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Abstract

Background: Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA
transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level
activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a
difficult task.

Results: We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks.
Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet
process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the
loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs
sampling solution was developed to infer the underlying network structure and the unknown TF activities
simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression
data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional
regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering
effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample
clustering result shows superior performance over previous molecular based clustering method.

Conclusions: The results demonstrated the validity and effectiveness of the proposed approach in reconstructing
transcriptional networks mediated by TFs through simulated systems and real data.

Background
Transcription factor is one major gene regulator that
governs the response of cells to changing endogenous or
exogenous conditions [1]. Understanding how transcrip-
tional regulatory networks (TRNs) induce cellular states
and eventually define the phenotypes represents a major
challenge facing systems biologists. So far, numerous
models have been proposed to infer the transcriptional
regulations by TFs including, ordinary differential equa-
tions, (probabilistic) Boolean networks, Bayesian net-
works, and information theory and association models,

etc [2]. Ideally, the TF protein level activities are needed
for exact modeling; however, due to low protein cover-
age and poor quantification accuracy of high throughput
proteomics technologies such as protein array and liquid
chromatography-mass spectrometry (LC-MS), the mea-
surements of TF protein activities are currently hardly
available. As a compromise, most of the aforementioned
models conveniently yet inappropriately assume the TF’s
mRNA expression as its protein activity. Given the fact
that gene mRNA expression and its protein abundance
are poorly correlated [3,4], these models cannot accu-
rately model the transcriptional cis-regulation or reveal
at the best TF trans-regulation.
In contrast, works based on factor models [5-10] point

to a natural and promising direction for modeling the
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TF mediated regulations, where the microarray gene
expression is modeled as a linear combination of
unknown TF activities, and the loading matrix in this
model indicates the strength and the type (up- or down-
regulation) of regulation. However, due to distinct fea-
tures of TF regulation, conventional FA model is not
readily applicable. First, due to various reasons (normal
and disease, cancer grade, subtypes, etc), the samples
are usually not independent with each other but show
some clustering effect; while in the existing FA models,
factors are typically assumed independent, which,
although true in many applications, is not a realistic
assumption for TF medicated regulation. Secondly, since
a TF only regulates a small subset of genes, the loading
matrix should be sparse. While with constructions of TF
regulation databases, such as TRANSFAC [11], the
knowledge of TF regulated genes becomes increasingly
available, and should be included in the model so as to
boost signal-to-noise and improve performance [12].
The inclusion of prior information and sparsity con-
straint naturally call for a Bayesian solution. As an
added advantage, having this prior knowledge actually
resolves the factor order ambiguity of the conventional
factor analysis. Thirdly, as suggested in [13-15], the
non-negative assumption on TF activities be imposed.
In a response to these requirements of modeling TF

mediated regulatory networks, we propose here a novel
Bayesian non-negative factor model (BNFM). Different
from conventional factor analysis models, BNFM con-
sists of a sparse loading matrix and a set of correlated
non-negative factors. The sparsity of the loading matrix
is constrained by a sparse prior [16] that directly reflects
our existing knowledge of TF regulation. That is if a
gene is known to be regulated by a TF, then the prior
probability that this regulation exists is high, and other-
wise, very low due to the generic sparse nature of TF
regulation (A TF only regulates a small number of genes
in the whole genome). Because of clustering effect on
the data samples, the factors in this BNFM model are
considered to be correlated and modeled by a Dirichlet
process mixture (DPM) prior [17]. DPM imposes a nat-
ural non-parametric clustering effect [18] among sam-
ples of the same TF and can automatically determine
the optimal number of clusters. Moreover, since the
activities of TFs are non-negative, they are assumed to
follow a (non-negative) rectified Gaussian distribution
[19]. Due to the complex nonlinear structure of the
BNFM, the estimation of the model becomes analytically
infeasible and highly complicated numerically. A Gibbs
sampling solution is developed to infer all the relevant
unknown variables.

Method
Bayesian non-negative factor model
Let y n

G n N∈ = …× 1 1 for , , represent the n-th micro-
array mRNA expression profile of G genes under a speci-
fic context. In practice, microarray data yn register the
log2 scaled (fold change of) gene expression levels under
the context of interest relative to a background often
obtained as the average expression levels among a variety
of contexts, such as different cell lines and tumors
[20,21]. We assume that the expression level yn is due to
the linear combination of scaled TF absolute protein acti-
vites and modeled by the following factor model

y Ax c en n n= + + (1)

where,
xn- the n-th sample vector of the scaled activities of L

TFs of interest. Particulary, the non-negativity of xn is
modeled by applying the component-wise rectification
(or cut) function cut to a vector pseudo factors sn, such
that the l-th element of xn is expressed as

x s sl n l n l n, , ,( ) max( , )= =cut 0 (2)

Since clustering effects may exist among samples, the
samples should be correlated. Therefore, pseudo factors
sn are modeled by a Dirichlet Process Mixture (DPM) of
the Gaussian distributions as

s G

G DP NIG
l n l n l n l n l n, , , , ,~ ( , );( , ) ~ ;

