is rich in hydrophobic
residues and the c-region is dominated by small, non-
polar residues [30]. Moreover, as illustrated in Fig. 4,
the degree of hydrophobicity is also very different at dif-
ferent positions, making this feature useful for the label-
ling task.

TargetP is one of the most popular signal-based sub-
cellular localization predictors and cleavage site predic-
tors. Given a query sequence, TargetP can determine its
subcellular localization and will also invoke SignalP [31],
ChloroP [32], or a program specialized for mTP to
determine the cleavage site of the sequence. TargetP
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Figure 1 Length distribution of SP, mTP, and cTP. The histograms of length of (a) secretory pathway signal peptides, (b) mitochondrial
targeting peptides, and (c) chloroplast transit peptides. The length is the number of amino acids from the N-terminus up to the cleavage site.

10

60 40 60

(©)




Mak et al. Proteome Science 2011, 9(Suppl 1
http://www.proteomesci.com/content/9/51/58

):S8

Page 4 of 12

i Scheme | |
: pSI- Long short Pairwise Score i Subcellular
/ BLAST profile Cut profilé | Alignment Vector PDA/SVM . 5 Location
Query b e -
Sequence X ________________________________________________________________ .
\ short PSI- short Pairwise Score. i Subcellular
| Cut sequencé | BLAST | profilé | Alignment | Vector PDA/SVM '\~ Location
tSchemell ... !

Figure 2 Two schemes for computation saving. Two schemes for reducing the computation of the subcellular localization process. In
Scheme |, a full-length query sequence is presented to PSI-BLAST for computing a full-length profile; then the profile is truncated at the
predicted cleavage site. The truncated profile is then aligned with all of the truncated training profiles to produce a profile-alignment score
vector for classification. In Scheme I, the query sequence is truncated at the predicted cleavage site before inputting to PSI-BLAST for
computing the profile. The cleavage sites are predicted by CSitePred [27] or TargetP [5].

requires the N-terminal sequence of a protein as input.
During prediction, a sliding window scans over a query
sequence; for each segment within the window, a
numerically encoded vector is presented to a neural net-
work to compute the segment score. The cleavage site is
determined by finding the position at which the score is
maximum. The cleavage site prediction accuracy of Sig-
nalP on Eukaryotic proteins is around 70% [33] and that
of ChloroP on cTP is 60% (+2 residues) [32].

Methods

Data preparation

Protein sequences with experimentally annotated subcel-
lular locations were extracted from the Swiss-Prot
Release 57.5 according to the following criteria.

1. Only the entries of Eukaryotic species, which were
annotated with “Eukaryota” in the OC (Organism Classi-
fication) fields in Swiss-Prot, were included.

2. Entries annotated with ambiguous words, such as
“probable”, “by similarity” and “potential”, were excluded
because of the lack of experimental evidence.

3. Sequences annotated with “fragment” were
excluded.

4. For signal peptides, mitochondria, and chloroplast,
only sequences with experimentally annotated cleavage
sites were included.

The extracted sequences were then filtered by BLAST-
Clust [34] so that the resulting sequences have sequence
identity less than 25%. Table 2 shows the breakdown of
the dataset. A modified version of the Perl scripts pro-
vided by [35] was used for creating the dataset.

PDA and SVM for multi-class classification
We used perturbational discriminant analysis (PDA) [36]
and support vector machines (SVMs) [37] for classifica-
tion. The formulation of PDA can be found in the
Appendix. During the training phase, N training profiles
were obtained by Scheme I or Scheme II. Pair-wise pro-
file-alignments were then performed to create an N x N
symmetric score matrix K, which were then used to
train the PDA and SVM classifiers as follows.
One-vs-rest PDA and SVM classifier
A C-class problem can be formulated as C binary classi-
fication problems in which each problem is solved by a
binary classifier. Given the training sequences of C
classes, we trained C PDA score functions:
fi(x)=alk(x)+b;, i=1,...,C, 1)
where x is a query sequence,
I;(x) = [K(xl,x),...,K(xN,x)]T contains the similarity
(via profile alignment) between x and the N training

Amino Acid Sequence

Labels — s § S CM

Mature Protein

Signal Peptide after cleavage
|

I
: b

|
M M

06-000-00

00--000-00

0

CRFs

Cleavage site

Figure 3 CRFs for cleavage site prediction. Conditional random fields (CRFs) for cleavage cite prediction. Given a sequence of observations,
each amino acid in the sequences is labelled as either “Signal”, “Cleavage”, or “Mature”, e.g., SSSSSSCMMMMMM. The cleavage site is located at
the transition between C and M.
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Table 1 Grouping of amino acids according to their
hydrophobicity and charge/polarity [43].
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Table 2 Breakdown of eukaryotic dataset derived from
the Swiss-Prot database (release 57.5).

