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Abstract

Background: Intrauterine growth restriction (IJUGR) may program metabolic alterations affecting physiological
functions and lead to diseases in later life. The adipose tissue is an important organ influencing energy
homeostasis. The present study was aimed at exploring the consequences of IUGR on the retroperitoneal
adipose tissue of adult male and female rats, using a proteomic approach.

Methods and Results: Pregnant Wistar rats were fed with balanced chow, either ad libitum (control group)
or restricted to 50 % of control intake (restricted group) during the whole gestation. The offspring were weaned to ad
libitum chow and studied at 4 months of age. Retroperitoneal fat was analyzed by two-dimensional gel electrophoresis
followed by mass spectrometry.

Both male and female restricted groups had low body weight at birth and at weaning but normal body weight at
adulthood. The restricted males had normal fat pads weight and serum glucose levels, with a trend to
hyperinsulinemia. The restricted females had increased fat pads weight with normal glucose and insulin levels.

The restricted males showed up-regulated levels of proteasome subunit a type 3, branched-chain-amino-acid
aminotransferase, elongation 1- alpha 1, fatty acid synthase levels, cytosolic malate dehydrogenase and ATP synthase
subunit alpha. These alterations point to increased proteolysis and lipogenesis rates and favoring of ATP generation.
The restricted females showed down-regulated levels of L-lactate dehydrogenase perilipin-1, mitochondrial
branched-chain alpha-keto acid dehydrogenase E1, and transketolase. These findings suggest impairment of glycemic
control, stimulation of lipolysis and inhibition of proteolysis, pentose phosphate pathway and lipogenesis rates.

In both genders, several proteins involved in oxidative stress and inflammation were affected, in a pattern compatible
with impairment of these responses.

Conclusions: The proteomic analysis of adipose tissue showed that, although IUGR affected pathways of substrate and
energy metabolism in both males and females, important gender differences were evident. While IUGR males

displayed alterations pointing to a predisposition to later development of obesity, the alterations observed in

IUGR females pointed to a metabolic status of established obesity, in agreement with their increased fat pads mass.
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Background

The concept of fetal programming describes that the ex-
position to adverse stimuli or insults, during critical
phases of intrauterine development, may induce per-
manent changes in physiological functions and lead to
adulthood diseases [1]. Increased risks of type 2 diabetes,
insulin resistance, cardiovascular diseases and obesity
have been associated with intrauterine growth restriction
(IUGR) induced by undernutrition [2, 3]. These conse-
quences have been shown to depend on the severity,
duration and gestational period of the insult and also to
be gender-dependent [4, 5]. Importantly, a mismatch be-
tween intrauterine and post-natal nutritional environ-
ment has been shown to be relevant for the expression
of the programmed metabolic dysfunctions [6].

Previous reports have found that the adult offspring
of IUGR rats displayed hyperphagia, obesity, hyperten-
sion, high serum leptin and insulin levels, increased
hypothalamic density of leptin and serotonin receptors,
and impairment of serotonin and insulin hypothalamic
signaling [7-13]. Additionally, IUGR led to increased
circulating levels of catecholamines in rats [14] and de-
creased levels of branched-chain amino acids in mice [15].

Lipogenesis and lipolysis are important physiologic
pathways in the adipose tissue. Fatty acids for triacylglyc-
erols synthesis may be taken up from the circulation or
derive from de novo synthesis from glucose. Glucose
degradation also yields glycerol 3-phosphate for fatty
acids esterification and storage [16, 17]. Conversely,
fatty acids and glycerol derived from triacylglycerols
lipolysis may be released into the circulation. Those
are hormone-controlled pathways. Lipolysis is inhib-
ited by insulin and stimulated by cathecolamines and
growth hormone. On the other hand, lipogenesis is
stimulated by insulin while growth hormone is inhibi-
tory [16-18]. Rat studies have indicated that IUGR
due to maternal food restriction decreased adipose tissue
lipolysis while it increased lipogenesis and/or adipogene-
sis, due to impairment of sympathetic activity [2].

The adipose tissue is also an endocrine organ whose
secretions influence the onset of metabolic disorders
[19]. Increased production of pro-inflammatory adipo-
kynes in obesity plays a relevant role in the linking of
adiposity, metabolic syndrome and cardiovascular dis-
eases [20, 21]. Recent reports have shown that fetal lep-
tin and adiponectin levels closely related to birth weight
and IUGR has been shown to increase leptin but not
adiponectin levels. Moreover, TNF-a levels have been
found to be either normal or increased while IL-6 levels
were either increased or decreases in IUGR [19, 22, 23].