~ ( , ( , , , ))

 µ s m s

a m k a b

2 2

0 0 0 0 ;;

where,  ( , ), ,m sl n l n
2 represents the Gaussian distribu-

tion with mean µl,n and variance s l n,
2 , DP denotes the

Dirichlet process, and NIG is short for the conjugate
Normal-Inverse-Gamma (NIG) distribution. This DPM
model implies a clustering effect on sn such that

sl n n l l l ln n n n, , , , ,, , ~ ( , )|g m s m sg g g g
2 2 (3)

and

( , ) ~ ( , , , ); ~ ( );, ,m s m k a b g ag gl l nn n
NIG GEM2

0 0 0 0 (4)

where, gn Î ℤ represents the cluster label of the n-th
sample and is governed by a discrete GEM distribution
[17], which defines the stick breaking process with para-
meter a; this implies that the elements of sn are corre-
lated. Based on (2) and (3), we have

xl n n l l l ln n n n, , , , ,, , ~ ( , )| Rg m s m sg g g g
2 2 (5)
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where,  R denotes the rectified Gaussian distribu-
tion [19]. Since ( , ), ,m sg gl ln n

2 and gn are still defined in
(4) by the DP, xn is hence modeled by the DPM of the
rectified Gaussian distributions and the elements of xn
are accordingly correlated. In contrast to the conven-
tional mixture model, the DPM model enables the num-
ber of clusters to be learnt adaptively from the data
instead of being predefined.
A- the G × L loading matrix, whose element ag ,l

represents the regulatory coefficient of the g-th gene by
the l-th TF. Since a TF is known to regulate only small
set of genes, A should be sparse. In our model, the ele-
ments of A are assumed to be independent and with the
a priori distribution [16]

p a a ag l g l g l g l g l a l( ) ( ) ( ) ( ), , , , , ,= − +1 2p d p s |0, (6)

where, πg,l is the a priori probability of ag,l to be non-
zero. For instance, if a TF regulates a total of 500 genes
among the 20000 genes in the human genome, then πg,l
is equal to

p g l, .= =500 20000 0 025/

In most cases, πg,l are likely to be smaller than 10%. In
practice, databases such as TRANSFAC [11] and DBD
[22] provide information of experimentally validated or
predicted target genes of TFs, and this knowledge can
be incorporated in the model by setting, for instance, πg,
l = 0.9, if TF l is known to regulate gene g; or otherwise
πg,l = 0.025. The variable s a l,

2 defines how much the
target genes are loaded on the corresponding TF and
with prior distribution s a ba l a a, ~ ( , )2 Inv-Gamma .
c- a vector of constant, which can be considered as

the constant term retained when linearizing the general
relationship yn = f(xn) as yn = Axn + c. It may also be
interpreted as static response of gene transcriptional
expressions.
en- the G × 1 white Gaussian noise vector character-

ized by the covariance matrix Σ = diag(s se e G, ,, , )1
2 2

and with prior distribution s a be g n n, ~ ( , )2 Inv-Gamma .
The overall graphical model is shown in Fig.1.

Equivalent model for centralized observations
To infer a factor model (1) more efficiently, the observa-
tion mean is usually removed at the first stage to elimi-
nate the effect of the constant term c, resulting the
equivalent model for centralized observations ŷn, where,

ŷn = yn – µy and m y n

n

N

N=
=

∑ y /
1

. Traditionally, since

the models typically assume zero mean for the factors,
the equivalent model for centralized observations

remains the same except that the constant term is elimi-
nated, i.e., if yn = Axn + c + en, then, for the centralized
data ŷn,

y Ax e
n n n= + (7)

and µy can be viewed as an ML estimator of the con-
stant term c [23]. For BNFM, however, since the factor
mean is no longer zero, the equivalent model for BNFM
no longer remains the same as above mentioned tradi-
tional model, but instead,

y Ax e 
n n n= + (8)

where,

x n n xx= − m (9)

m x n

n

N

N=
=

∑ x /
1

(10)

Given sufficient number of samples, the sample mean
µx = [µx1, µx2, …,µxL]

⊺ can be approximated with the
mean of prior distribution (4)(5), which can be calcu-
lated numerically. We can also see that the correspond-
ing centralized factors are a shifted version of the
original factors, and different samples shift the same
amount, so sample clustering effect is still retained. On
the other hand, the removed term from data centraliza-
tion is no longer an estimator of the constant term c,
but,

m my xA c= + (11)

The goal is to obtain the posterior distributions and
hence the estimates of A, xn∀n, gn∀n, given yn∀n and πg,l
∀g, l, which is the TF binding prior information extracted
from existing database. For convenience, we let Θ denote
all the known and unknown variables.