Property Group Class Index Subcellular Location Number of Proteins
Hydrophobicity H1={D,ENQRK} 1 Extracellular 693
H2={CST,P.GH,Y} 2 Mitochondria 167
H3={AM,|LV,FW} 3 Chloroplast 74
Charge/Polarity C1={RKH} 4 Others(Cytoplasm/Nucleus) 1617
C2={D,B} 2552(total)
G={CTSGNQY}
CA=APMLIVEWS profiles, and a; and b; were obtained by Eq. 11 and Eq.
12 in the Appendix.
For the SVM classifier, the score functions in Eq. 1 are
replaced by the linear SVM score functions:
35

Mean Hydrophobicity

Position

(a)

Hydrophobicity

Position

(b)
Figure 4 The mean (top) and the histograms (bottom) of
hydrophobicity of 179 signal peptides at different sequence
positions. The cleavage site of these sequences is between Positions
19 and 20.

N
filx) = Zaijyij<lg(x),ﬁ(xj)> +b, i=1,...,C,

j=1

where a;;’s are the Lagrange multipliers of Class i, and
y; = 1 if x; belongs to Class i and y;; = -1 otherwise.
Then, given a test sequence x, the class label is given by

C
I =arg max f;(x).
i=1

Cascaded fusion of PDA and SVM

Instead of using Eqs. 11 and 12, the optimal weights in
PDA can also be equivalently expressed in terms of d
and 1 in Egs. 8 and 9. In a C-class problem, the i-th
class will have its corresponding d; and 7n;, where i = 1,
...,C. However, because of the dependence in d;, the
rank of matrix [d,, ..., dc] is C — 1. Therefore, there are
C - 1 independent sets of PDA parameters:

A:[al,...,ac_l]
=(K+pD)7'([dy, .., deal =1y, nea]),

where 1 is an N-dim vector of all 1’s and p is a pertur-
bation parameter. During recognition, an unknown sam-
ple x is projected onto a (C — 1)-dim PDA space
spanned by [a;,...,ac_;1] using

gx) = ATk(x) + [by,..., beq]", gla) € R

Then, g(x) is classified by one-vs-rest RBF-SVMs. In
the sequel, we refer to this cascaded fusion as PDAproj
+SVM. Fig. 5 exemplifies the capability of PDAproj
+SVM using a 2-dim multi-class problem.

Performance evaluation

We used 5-fold cross validation to evaluate the perfor-
mance. The overall prediction accuracy, the accuracy for
each subcellular location, and the Matthew’s correlation
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Figure 5 Multi-class classification by perturbational discriminant analysis (PDA). (a) 2-dim data {x;,...xy} of 3 different classes in the input space,
where N = 300. (b) N x N RBF kernel matrix K, where k;; = exp{-[|x; - xsz/Z}; each column of K is an N-dim vector k(x;) in the empirical space K.
(c) Projected data g(x) = ATk(xi) + b on the PDA space where data can be easily classified by 1-vs-rest SVMs. (d) Decision boundaries produced
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coefficient (MCC) [38] were used to quantify the predic-
tion performance. MCC allows us to overcome the
shortcoming of accuracy on unbalanced data [38].

We measured the computation time on a Core 2 Duo
3.16GHz CPU running Matlab and SVMlight. The com-
putation time was divided into profile creation time,
alignment time, classifier training time, and classification
time.

Results and discussion

Performance of cleavage site prediction

Table 3 shows the cleavage site prediction accuracy of
TargetP and CSitePred [28] (a CRF-based predictor). It
suggests that CSitePred is better than TargetP(P) in
terms of predicting the cleavage sites of signal peptide
(SP) but is poorer than TargetP(N). The results also
suggest that while CSitePred is slightly inferior to Tar-
getP in predicting the cleavage sites of mitochondria, it
is significantly better than TargetP in predicting the
cleavage sites of chloroplasts. Note that the overall
accuracies depend heavily on the SP class because of the
large number of signal peptides in the dataset (see Table
2).

Table 3 Cleavage-site prediction accuracies achieved by
TargetP and CSitePred. For TargetP, (P) and (N) mean
using the ‘Plant’ and ‘Non-plant’ option of the predictor,
respectively. TargetP will invoke SignalP, ChloroP, or a
program specialized in predicting mTP for cleavage site
prediction. CSitePred is based on conditional random
fields.