Proteomic analysis allows the exam of hundreds of
proteins in a sample and the identification of modifica-
tion on their expression pattern in response to physio-
logic, pathologic and nutritional alterations, possibly
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leading to the identification and characterization of bio-
logical markers [24, 25]. Two-dimensional gel electro-
phoresis (2DE) followed by mass spectrometry remains
an effective methodology in proteomics, especially as
an initial approach [26, 27]. Recent proteomic studies
have focused on the consequences of IUGR in tissues
of animals and humans. Down-regulation of proteins
related to oxidative phosphorylation has been found in
the liver of both male and female IUGR rats [28]. In
piglets, IUGR up-regulated subcutaneous adipose tissue
levels of proteins related to glucose and fatty acid me-
tabolism, lipid transport and apoptosis [29]. In humans,
IUGR has been shown to increase serum levels of pro-
teins related to signal transduction, blood coagulation
and antioxidant response, while immune response pro-
teins were down-regulated [30].

The above data indicate that IUGR may injure mul-
tiple aspects pertinent to adipocytes physiology that are
relevant to the development of metabolic impairment
and obesity in adulthood. Considering the above, the
objective of this study was to further explore the conse-
quences of IUGR in the adipose tissue of adult rats
through proteomic approach.

Results

Body and white adipose tissue weight and blood and
tissue parameters

Restricted male and female rats had low body weight at
birth and at weaning but this difference was no longer
observed at four months of age (Table 1). Food intake
was similar between control and restricted animals, from
weaning to 4 months of age (data not shown).

White adipose tissues weight were similar between
control and restricted males. The female restricted rats
showed increased weight of mesenteric and gonadal
white adipose tissue and the sum of the three fat pads
was higher than that of the control females (Table 1).

Serum glucose, adiponectin, corticosterone and triglyc-
erides were similar between the groups of male rats.
Serum insulin levels showed a tendency to increase in the
restricted males (p=0.083). Serum and tissue cytokines
levels were similar between the male groups (Table 2).

For female rats, no differences were found in serum
glucose, insulin, corticosterone, adiponectin and triglyc-
erides between the control and restricted groups. The
restricted females showed low serum IL-1p (Table 2).

Proteomic analysis

The 2DE gels of retroperitoneal adipose tissue showed
425 +2.9 spots in control males (N=8) and 417 +4.5
spots in restricted males (N=38). Of these, 37 spots
showed significant density changes, with 15 spots under-
and 22 over-expressed. Spots optic densities are shown
in Additional file 1: Table S1. The significantly affected
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Table 1 Body and white adipose tissue weight of male and female control and restricted offspring

Page 3 of 15

Male Female

Control (16) Restricted (17) Control (14) Restricted (14)
BW at birth (g) 6.08+0.11 484 £0.12%** 569+ 0.14 4.80+0.13%**
BW at weaning () 8544 +232 76.05 + 2.52%* 7983 £2.15 70.24 + 2.68**
BW at 4-months (g) 3905+7.2 3854106 2349+33 2272+42
BW gain (9) 2636+ 84 2712108 121.2+48 1272455
Retroperitoneal (g/100 g bw) 1.15+0.11 1.24+0.11 0.80+0.06 0.95 +0.06
Mesenteric (9/100 g bw) 091+0.07 0.98+0.07 1.01+0.05 1.19£0.04**
Gonadal 131+£0.11 1.50+0.08 246+0.19 30+£017%
Total weight (g/100 g bw) 337+£0.28 3.72+£0.23 427+028 522 +0.22*%

Data are means + SEM; (number of animals)

BW body weight, g/100 g bw grams/100 g of body weight, Total weight sum of retroperitoneal, mesenteric and gonaldal fat pads

*p < 0.01 vs. control
**p < 0.01 vs. control
**%p < 0.001 vs. control

spots were analyzed by mass spectrometry for proteins
identification. Figure 1 shows a representative image of a
2DE gel of a control male with indication of the spots
significantly affected by IUGR.

The MS analysis identified 11 of the 15 under-expressed
proteins and 17 of the 22 over-expressed proteins. One
down-regulated protein (Murinoglobulin-1) and 2 up-
regulated proteins (Actin, cytoplasmic I and Voltage-
dependent anion-selective channel protein 1) were
identified in 2 adjacent spots. Table 3 shows the
Swiss-Prot Accession Numbers (available at http://
www.expasy.ch/sprot), full protein names, theoretical
molecular weight (MW) and isoelectric point as well
as the mass spectrometry data of the identified pro-
teins having statistically significant Mascot score re-
sults (p<0.05) in males. Additional file 2: Table S2
shows gene names and biological processes of the
proteins significantly up-regulated and down-regulated
proteins, as assessed by Panther software. Metabolic

process was the most common biological process class for
both the down-regulated (7 out of 10) and the up-regu-
lated (9 out of 15) proteins. The metabolic processes
included lipidic, amino acid and carbohydrate metab-
olism (Table 4).