Gibbs sampling solution
The proposed BNFM model is high dimensional and
analytically intractable, so a Gibbs sampling solution is
proposed. Gibbs sampling devises a Markov Chain
Monte Carlo scheme to generate random samples of the
unknowns from the desired but intractable posterior dis-
tributions and then approximate the (marginal) poster-
ior distributions with these samples. The key of Gibbs
sampling is to derive the conditional posterior distribu-
tions and then draw samples from them iteratively until
convergence is reached. The proposed Gibbs sampler
can be summarized as follows:
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Gibbs sampling for BNFA
Iterate the following steps and for the t-th iteration:
1. Sample s e g

t g,
( )2 ∀ from p e g

e g
( ),

,
s s

2
2|QQ− ;

2. Sample s l
t g l2( ) ,∀ from p l

t

l
t( )( )

( )s s
2

2|QQ− ;
3. Sample a gg l

t
,

( )∀ from p(ag,l|Θ–ag,l);
4. for n = 1 to N
Sample g n

t( ) from p n
n n n

( )
, ,

g g|QQ−s x ;
Sample x n

t( ) from p n
n n

( )
,

x
s x


|QQ− ;

Sample sn
t( ) from p(sn|Θ–sn);

Note that m sl k l k l k, ,, ,2 ∀ are marginalized and there-
fore does not need to be sampled. The algorithm iter-
ates until the convergence of samples, which can be
assessed by the scheme described in [24], [chap. 11.6].
The samples after convergence will be collected to
approximate the marginal posterior distributions and

the estimates of the unknowns. Since µx can be approxi-
mated and calculated numerically, the factor xn can be
recovered from the centralized factor x n with (9). The
required conditional distributions of the above proposed
Gibbs sampling solution are detailed in the next.

Conditional distributions of the proposed Gibbs sampling
solution
For simplicity, we let xn and yn denote the centralized

factors and data in this section. p ag l ag l
( ), ,

|QQ−

Let E = Y – AX and eg = [eg,1, ..., eg,N]
T, then,

y x
g l g l l g l e g Na a I, , , ,~ ( )| , s 2

ns

nθG

H0

ny 1, ,n N,N,

2
,e g

1, ,g GG,

n

n

ne
nAx

2
l

1, ,l L,L,

,g la,g l

1, ,n N,N,

c

a a

1, ,g GG,

Figure 1 Graphical model. The Bayesian graphical model is shown here. yn is the observed mRNA gene microarray data, the prior probability
of regulation πg,l is extracted from TRANSFAC database, an, bn, l0, a, aa, ba are the hyperparameters, and the rest variables are unknown and
need to be estimated.
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where, ŷg,l = xlag,l + eg, xl = [xl,1,..., xl,n]
T and eg = [eg,1,

..., eg,N]
T. The posterior distribution of ag,l,

p a

p a

Z p a

g l a N

g l l gl e g

gl l g

g l
( )

( , )

( ,

, ,

, ,

,

,
| ,

| ,

|

QQ−

=

=

y

x y

y x

1

2

0




s

ll e g g l

g l g l l g l e g N gj

p a

Z a a

, ) ( )

[( ) ( , ) ( )

, ,

, , , ,

s

p s d

2

0
21= − + y x I | pp s s

p d

g l gl l g l e g N g l a

g l g

a a

a

, , , , ,

, ,

( , ) ( , )]

( ) (

 y x I



| |2
0

20

1= − ll g l g lf a) ( ), ,+ p

(12)

where Z0 is a normalizing constant,
p p p p

g l g l g l g lBF, , , ,/ [( ) ]= − +1 01 is the posterior prob-
ability of ag,l ≠ 0 and BF01 is the Bayes factor of model
ag,l = 0 versus model ag,l ≠ 0

BF
p a

p a
g l l g l e g

g l l g l e g
01

2

2

0

0
=

=

≠
=

( , , )

( , , )

(, , ,

, , ,

y x

y x

y



|

|

s

s

 gg l e g N

g l y g l

, ,

, , ,

, )

( , )

|

|

0 I

y 0 C

s 2

 

with C x x Iy g l l l a l e g N g lf a, , , , ,; ( )= +Τs s2 2  is the poster-
ior distribution for ag,l ≠ 0 and defined by

f a ag l g l a a
g l g l( ) ( , ), , , ,=  |m s  2

where, m s s s 
a a l l

T
l a l l

T
e g N g lg l, , , , ,= +( )−2 2 2 1

x x x I y and

s s s s s s
a a l a l l

T
l a l l

T
e g N l a lg l, , , , , ,

2 2 2 2 2 1 2= − +( )−
x x x I x , and

πg,l is the prior knowledge of the probability of ag,l to be
non-zero. When πg,l = 0.5, i.e, a noninformative prior

on sparsity is assumed, p g l, depends only on BF01, and

p g l, .< 0 5 when BF01 > 1. Since model selection based

BF01 favors ag,l = 0, it suggests that this Bayesian solu-
tion favors sparse model even when πg,l =

0.5. p n n n
( ),g g|QQ−x

It should be noted that gn does not depend on xn in
the distribution. It is intended that samples of gn from
this distribution are not affected by the immediate sam-
ple of xn, thus achieving faster convergence of the sam-
ple Markov chains. To derive this distribution, first let
ŷl,n = alxl,n + en with al being the l-th column of A and
hence y a

l n l l nx, ,~ ( , ) Σ . Then,

p

p

p

n N

n n L n

n n n L n

n n
( , )