Cleavage Site Predictor

Cleavage Site Prediction Accuracy (%)

SP mTP cTP Overall
TargetP(P) 7149 44,04 8.82 64.55
TargetP(N) 84.63 46.69 221 75.28
CSitePred 7940 3940 3162 7173

The prediction accuracy of chloroplasts by TargetP
shown in Table 3 is significantly lower than that in [32].
There are two reasons for this difference: (1) our dataset
has sequence identity lower than that of [32] and (2) we
consider predicting precisely the ground-truth sites as
correct predictions whereas [32] considers predictions
within +2 positions of the ground-truth sites as correct
predictions. In fact, if we relaxed the criterion of correct
prediction to +2 ground-truth positions, the prediction
accuracy on chloroplasts achieved by TargetP increases
to 47.06%.

Sensitivity analysis

To evaluate the effect of incorrect cleavage site predic-
tion on the accuracy of subcellular localization, sensitiv-
ity analysis was performed by truncating SP, mTP, and
cTP at the ground-truth cleavage sites and plus/minus
several positions of the ground-truths. Specifically, the
sequence cut-off positions are 16, 8, and 2 amino acids
upstream and 2, 16, 32, and 64 amino acids downstream
from the ground-truth cleavage site.

Fig. 6 shows that the overall accuracy of subcellular
localization does not rely significantly on the precision
of cleavage site prediction as long as the predicted sites
are not too far away from the ground-truths.

Apparently, mTP and cTP are more sensitive to the
error of cleavage site prediction, which agrees with the
fact that the signals of mTP and cTP are weaker. Locali-
zation performance of these sequences degrades when
the cut-off position drifts away significantly the ground-
truth cleavage site. But the overall accuracy can be
maintained at above 95% even if the drift is as large as
—16 and +64 positions from the ground-truth. More-
over, a forward drift of 64 positions from the ground
truth cleavage site leads to a higher overall accuracy
when compared to that of a backward drift of 16 posi-
tions, which suggests that cutting sequences before their
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Figure 6 Sensitivity of subcellular localization accuracy with respect
to the (top) profile cut-off positions in Scheme | and (bottom)
sequence cut-off positions in Scheme Il (see Fig. 2). p is the ground-
truth cleavage site. For “Cyt/Nuc” proteins, p is set to 170.

cleavage sites may lose useful information in the signal
pep-tides while including extra (may be irrelevant) infor-
mation by cutting sequences after their cleavage sites is
not detrimental to subcellular location accuracy.

Profile-creation time

Fig. 7 shows the score matrices obtained by the two
profile creation schemes illustrated in Fig. 2. The figure
shows that the two alignment score matrices exhibit a
similar pattern, suggesting that classifiers based on these
matrices will produce similar classification accuracy.
This argument is confirmed by Table 4, which shows

1000 1500 2000 2500 500 1000 1500 2000

(a) (b)

Figure 7 Profile-alignment score matrices produced by (left)
Scheme | and (right) Scheme Il in Fig. 2.

that cutting the sequences at cleavage sites before input-
ting to PSI-BLAST can reduce the profile creation time
by 6 times without significant reduction in subcellular
localization accuracy.

Profile-alignment time

Table 5 shows that the computation time for full-length
profile alignment is striking — nearly thirty-five seconds
per sequence, which suggests that full-length alignment
is computationally prohibitive. Therefore, it is impera-
tive to limit the length of the sequences or profiles
before alignment. Table 5 also shows that truncating the
sequences at their cleavage site positions leads to nearly
a 20 folds reduction in alignment time without suffering
from loss in subcellular localization performance. This is
because the signal segment can be found in the N-ter-
minus, and removing the amino acids beyond the clea-
vage site helps the alignment focuses on the relevant
features in the profiles and disregard noise.

SVM versus PDA

Table 6 shows that the training time of PDA and PDA-
proj+SVM are only one-fifth of that of SVM. However,
the accuracy of PDA and PDAproj+SVM are lower than
that of SVM.

Compared with state-of-the-art predictors

We compared the accuracy of the proposed fusion of
signal-based and homology-based methods with SubLoc
[7], TargetP [5] and PairProSVM [13]. Table 7 shows
that the overall accuracy of the proposed method (the
5th row) is 5.2% higher than that of TargetP (3rd row)
and is significantly better than that of SubLoc (1st row).
Our method outperforms TargetP in Ext (SP) and Cyt/
Nuc prediction while performing worse than TargetP in
predicting Mit and Chl. One limitation of TargetP is
that users need to select either “Plant” or “Non-plant”.
If the former is selected, the performance of Ext and
Cyt/Nuc degrade significantly, leading to a low overall
accuracy; if the latter is selected, none of the chloroplast
proteins can be correctly predicted. The cascaded fusion
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Table 4 Average computation time to create a profile by PSI-BLAST using sequences of different length as input. In
Scheme |, full-length sequences are presented to PSI-BLAST and the resulting profiles are truncated at the predicted
cleavage sites. In Scheme II, truncation is applied to the sequences before presenting to PSI-BLAST. In both cases,

CRFs (CSitePred) were used to predict the cleavage sites.