The 2DE gels of females had 404 +3.6 spots in the
controls (N=6) and 397 +3.9 spots in the restricted
ones (N =6). Of these, 27 spots showed significant dens-
ity changes, with 20 spots under- and 7 over-expressed.
Spots optic densities are shown in Additional file 1:
Table S1. The significantly affected spots were analyzed
by mass spectrometry for proteins identification. Figure 2
shows a representative image of a 2DE gel of a control
female with indication of the spots significantly affected
by IUGR.

The MS analysis identified 18 of the 20 down-regulated
proteins and 4 of the 7 up-regulated proteins. Two
down-regulated proteins (Serotransferrin and Ig gamma
2-A chain C) were identified in 2 adjacent spots.

Table 2 Blood and retroperitoneal adipose tissue parameters of adult male and female control and restricted offspring

Male Female

Control Restricted Control Restricted
Serum glucose (mg/dl) 100.2+£5.2 (18) 924+3.1(9) 952+39 (13) 100.0£5.2 (9)
Serum Insulin (ng/ml) 0.50+0.07 (8) 0.79+0.13 9) 0.35+0.06 (9) 034+0.12 (9)
Serum adiponectin (pug/ml) 123+14(9) 11.3+1.1(9) 1745+ 181 (9) 1847 +227 (9)
Serum corticosterone (ng/ml) 942+79 (9 970+88 (8) 63.58+9.54 (9) 7106+ 558 (9)
Serum triglycerides (mg/dl) 551+43(18) 686+93 (9) 372+3.1(14) 387+60 (8)
Serum TNF-a (pg/ml) 76+17 (8) 182+64 (8) 2007 +£18(8) 1478 £4.3 (9)
Serum IL-1(3 (ng/ml) 0.10+0.04 (6) 0.06 +0.01 (6) 0.14+0.04 (9 0.04 +0.01*(8)
Tissue TNF- a (pg/ml) 493£45 (8) 550+32(8) 63.93+49 (8) 715543 (8)
Tissue IL-6 (pg/ml) 107.3+7.0 (8) 1066+ 69 (8) 126.24+3.3 (8) 13413+69 (8)
Tissue IL-10 (pg/ml) 1876+ 19.2 (8) 2250+28.7 (8) 27589+ 195 (8) 311.09+19.5 (8)

Data are means + SEM. (number of animals)
*p < 0.05 vs control
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Fig. 1 Representative image of a 2DE gel of a control male retroperitoneal adipose tissue depicting the proteins significantly affected by IUGR.
The numbers indicate the protein acession number. Numbers in squares indicate the over-expressed identified proteins. Numbers in circles indicate

Female proteins data of significant Mascot score results
(p <0.05) are shown in Table 5. Additional file 3: Table
S3 shows gene names and biological processes of the
significantly up-regulated and down-regulated proteins
in females. Metabolic process was the most common
biological process class for the down-regulated (13 out
of 16) and the up-regulated (4 out of 4) proteins. The
metabolic processes included lipidic, amino acid and
carbohydrate metabolism (Table 6).

In both males and females, some proteins were identi-
fied in 2 adjacent spots, what may possibly be attributed
to the existence of either different isoforms or post-
translational modifications of the protein.

Western blot analysis

A sub-set of selected proteins was analyzed by Western
blotting to confirm the proteome results. Corroborating
the male proteome result of a 40 % decrease in expres-
sion of 78 kDa glucose-regulated protein in the re-
stricted males, the western blot analysis showed a 33 %
decrease. The mitochondrial stress-70 protein showed a
48 % decrease in the proteome experiment and a 36 %
decrease in the western blot experiment (Fig. 3).

In the females, the proteome results showed a 68 %
decrease of Glutathione S-transferase theta-2 in the re-
stricted group while the western blot analysis showed a
25 % decrease (Fig. 4).

Discussion

Male and female rats submitted to intrauterine growth
restriction had normal food intake and body weight as
adults, indicating catch-up growth, an adaptive mechan-
ism against obesity in adult life [31, 32].

The restricted females, unlike the restricted males,
showed increased fat pads weight, without overt periph-
eral insulin resistance, in accordance with a previous
work from our laboratory [11]. This observation agrees
with other reports showing the gender-dependency of
the late consequences of rat maternal nutritional restric-
tion [4, 5, 7-9]. In humans, early intrauterine undernu-
trition increased body mass index in 50 year-old women
but not men [33].