( , )

( , )

, :

: ,

: ,

g

g g

g g

g|

|

, |

QQ−

−

−

=

= ∫

x y

y

x y

1

1

1



 dd

Z
p p d

Z
N g

n

L n n n n n n n

n k k n

x

y x x x x=

= −

− −

−

∫1

1

0
1

0

( ) ( , , )

( (

: ,

,

 | |g g

d g kk g k
k

K

k l) ( ))
=

∑ + −
1

a d g

(13)

where k denotes a new cluster other than the existing
K i i n kn k i, { , },− = ≠ =| g represents the set of the
pseudo factors besides sl that also belong to cluster k,
N–l,k is size of −n k, , and

Z N g g g g

g

n k k k
k

K

k l k

l

L

l k
x l n k

l n k

0

1 1

= + =

=
− −⎛

−
= =

∑ ∏, ,

,
, ,

, ,

; ;a

m m

s
Φ




⎝⎝
⎜
⎜

⎞

⎠
⎟
⎟ − +

+⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ( , ) (, ,
, ,

, ,

y a y 
l n l x

x x

x
l n

l n k

l n k

| m
m m

s
Σ Φ ||m

y y 
l n k l n k, , , ,

, );Σ

with,

m m s

m m

y y
a a a 
 


l n k l n k

l n k

l l n k l l l n k

x l

, , , ,

, ,

, , , ,

,

;= =

=

 + ;

 

Σ ΣΤ 2

nn k l n k l l l l n k l n l l n k
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,

+ −−s s m

s
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k
l n k l n k l l l l n k l l n k

2 2 2 2 1 2
= − −s s s s   a a a aΤ Τ Σ+

where,

a a k k m
k
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k n l k n

N N
N s

, , , , , , , ,
, , ,

; ;= + = + =
+− −
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and,

m m s
b

a
k
k

 
l n k l n k l n k

l n k

l n k

l n k

l n k
, , , , , ,

, ,

, ,

, ,

, ,
;

( )

( )
;= =

−
+

 
2

1

1

Noted that, for a new cluster, k k l k= =−, ,  f and N–

l ,k = 0, and gk can be derived from gk for k k=
similarly. p xl n l n

( ), ,
|QQ−x

This distribution can be expressed as

p x x xl n l n x l n x x l n l n kl n k l n k
( ) ( ) ( ) (, , , , , ,, , , ,

| |y = − + +1 p d m p m Τ ,, , , ), ,s m
l n k x
2

− +∞ (14)

where,  Τ( , , , ), , , ,m s m 
l n k l n k x

2
− +∞ represents the trun-

cated Gaussian with parameters ( , ), , , ,m s 
l n k l n k

2 and
between the interval (–µx,+∞), and,

p
m m

s
m

x

x l n k

l n k
l n l x

l

l n k, ,

, ,

, ,
,( , )

=

+

− −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

1

1

Φ Σ











y a

y

|

,,
, , , ,

, ,

, ,

,n
x x

xl n k l n k

l n k

l n k

|m
m m

sy y Σ Φ( ) +⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

p sl n sl n
( ), ,

|QQ−

According to the graphical model, given xl,n, the con-
ditional distribution of sl,n does not depend on y1:N; As
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the predictive density p(sl,n|s–l,n, gl) is shown to be a
Student-t distribution, which can be conveniently
approximated as a normal distribution when N–l,k is
large:

p sl n l n k l n k( ) ( , ), , , , ,=  m s  2

and conditional distribution can be expressed as

p s x s x sl n l n s l n l n s l n l n kl n l n
( ) ( ) ( ) ( ,, , , , , , ,, ,

| |= − − +1 p d p m s Τ  
ll n k s, , , , )
2

−∞ −m

where, πsl,n = 1 – sgn (xl,n + µx) p e g
e g

( ),
,

s s
2

2|QQ−
Let the residuals E = Y – AX, and we have,

e Ig e g N~ ( , ), 0 2s , where eg = [eg,1, eg,2, …, eg,N]
⊺ Given

the conjugate Inverse-Gamma prior, we have

p pe g N e g g g g( , ) ( ) ( , ), : ,s s a b2
1

2| | Inv-GammaQQ y e= = (15)

where Inv-Gamma represents the Inverse-Gamma dis-
tribution and

a a b bg g g n

n

N

N e= + = +
=

∑0 0
2

1

2 2/  /; ;,

p l
l

( )s s
2

2|QQ−
With the prior distribution

s a bl a a
2 ~ ( , )Inv-Gamma , the conditional probability

of s l
2 is,

s a bl a l a l
2 ~ ( , ), ,Inv-Gamma

where, a aa l a a lN, ,= + 1
2 and

b ba l a g l
g

a
a l

, ,
,

= +
∈∑1

2
2


, and Na,l is the size of

a l g lg a, ,{ }= ≠| 0 .