Profile Creation Time (second)

Subcellular Localization Accuracy

Scheme Input to PSI-BLAST
I Full-length sequences 305
Il Sequences truncated at predicted cleavage sites 47

91.69%
91.45%

of cleavage site prediction and PairProSVM, on the
other hand, can classify all four classes with fairly high
accuracy, leading to a higher overall accuracy.

The prediction accuracy and MCC of the proposed
methods (Rows 4-10 in Table 7) are comparable to
Pair-ProSVM (Row 4 in Table 7). The main improve-
ment is on computation time reduction.

Because ChloroP is weak in predicting the cleavage
sites of chloroplasts (see Table 3), it is not a good candi-
date for assisting PairProSVM. This is evident by the
low subcellular localization accuracy of chloroplasts in
Table 7 when TargetP is used as a cleavage site predic-
tor. However, TargetP is fairly good at predicting the
subcellular location of chloroplasts when it is used as a
localization predictor.

Among the four classes in Table 7, the subcellular
localization accuracies of mitochondria and chloroplasts
are generally lower than that of Ext and Cyt/Nuc. The
reason may be that these transit peptides are less well
characterized and their motifs are less conserved than
those of secretary signal peptides [6].

Table 7 also suggests that the TargetP(N) is very effec-
tive in assisting PairProSVM, leading to the highest pre-
diction accuracy (92.6%) among all subcellular
localization predictors. In particular, except for predict-
ing Chl, TargetP in combination with PairProSVM can
surpass the other methods in subcellular localization
accuracy and MCC.

Conclusions

This paper has demonstrated that homology-based sub-
cellular localization can be speeded up by reducing the
length of the query amino acid sequences. Because

shortening an amino acid sequence will inevitably throw
away some information in the sequence, it is imperative
to determine the best truncation positions. This paper
shows that these positions can be determined by clea-
vage site predictors such as TargetP and CSitePred. The
paper also shows that as far as localization accuracy is
concerned, it does not matter whether we truncate the
sequences or truncate the profiles. However, truncating
the sequence has computation advantage because this
strategy can save the profile creation time by as much
as 6 folds.

Appendix: kernel discriminant analysis

This appendix derives the formulations of kernel discri-
minant analysis. The key idea lies in the equivalency
between the optimal projection vectors in the Hilbert
space, spectral space and empirical space.

Input, Hilbert, spectral, and empirical Spaces
Denote the mapping from an input space X into a Hil-
bert space H as:

@ : X — M such that x - @(x).

In bioinformatics, X is a vectorial space for microarray
data and a sequence space for DNA or protein
sequences. Given a training dataset {xy,..., #5} in X and
a kernel function K(x, y), an object can be represented
by a vector of similarity with respect to all of the train-
ing objects [39]:

k(x) = [K(x;, %),..., K(xx, %)]".

Table 5 Profile-Alignment time and subcellular localization accuracy for different sequence cut-off positions in Scheme
Il. In the first column, “Full length” means that no sequence truncation was applied. “TargetP(P)” and “Tar-getP(N)”
mean that the cutoff position is determined by TargetP using the “Plant” option and “Non-plant” option, respectively.
CSitePred is a cleavage site predictor based on conditional random fields.

Seq. Cutoff position

Alignment Time for Each Profile (sec))

Subcellular Localization Accuracy (%)

Full length 347

170 4.7
Ground-truth 19
Determined by TargetP(P) 1.8
Determined by TargetP(N) 17
Determined by CSitePred 19

91.64
90.98
9831
89.08
93.14
9145
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Table 6 The computation time and performance of
different classifiers in the subcellular localization task.
The classification time is the time to classify a profile-
alignment score vector with dimension equal to the
number of training vectors. The training time is the time
required to train a classifier, given a profile-alignment
score matrix K. In PDAproj+SVM, PDA was applied to
project the samples in the input space to a (C - 1)-dim
space (C = 4 here); the projected vectors were then
classified by RBF-SVMs.

Classification Training Time Classification Time Subloc
Method (sec) (sec) Acc.

SYM 514 07 91.45%
PDA 99 19 90.24%
PDAProj+SVM 89 0.1 89.97%

This N-dim space, denoted by K, is called empirical
space. The associate kernel matrix is defined as

K =[k(x,),.... k(xy)].