Results
Test on simulated system
The proposed BNFM model was first tested on a simu-
lated system, in which the microarray data consists of
the expression profiles of 150 genes with 40 samples.
The samples form 5 clusters and the 150 genes were
assumed to be regulated by 10 TFs. The sparsity of
loading matrix was set at 10%, which means that on
average each gene is regulated by 1 TFs, and each TF
regulates 15 genes. To simulate a practical imperfect
database, the precision and recall of the prior knowledge
were both set equal to 0.9 each, i,e., 90% of the database
recorded regulations indeed happened in this specific
data set (10% of the database recorded regulations may
be context-specific and didn’t happen in the data); and
90% of the true regulations was recorded in the database
(10% of true regulations are not in the database). This

setting indicates that the recorded prior regulations may
not exist in the experiment, and the unknown regula-
tions could exist. Since this is a relatively large data set
involving sampling of many variables, instead of examin-
ing convergence based on [24], [chap. 11.6], we adopted
a more practical strategy by running a single MCMC
chain for 10000 iterations with a burn-in period of 2000
iterations [25].
Since the algorithm estimates the loading matrix, the

factors, the clustering result, and TF regulatory targets,
to evaluate the performance, four respective metrics
were computed. Particularly, in order to systematically
evaluate the clustering result, a Van Rijsbergen’s F
metric [26] that combines the BCubed precision and
recall [27] was implemented as suggested in [28]. More
specifically, let L(e) and C(e) be the category and the
cluster of an item e. Then, the correctness of the rela-
tion between e and e′ is defined by

Correctness
iff 

otherwise
( , )

( ) ( ) ( ) ( )
e e

L e L e C e C e
′ =

= ′ ↔ = ′⎧
⎨
⎩

1

0

That is, two items are correctly related when they
share the same cluster. Moreover, the BCubed precision
and recall are formally defined as

Precision BCubed Avg Avg Correctness= ′′ = ′e e C e C e e e[ [ ( , )]]. ( ) ( )

RRecall BCubed Avg Avg Correctness= ′′ = ′e e L e L e e e[ [ ( , )]]. ( ) ( )

These two metrics can be further combined using Van
Rijsbergen’s F metrics:

F R P
P R

RP

R P
( , )

. / ( . ) /
=

+ −
=

+
1

0 5 1 0 5
2

The F metrics satisfy all the 4 formal constraints
defined in [28] including cluster homogeneity, cluster
completeness, rag bag, and cluster size vs. quantity. We
adopt the F metrics to evaluate the clustering result in
the following tests. Similarly, a Van Rijsbergen’s F
metric that combines the target prediction precision and
recall is used to measure the target prediction result.
Since our model can avoid sign ambiguity problem, the
loading and factor estimations were evaluated using its
Pearson’s correlation with their true values.
Experiments were carried out to test the impact of

noise (Fig. 2), database precision (Fig. 3) and database
recall (Fig. 4) on the performance of the algorithm. It
can be seen from the simulation result that, at the low
noise level or with high quality prior database, the
developed algorithm can produce satisfactory result.
Expectedly, the performance of the algorithm decreases
as the noise variance increases or database quality
decreases. However, the clustering performance is more
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sensitive to noise (Fig.2), while target prediction result
relies more heavily on the quality of database prior
knowledge (Fig. 3-4), because database directly support
regulation posterior probability through its prior prob-
ability. In summary, the simulation results are indicative
of satisfactory performance of the developed Gibbs sam-
pling algorithm.

Test on breast cancer data
After validating the performance of the proposed algo-
rithm by simulation, the algorithm was then applied to the
breast cancer microarray data published in [29-32]. Parti-
cularly, we applied the algorithm to 53 samples of grade 3
ER+ breast cancer. All samples came with gene microarray
expression, ER status and survival time information. For
the settings of the algorithm, we first manually selected a
total of 15 TFs that are reported to be relevant to breast
cancer (Table 1) and then retrieved a total of 199

regulated target genes (Table 2) by these TFs from
TRANSFAC database [11] (Release 2009.4). We assume
that TRANSFAC record has a 90% precision and 90%
recall, suggesting that the known regulations may be con-
text-specific and unknown regulations could exist. From
the precision and the recall, the prior probability of the
loading matrix can be determined. Based on these settings,
the proposed approach was applied to the breast cancer
data set to infer the underlying regulatory networks and
TF activities. The posterior distribution of the loading
matrix (Fig.5) gives insight into the sparsity of inferred TF
mediated regulation. It can be seen that the posterior
probability of regulations fall into 2 distinct groups, i.e.,
one group has very small posterior probabilities, which
correspond to regulations that do not exist; while the
other group have larger posterior probabilities, which cor-
respond the regulations that are likely to exist. Fig. 6
depicts possible regulations and their posterior
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Figure 2 Impact of noise. The performance vs noise is shown here. Two noise conditions ( . , . )s n
2 0 2 0 4= are tested. It can be seen from

the figure that, the algorithm performance deceases as noise increases. While the clustering result relies on noise heavily (Fig.2-a), the target
prediction is relatively more robust against noise (Fig.2-c).
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probabilities (rounded by 0.1) in a network, demonstrating
the capability of the proposed approaches to identify possi-
ble TF regulated target genes.
When setting the cut-off threshold 0.5, the result con-

firmed 281 regulations among the 282 regulations that
were defined in the TRANSFAC database, and identified
25 new regulations that are not recorded in the database.
This fact demonstrates the ability of our algorithm to dis-
cover new regulations and discern context-dependent
regulations among the prior knowledge, and the recon-
structed network is shown in Fig. 7, showing the capabil-
ity of the proposed approach to identify both the
strength (represented by edge width) and the type (repre-
sented by edge color) of transcriptional regulations.
Along with the estimates of regulatory coefficients, the

transcription factor activities and the sample cluster attri-
butes were also obtained. Fig.8 depicts the estimated TF
activities, with the patient samples grouped according to

the clustering result, and it clearly shows the coordinated
clustering effects. To further gain insights into the clini-
cal outcomes of different patient groups defined by the
TF activities, survival analysis was carried out and it con-
firmed the survival difference between the the 1st and
2nd clusters (p = 0.05) as shown in Fig.9. Previous studies
based on expression levels [33-36] identified 5 major sub-
types (luminal A, luminal B, basal, ERBB2 overexpressing,
and normal-like). We compared the pair-wise survival
difference between our clustering (3 clusters) and pre-
vious result (5 clusters). It shows the superior perfor-
mance of our method (Table 3) over the previous
computation based method (Table 4).

Discussion
We proposed a new approach to uncover the transcrip-
tional regulatory networks from microarray gene expres-
sion profiles. We discuss next a few distinct features of it.
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Figure 3 Impact of database precision. The performance vs database precision is shown here. It can be seen from the figure that, the
algorithm performance deceases as noise increases. While the target prediction relies on the quality of database heavily (Fig.3-c), the clustering
result is relatively robust against database quality (Fig.3-a) .
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Figure 4 Impact of database recall. The performance vs database recall is shown here. It can be seen from the figure that, the algorithm
performance deceases as noise increases. While the target prediction relies on the quality of database heavily (Fig.4-c), the clustering result is
relatively robust against database quality (Fig.4-a) .

Table 1 List of tested 15 TFs and aliases

Name Target Aliases

1 EBP-a 21 BPc; C/EBP; C/EBP alpha; C/EBPalpha; CBP;

2 ETS-1 14 c-Ets-1; c-Ets-1 54; c-Ets-1A; Ets1; p54; p54c-Ets-1.

3 FOS 23 c-Fos; FBJ osteosarcoma oncogene; p55(c-fos).

4 MYC 11 c-Myc; MYC; v-myc myelocytomatosis viral oncogene homolog (avian).

5 CREB 22 ATF-47; CREB; CREB-341; CREB-A; CREB-isoform1; CREB1;

6 ATF-2 16 activating transcription factor 2; ATF2; CRE-BP1; CREB2; CREBP1;

7 EGR-1 24 AT225; early growth response protein 1;

8 EBP-b 23 AGP/EBP; ANF-2; C/EBP beta; C/EBP-beta; C/EBPbeta; CEBPB;

9 NF-�B 28 NFkappaB; Nuclear Factor kappa B.

10 P53 20 ASp53; LFS1; NSp53; p53; p53as; RSp53; tp53; TRP53;

11 ATF-1 14 activating transcription factor 1; ATF1; EWS-ATF1; FUS/ATF-1;

12 STAT-3 12 acute-phase response factor; APRF;

13 STAT-1 19 signal transducer and activator of transcription 1.

14 AP-2 16 activating enhancer binding protein 2 alpha; activator protein-2;

15 CREB-1 19 ATF-47; CREB; CREB1; cyclic AMP response element-binding protein;

The tested 15 transcription factors and their aliases.
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First, to reflect the fact that a TF only regulates a
small number of genes among the whole genome, the
loading matrix of the factor model is constrained by a
sparse prior [16], which directly reflects our existing
knowledge of the particular TF-gene regulation, i.e., if
the regulation exists according to prior knowledge, the
probability of the corresponding component of the load-
ing matrix to be non-zero is large; or otherwise, very
small. The introduction of sparsity significantly con-
strains the factor model and helps to enable the infer-
ence of a set of correlated samples.
Second, since the activities of TFs cannot be negative,