The construction of the empirical space for vectorial
and non-vectorial data are quite different. For the for-
mer, the elements of K are a simple function of the cor-
responding pair of vectors in X. For the latter, the
elements in K are similarities between the correspond-
ing pairs of objects.

The kernel matrix K can be factorized with respect to

the basis functions in H:K = @'®, where
@ =[5(x;),...,06(xy)]. Alternatively, it can be factorized
via spectral decomposition:

T T 3 .3 IINT( A3 T
K=U" AU=U" A? A?U=(A?U) (AU)=EE,
where g _ . 37. o ‘
Denote the i-th row of E as e® [ (x;),...,e (x0)].
Because pET — A7y T A7 = A, the rows of E exhibit a
vital orthogonality property:
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ifi#j
A

1

RORURS A
ifi+j,

where ); is the i-th element of the diagonal of A.

For any positive-definite kernel function K(x, y) and
training dataset {x1,....xx} in X, there exists a (nonlinear)
mapping from the original input space X to an N-dim
spectral space E:

¢: X — & suchthat x > é(x) = Ai%U’;(X).

E'E, ie.,
Therefore,

Note that K
E=(E")'K=(U"A?)"K=AT2UK-
é(x;) =~ 2Uk(x;),i=1,...,N-

Many kernel-based machine learning problems involve
finding optimal projection vectors in H, E, and K, which
will be respectively denoted as w, v, and a. It can be
shown [36] that the projection vectors are linearly
related as follows:

w0 (x) = v e(x) = a"k(x), (2)
where we have used the relationships w = ®a and v =
Ea.

Orthogonal hyperplane principle (OHP)

Assume that the dimension of H is M and that the
training data in H are mass-centered. When M >N, all
of the N training vectors {d(x;);i=1,...,N} will fall on
an (M -1)-dim data hyperplane. Mathematically, the
data-hyperplane is represented by its normal vector p
such that ®"p = 1. The optimal decision-hyperplane in
H (represented by w) must be orthogonal to the data-
hyperplane:

wp=0=>0a"®p=0=a"1=0

Table 7 Subcellular localization performance achieved by different classifiers. The second column specifies the
cleavage site predictors that were used for determining the positions at which the amino sequences were truncated.
Notice that TargetP can perform both cleavage site prediction and subcellular localization. For Rows 4 and 5, TargetP
was used as a cleavage site predictor, where “TargetP(P)” and “TargetP(N)” mean selecting plant or non-plant option
in TargetP, respectively. For Rows 6-8 “CRF” means that conditional random fields were used for cleavage site

prediction.

Row  Cleavage Site Predictor  Localization Predictor

Classification Accuracy (%)

Matthew's correlation coefficient (MCC)

Ext Mit Chl Cyt/Nuc  Overall  Ext Mit Chl Cyt/Nuc  Overall
1 — Subloc [7] 5144 5583 — 77.86 66.79 — — — — —
2 — TargetP (P) 7908 8802 89.19 69.57 7393 0.79 049 0.79 0.64 0.65
3 — TargetP (N) 9740 8922 0.00 87.82 87.97 0.93 0.58 0.00 0.81 0.84
4 TargetP(N) SVYM 9726 6707 3649 95.86 92.63 0.93 0.70 0.53 0.86 0.90
5 TargetP(N) PDA 9755 6168 676 95.61 9134 091 068 026 0.84 0.88
6 TargetP(N) PDAproj+SvYM 9726 6527 3784 9357 9110 093 064 050 0.83 0.88
7 CRF SVM 9452 6347 2838 95.86 9145 0.90 0.68 045 0.84 0.89
8 CRF PDA 9481 5928 135 95.55 90.24 0.88 0.67 0.1 0.82 0.81
9 CRF PDAproj+SVM 9466 6347 2568 93.63 89.97 0.90 0.60 041 0.82 0.87
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Kernel Fisher discriminant analysis (KFDA)

The objective of KFDA [40] is to determine an optimal
discriminant function (linearly) expressed in the Hilbert
space H:

f(x)=w6(x) +0,

where b is a bias to account for the fact that training
data may not be mass-centered. The discriminant func-
tion may be equivalently expressed in the N-dim spec-
tral space E:

f(x)=v"é(x) +b.

The finite-dimensional space E facilitates our analysis
and design of optimal classifiers. In fact, the optimal
projection vector v,y in E can be obtained by applying
conventional FDA to the column vectors {é(x;)}. To
derive the objective function of KFDA, let us define

d:

7 (d+1+ 1), (3)

where d+— and d —;1, and 1,¢« con-
tain 1’s inentr es cb rrespondlng to Classes C, and Cge
respectively, and 0’s otherwise; and N, and N_ are the
number of training samples in classes C, and C, respec-
tively. It can be shown that the objective function of
KEDA is:

J (v) = v'stv _ v'Edd"Ev
KIDA vTsSv vTE(I - %)ETU '

(4)

where 1 is an N-dim vector with all elements equal to
1 and S{ =FEdd"E" and Sf, =E( —%)ET are
between-class and within-class covariance matrices in E
space, respectively.

Perturbational discriminant analysis (PDA)

The FDA and KFDA are based on the assumption that
the observed data are perfectly measured. It is however
crucial to take into account the inevitable perturbation
of training data. For the purpose of designing practical
classifiers, we can adopt the following perturbational
discriminant analysis (PDA).

It is assumed that the observed data is contaminated
by additive white noise in the spectral space. Denote the
center-adjusted matrix of E as E and the uncorrelated
noise as N, then the perturbed scattered matrix is

(E+N)E+N)"~EE" + pI
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where p is a parameter representing the noise level. Its
value can sometimes be empirically estimated if the
domain knowledge is well established a priori. Under
the perturbation analysis, the kernel Fisher score in Eq.
4 is modified to the following perturbed variant:

v'Edd"E"v
uT[E(I—%)ETerI]u ©

By taking the derivative of /ppa(V) with respect to V,
the optimal solution to Eq. 5 can be obtained as:

-1
117 ) ¢
Uopt: E I—W E "rpI Ed,

and using the Sherman-Morrison-Woodbury identity
it can be shown that [41]

Jppa(v) =

Vope = (EET + pI) "' E(d - 1) ©)
=(A+p)E(d -n1)

where 7 is a scalar whose value can be determined
through the optimal solution in K space as follows.

Recall from Eq. 2 that dot-products in the three
spaces are equivalent. Therefore, the discriminant func-
tion in K space can be written as:

f(x) = a"k(x) +0. 7)

Given the optimal solution v, in the E space, the
corresponding optimal solution in the K space is'

opl - E vopt
=UTATI(A + pI) " AZU(d - 1) ®)
=(K+pN)7'(d-n),

where we have used K = UAU and E= A2l - Note
that unlike Eq. 6, Eq. 8 does not require spectral decom-
position, thus offering a fast close-form solution. Now
using the orthogonal hyperplanes principle, we have
agl=(d" —m")(K+pl)~'1=0
_d"(K+ph™1 )
1"(K+pn™1°

Note that unlike Eq. 6, Eq. 8 does not require spectral
decomposition, thus offering a fast close-form solution.
Also, Eq. 6 suggests that p has more regularization effect
on the minor components with small eigenvalues than
on the major components with large eigenvalues. This
serves well the purpose of regularization. Consequently,
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a PDA classifier will use less proportion of minor (and
risky) components and more of major components.
Therefore, the parameter p plays two major roles: (1) it
can assure the Mercer condition and invertibility of the
kernel matrix; and (2) it can suppress the weights
assigned to the risker and less resilient components.

The remaining unknown is the bias b. Recall from Eq.
2 that dot-products in the three spaces are equivalent.
Therefore, the discriminant function in K space can be
written as:

f(x) = agyk(x) +b. (10)
Putting all training data &; into Eq. 10, we have
Vi = aoTp[I;(xi) +b, i=1,...,N
=y =Kag, +b1
where y; = 1 when «; € C, and y; = -1 when x; € C_.

Since K is invertible, we have ap = K '(y-bl1). Egs. 6
and 8 suggest that perturbation in the spectral space
can be represented by shifting the diagonal of K by p.
Therefore, taking the perturbation in the spectral space
into account, we have

dopt = (K + pI)™" (y-b1). (11)

Note that the solutions given in Eq. 8 and Eq. 11 are
equivalent. Now, b can be determined by using the
orthogonal hyperplane principle to maximize the inter-
class separability:

adyl=0=(y" -b1")(K+pl)'1=0

T -1
:b:ny+p”43
1"(K+pD™1

(12)

Note that the solutions of @ and b in Eqgs. 11 and 12
are equivalent to the least-squares SVM [42], although
the way to derive the solutions are different.

Acknowledgements

This work was in part supported by The Hong Polytechnic University (G-
U877) and Research Grant Council of the Hong Kong SAR (PolyU 5264/09E).
This work is based on our presentation “Truncation of Protein Sequences for
Fast Profile Alignment with Application to Subcellular Localization” in IEEE
BIBM2010, Hong Kong.

This article has been published as part of Proteome Science Volume 9
Supplement 1, 2011: Proceedings of the International Workshop on
Computational Proteomics. The full contents of the supplement are available
online at http://www.proteomesci.com/supplements/9/S1.