the factors are modeled by a non-negative rectified

Table 2 List of tested 199 genes

Symbol Symbol Symbol Symbol

1 CXCR4 51 CD82 101 PENK 151 CDKN1A

2 CAT 52 HLA-DRA 102 PIM1 152 PTTG1

3 FOS 53 VIP 103 COL1A2 153 MITF

4 MT2A 54 INS 104 IL2RB 154 HBB

5 PSMB9 55 PTGS2 105 ZNF268 155 CSF1

6 DBH 56 APOA2 106 GSN 156 TIMP1

7 SERPINC1 57 FGFR2 107 TNFRSF10C 157 F9

8 CHEK1 58 CCND1 108 CXCL3 158 VHL

9 SCN3B 59 CASP1 109 CSNK2B 159 CD1A

10 F7 60 HBB 110 TRA@ 160 SFN

11 ITGAX 61 COL2A1 111 HLA-DPB1 161 SOAT1

12 EIF4E 62 MDM2 112 TRA@ 162 FCGR1A

13 TGFB2 63 RB1 113 TP53 163 FAS

14 CDC25A 64 NDRG1 114 SOX9 164 HBG1

15 IL3 65 BRCA1 115 ALOX5AP 165 WARS

16 SERPINE1 66 BAX 116 TOP1 166 KIR3DL1

17 IL10 67 ATF2 117 NFKB1 167 CD8A

18 F3 68 FN1 118 IL2 168 IL6

19 IL2RA 69 BCL2L1 119 SLC9A3 169 TWIST1

20 BDNF 70 CCR5 120 CYP3A4 170 CXCL1

21 WEE1 71 TF 121 CRH 171 IFNB1

22 CYP11A1 72 TFRC 122 CIITA 172 PTK2

23 NR4A2 73 HD 123 RFWD2 173 SPP1

24 VHL 74 CXCL1 124 LOR 174 CSF1

25 TRH 75 CSNK1A1 125 REN 175 TP73

26 SOD2 76 NR3C1 126 YBX1 176 CD53

27 CSF2RA 77 SPINK1 127 ATF3 177 NAB2

28 MUC1 78 EGR1 128 TEAD1 178 PTTG1

29 MEFV 79 EDN1 129 CDK4 179 IL1B

30 GNAI2 80 TFAP2A 130 APAF1 180 APOB

31 DRD1 81 CFTR 131 CYP19A1 181 IL8

32 ADRB2 82 MYC 132 ACE 182 TAF7

33 GCLC 83 FMR1 133 KRT16 183 PTP4A1

34 OPRM1 84 F8 134 NOS2A 184 HSD17B8

35 IFNG 85 TSC22D3 135 FXR2 185 ABCB1

36 BCL2A1 86 FGF2 136 IRF1 186 PBK

37 CCL5 87 LOR 137 CGA 187 TACR1

38 ICAM1 88 PTHLH 138 KRT14 188 MAOB

39 PSENEN 89 S100A9 139 ABCA2 189 RPL10

40 IER2 90 GADD45A 140 FGA 190 IVL

41 SOD1 91 EXO1 141 TALDO1 191 ERBB2

42 GNRHR 92 PLAU 142 CSF1 192 CCL2

43 LTA 93 PTH 143 SFTPD 193 BBC3

44 TERT 94 CDK4 144 CRP 194 TP63

45 TNFAIP6 95 PPARG 145 TPT1 195 RFWD2

46 ODC1 96 POLB 146 SLC9A2 196 FGFR4

47 LTF 97 ID1 147 CYP2A13 197 NAT1

48 PRLR 98 MT2A 148 DDX18 198 SELE

49 TNF 99 SST 149 CCNA2 199 FASLG

50 MMP1 100 KRT14 150 IL6ST

The tested 199 genes.
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Figure 5 Histogram of the regulation posterior probabilities.
The figure shows the histogram of posterior probabilities of all the
possible regulations. Two distinct groups can be identified, each
representing a group of regulations that are likely to happen (p >
0.5) or not (p < 0.5).

Figure 6 Network of the posterior probability of regulations.
The network depicts possible regulations and their posterior
probabilities (rounded by 0.1), where a edge indicates a possible
regulation from a TF to a gene, and the line width of the edge
represents the probability of the particular regulation exists, with
thicker line width stands for larger probability; and vise versa.
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Gaussian distribution [19], which not only is consistent
with the physical fact of TF regulation but also avoids
the inherent sign ambiguity problem of the factor mod-
els. Noted that, a rectified Gaussian distribution  R is
different from a truncated Gaussian  T in that:

p x
x

x

T

R
( )

~ ( , )

( / ) ~ ( , )
= =

−

⎧
⎨
⎪

⎩⎪
0

0 2

2

if 

if 





m s

m s m sΦ

indicating that the rectified Gaussian model can also
describe the possible suppressed state of TFs, which

nevertheless cannot be modeled by the truncated Gaus-
sian distribution. A comparison of Gaussian, rectified
Gaussian, and truncated Gaussian is shown as Fig.10. In
our model, the non-negativity is constrained only on the
factor matrix; the elements of loading matrix can be
either positive or negative, which models the corre-
sponding up- or down-regulation of TFs. This is

Figure 7 Network of the regulation coefficients. The network
shows regulation coefficients, where an edge between a TF and a
gene indicates the gene is regulated by the TF, and the color of the
edge indicates the regulation types (red for up-regulation, and blue
for down regulations), and the line width stands for the regulation
strength.