Author details

1Department of Electronic and Information Engineering, The Hong Kong
Polytechnic University, Hong Kong. “Department of Electrical Engineering,
Princeton University, USA.

Authors’ contributions
MW. Mak and W. Wang contribute to (1) the idea of cascaded fusion of
signal-based and homology-based methods, (2) preparation of data, (3)

Page 11 of 12

implementation of CRF cleavage site predictor and SVM/PDA classifiers, and
(4) experimental evaluations. S.Y. Kung contributes to (1) the theoretical
development and derivation of PDA and (2) the idea of cascaded fusion and
sensitivity analysis.

Competing interests
The authors declare that they have no competing interests.

Published: 14 October 2011

References

1. von Heijne G: A new method for predicting signal sequence cleavage
sites. Nucleic Acids Research 1986, 14(11):4683-4690.

2. Nakai K, Kanehisa M: Expert system for predicting protein localization
sites in gram-negative bacteria. Proteins: Structure, Function, and Genetics
1991, 11(2):95-110.

3. Horton P, Park KJ, Obayashi T, Nakai K: Protein Subcellular Localization
Prediction with WoLF PSORT. Proc. 4th Annual Asia Pacific Bioinformatics
Conference (APBC06) 2006, 39-48.

4. Horton P, Park K, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K:
WoLF PSORT: protein localization predictor. Nucleic acids research 2007,
35(Web Server issue):585-587.

5. Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular
localization of proteins based on their N-terminal amino acid sequence.
J. Mol. Biol. 2000, 300(4):1005-1016.

6. Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in
the cell using TargetP, SignalP, and related tools. Nature Protocols 2007,
2(4):953-971.

7. Hua SJ, Sun ZR: Support vector machine approach for protein subcellular
localization prediction. Bioinformatics 2001, 17:721-728.

8. Huang Y, Li YD: Prediction of protein subcellular locations using fuzzy K-
NN method. Bioinformatics 2004, 20:21-28.

9. Park KJ, Kanehisa M: Prediction of protein subcellular locations by
support vector machines using compositions of amino acids and amino
acid pairs. Bioinformatics 2003, 19(13):1656- 1663.

10.  Nakashima H, Nishikawa K: Discrimination of intracellular and extracellular
proteins using amino acid composition and residue-pair frequencies. J.
Mol. Biol. 1994, 238:54-61.

11. Mott R, Schultz J, Bork P, Ponting C: Predicting protein cellular localization
using a domain projection method. Genome research 2002, 12(8):1168-1174.

12, Scott M, Thomas D, Hallett M: Predicting subcellular localization via
protein motif co-occurrence. Genome research 2004, 14(10a):1957-1966.

13. Mak MW, Guo J, Kung SY: PairProSVM: Protein Subcellular Localization
Based on Local Pairwise Profile Alignment and SVM. [EEE/ACM Trans. on
Computational Biology and Bioinfor-matics 2008, 5(3):416-422.

14.  Nair R, Rost B: Inferring sub-cellular localization through automated
lexical analysis. Bioinformatics 2002, 18:578-S76.

15. Chou K, Shen H: Recent progress in protein subcellular location
prediction. Analytical Biochemistry 2007, 370:1-16.

16.  Baldi P, Brunak S: Bioinformatics : The Machine Learning Approach. 2 edition.
MIT Press; 2001.

17.  Nielsen H, Engelbrecht J, Brunak S, von Heijne G: A neural network
method for identification of prokaryotic and eukaryotic signal perptides
and prediction of their cleavage sites. Int. J. Neural Sys. 1997, 8:581-599.

18. Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of
prokaryotic and eukaryotic signal peptides and prediction of their
cleavage sites. Protein Engineering 1997, 10:1-6.

19. Xu Q, Hu DH, Xue H, Yu W, Yang Q: Semi-supervised protein subcellular
localization. BMC Bioinformatics 2009, 10.

20. Yuan Z: Prediction of protein subcellular locations using Markov chain
models. FEBS Letters 1999, 451:23-26.

21, Chou KC: Prediction of protein cellular attributes using pseudo amino
acid composition. Proteins: Structure, Function, and Genetics 2001, 43:246-255.

22, Nair R, Rost B: Sequence conserved for subcellular localization. Protein
Science 2002, 11:2836-2847.

23. Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B, An-vik J, Macdonell C,
Eisner R: Predicting subcellular localization of proteins using machine-
learned classifiers. Bioinformat-ics 2004, 20(4):547-556.

24, Kim JK, Raghava GPS, Bang SY, Choi S: Prediction of subcellular
localization of proteins using pairwise sequence alignment and support
vector machine. Pattern Recog. Lett. 2006, 27(9):996-1001.


http://www.proteomesci.com/supplements/9/S1
http://www.ncbi.nlm.nih.gov/pubmed/3714490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3714490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10891285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10891285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17446895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17446895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11524373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8145256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8145256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12176924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12176924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15466294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15466294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9239223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9239223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9239223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10356977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10356977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12441382?dopt=Abstract

Mak et al. Proteome Science 2011, 9(Suppl 1):58
http://www.proteomesci.com/content/9/51/S8

25.

26.

27.

28.

29.

30.

31

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

Wang W, Mak MW, Kung SY: Speeding up Subcellular Localization by
Extracting Informative Regions of Protein Sequences for Profile
Alignment. Proc. Computational Intelligence in Bioinformatics and
Computational Biology Montreal; 2010, 147-154.

Mak MW, Kung SY: Conditional Random Fields for the Prediction of
Signal Peptide Cleavage Sites. Proc. ICASSP Taipei; 2009, 1605-1608.
[http://158.132.148.85:8080/CSitePred/faces/PageT jsp).

Lafferty J, McCallum A, Pereira F: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. Proc. 18th Int. Conf.
on Machine Learning 2001.

von Heijne G: Patterns of amino acids near signal-sequence cleavage
sites. Eur J Biochem 1983, 133:17-21.

Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of
signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340:783-795.

Emanuelsson O, Nielsen H, von Heijne G: ChloroP, a neural network-based
method for predicting chloroplast transit pep-tides and their cleavage
sites. Protein Science 1999, 8:978-984.

Nielsen H, Brunak S, von Heijne G: Machine learning approaches for the
prediction of signal peptides and other protein sorting signals. Protein
Eng 1999, 12:3-9.
[http://www.ncbi.nim.nih.gov/Web/Newsltr/Spring04/blastlab.html].

Menne KML, Hermjakob H, Apweiler R: A comparison of signal sequence
prediction methods using a test set of signal peptides. Bioinformatics
2000, 16:741-742.

Kung SY: Kernel Approaches to Unsupervised and Supervised Machine
Learning. In Proc. PCM, LNCS 5879. Springer-Verlag;Muneesawang P
2009:1-32.

Vapnik VN: Statistical Learning Theory New York: Wiley; 1998.

Matthews BW: Comparison of predicted and observed secondary
structure of T4 phage lysozyme. Biochim. Biophys. Acta. 1975, 405:442-451.
Tsuda K: Support vector classifier with asymmetric kernel functions. Proc.
ESANN Bruges, Belgium; 1999, 183-188.

Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR: Fisher discriminant
analysis with kernels. In Neural Networks for Signal Processing IX Hu YH,
Larsen J, Wilson E, Douglas S 1999, 41-48.

Kung S, Mak M: PDA-SVM Hybrid: A Unified Model For Kernel-Based
Supervised Classification. Journal of Signal Processing Systems for Signal,
Image, and Video Technology 2011, To appear.

Suykens JAK, Vandewalle J: Least squares support vector machine
classifiers. Neural processing letters 1999, 9(3):293-300.

Wu CH, Mclarty JM: Neural Networks and Genome Informatics Elsevier
Science; 2000.

doi:10.1186/1477-5956-9-51-S8

Cite this article as: Mak et al: Fast subcellular localization by cascaded
fusion of signal-based and homology-based methods. Proteome Science
2011 9(Suppl 1):S8.

Page 12 of 12

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://158.132.148.85:8080/CSitePred/faces/Page1.jsp
http://www.ncbi.nlm.nih.gov/pubmed/6852022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6852022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10338008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10338008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10338008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10065704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10065704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
http://www.ncbi.nlm.nih.gov/pubmed/11099261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1180967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1180967?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Motivation of subcellular localization prediction
	Approaches to subcellular localization prediction
	Limitations of existing approaches
	Our proposal for addressing the limitations
	Fusion of signal- and homology-based methods
	Truncation of profiles/sequences
	Cleavage site prediction

	Methods
	Data preparation
	PDA and SVM for multi-class classification
	One-vs-rest PDA and SVM classifier
	Cascaded fusion of PDA and SVM

	Performance evaluation

	Results and discussion
	Performance of cleavage site prediction
	Sensitivity analysis
	Profile-creation time
	Profile-alignment time
	SVM versus PDA
	Compared with state-of-the-art predictors

	Conclusions
	Appendix: kernel discriminant analysis
	Input, Hilbert, spectral, and empirical Spaces
	Orthogonal hyperplane principle (OHP)
	Kernel Fisher discriminant analysis (KFDA)
	Perturbational discriminant analysis (PDA)

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