Figure 8 Estimated transcription factor expression. The tested samples fall into 3 major clusters with 24, 11 and 11 samples. The rest 7
samples may be considered as outliers that are not classified. In accordance with the sample clustering result, the recovered TF shows 3 major
clustering patterns with a few outliers.
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Figure 9 Survival difference between cluster 1 and 2. The
survivals of the two estimated clusters show statistical difference p
= 0.04 when using logrank test, indicating the two clusters are
potentially corresponding to two subtypes of breast cancer that
have different survival time.
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different from non-negative matrix factorization (NMF)
[13,15,37,38]. NMF enforces that both the loading
matrix and the factor matrix must be non-negative, i.e.,
all elements must be equal to or greater than zero. With
the capability of modeling both the up- or down-regula-
tions, the proposed BNFM is more appropriate for mod-
eling the TF regulation than NMF.
To model the samples correlation due to, for instance,

cancer subtypes, the samples are modeled by a Dirichlet
process mixture (DPM), which imposes clustering effect
among samples and can automatically determine the
optimal number of clusters from data rather than be pre-
defined in the algorithm. Forth, other types of data, such
as ChIP-chip data [39-41] and DNA methylation data
[42] can be conveniently integrated with gene expression

data [43] under the proposed framework by setting a
slightly different prior probabilities to the loading matrix.
Integrating additional data types can potentially improve
the accuracy of the reconstructed networks. [12].
However, the proposed model is not without short-

comings. First, this model can not yet capture regula-
tions from TFs that are not specified in the prior
knowledge database. In reality, it is possible that some
TFs that are not specified in the prior knowledge actu-
ally regulate the gene transcription. Second, the algo-
rithm may not converge in a reasonable number of
iterations on a large data set, thus cannot yet be applied
to genome wide data set. Because the model parameters
are high dimensional and highly correlated, the speed of
convergence may significantly slow down on a large
data set [44,45]. However, such restriction on the size of
genes and TFs forces us to focus the analysis on most
relevant genes and TFs, making the analysis more tar-
geted and easy to interpret. We demonstrate in section
Result, how such analysis can be carried out starting
from a whole genome microarray data. With the
advancement in ChIP-seq technology and increasing
knowledge of TFs biological functions, the proposed
model could be applied for a genome-wide study in the
future.
Thirdly, the prior knowledge may still need to be

properly evaluated. If the prior knowledge is considered
an estimation of the true TRN, when the precision p,
recall r of prior information and the sparsity of the load-
ing matrix s is given, the prior probability of the g-th
gene to be a target of the l-th TF πg,l can be calculated
as follows:

p g l
p

sp r p sr, ( ) / ( )
=

− −
recorded regulation

not recorded regula1 ttion

⎧
⎨
⎩

Table 4 Survival test of previous results

luminal A luminal B Basal-like HER2+/ER- normal-like

luminal A N/A 0.75 0.76 0.42 0.83

luminal B 0.75 N/A 0.98 0.7 0.8

Basal-like 0.76 0.98 N/A 0.67 0.94

HER2+/ER- 0.42 0.7 0.67 N/A 0.46

normal-like 0.83 0.8 0.94 0.46 N/A

The logrank test result of the survival difference between each pair of
previous predicted clusters [33-36].None of the pair shows statistical
difference (min= 0.42).

Table 3 Survival test of clustering results

Cluster 1 Cluster 2 Cluster 3

Cluster 1 N/A 0.04 0.16

Cluster 2 0.04 N/A 0.93

Cluster 3 0.16 0.93 N/A

The logrank test result of the survival difference between each pair of
estimated clusters (min= 0.04). The survivals of cluster 1 and cluster 2 are
significantly different with p = 0.04, indicating the two predicted clusters may
each represent a subtype of breast cancer.
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Figure 10 Comparison of original, rectified and truncated Gaussian distributions. The probability distribution function of Gaussian, rectified
Gaussian and truncated Gaussian are shown in this figure. The range of Gaussian distribution  ( , )0 12 is from (–∞, ∞), the range of rectified
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However, the precision or recall of the prior knowl-
edge database are only arbitrarily specified (both 90%).
In practice, the quality of prior knowledge should be
evaluated first before more reasonable prior probabilities
of regulations can be assigned.

Conclusions
A Bayesian factor model that has sparse loading
matrix, non-negative factors, and correlated samples,
was proposed to unveil the latent activities of tran-
scription factors and their targeted genes from
observed gene mRNA expression profiles. By naturally
incorporating the prior knowledge of TF regulated
genes, the sparsity constraint of the loading matrix, the
non-negativity constraints of TF activities, the regula-
tion coefficients and TF activities can be estimated. A
Gibbs sampling solution was proposed and model
inference. The effectiveness and validity of the model
and the proposed Gibbs sampler were evaluated on
simulated systems. The proposed method was applied
to the breast cancer microarray data and a TF regu-
lated network for breast cancer data was reconstructed.
The inferred TF activities indicates 3 patients clusters,
two of which possess significant differences in survival
time after treatment. These results demonstrated that
the BNFM provides a viable approach to reconstruct
TF mediated regulatory networks and estimate TF
activities from mRNA expression profiles. The BNFM
will be an important tool for not only understanding
the transcriptional regulation but also predicting the
clinical outcomes of treatment.
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