The proteomic analysis of the adipose tissue of the
males showed that IUGR caused alterations in the pro-
tein levels of 28 identified proteins. Levels of fatty acid
synthase, enzyme of the de novo lipogenesis pathway
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Table 3 Identified proteins with significant expression alteration between control and restricted males

Accession Number Protein Name Matched Score Coverage (%) Fold Change (R/C) MW (Da)/ pl
Peptides

Down-regulated Proteins
P06761 78 kDa glucose-regulated protein 6 334 N 0.60 71476/5.07
P14668 Annexin A5 6 338 18 0.39 35780/4.93
P34058 Heat shock protein HSP 90 3 9 245 12 0.68 83577/497
P20059 Hemopexin 4 66 6 0.55 52072/7.58
Q6AYC4 Macrophage-capping protein 1 50 3 063 39065/6.11
Q03626 Murinoglobulin-1 3 66 3 047 166614/5.68
Q03626 Murinoglobulin-1 2 81 1 024 166614/5.68
Q63598 Plastin-3 1 46 1 0.22 71157/5.32
P67779 Prohibitin 4 19 17 0.58 28860/5.57
P09006 Serine protease inhibitor A3N 3 109 6 037 46796/5.33
P48721 Stress-70 protein, mitochondrial 3 66 6 052 74102/5.97

Up-regulated Proteins
P60711 Actin, cytoplamic | 6 191 21 1.77 42058/5.29
P60711 Actin, cytoplamic | 4 244 15 1.83 42058/5.29
P39069 Adenylate kinase izoenzyme 1 2 30 12 1.96 21686/7.66
P07943 Aldose reductase 3 94 10 205 36238/6.26
P15999 ATP synthase subunit alpha, mitochondrial 1 57 1 1.94 59833/9.22
035854 Branched-chain-amino-acid aminotransferase. mitochondrial 4 52 9 167 44827/846
P62630 Elongation factor 1-alpha 1 2 52 4 1.79 50430/9.10
P85845 Fascin 3 39 7 227 55211/5.96
P12785 Fatty acid synthase 5 151 2 240 275146/5.96
P05065 Fructose-biphosphate aldolase A 7 245 17 149 39791/8.31
P20761 Ig gamma-2B chain C region 2 38 4 207 37112/7.70
088989 Malate dehydrogenase, cytoplasmic 3 81 11 244 36634/6.16
P18422 Proteasome subunit a-type 3 4 86 15 193 28633/5.29
p27867 Sorbitol dehydrogenase 2 94 7 2.05 38790/7.14
P68370 Tubulin a-1A chain 3 121 9 237 50800/4.94
Q92210 Voltage-dependent anion-selective channel protein 1 2 60 8 2.16 30853/8.62
Q97210 Voltage-dependent anion-selective channel protein 1 1 42 4 4.94 30853/8.62

Accession number, protein name, number of matched peptides, proein score, percentage coverage, fold change (restricted/control) and theoretical molecular

mass (Da) and pl of identified proteins

[16], were increased by IUGR, in agreement with other
reports [34, 35]. A study comparing lean and obese sub-
jects found that increased fatty acid synthase gene ex-
pression was linked to visceral fat accumulation [36].

Prohibitin levels were down-regulated in the restricted
males. This protein has been shown to attenuate insulin-
stimulated oxidation of glucose and fatty acids in adi-
pose tissue [37]. Over-expression of prohibitin in mice
adipose tissue increased fat pads [38]. In contrast,
knockdown of prohibitin in 3 T3-L1 pre-adipocytes in-
creased oxidative stress due to impairment of mitochon-
drial function [39].

These protein expression alterations found in the re-
stricted males, one favoring and the other counteracting
lipid accumulation, may represent a pre-obese condition.
Although the restricted males did not have augmented
fat pads mass, they did show a tendency to hyperinsuli-
nemia, suggesting that an increase in lipid synthesis
could lead to obesity later in life.

The increased levels of proteasome subunit « type-3
suggest that IUGR caused stimulation of proteolysis in
males. The adipose tissue has been shown to be an im-
portant site of proteolysis and to contribute to the circu-
lating amino acids pool [40, 41]. Obese women showed
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Table 4 Biological process classification of identified proteins of
male rats

Protein name Metabolic process

Down-regulated in restricted males
Serine protease inhibitor A3N Proteolysis

Murinoglubulin-1

Hemopexin

78 kDa glucose-regulated protein Protein folding

Heat shock protein HSP 90-beta

Prohibitin DNA replication

Annexin A5 Lipidic
Up-regulated in restricted males

Branched-chain-amino-acid Amino acid

aminotransferase, mitochondrial

Proteasome subunit a type-3 Proteolysis

Fatty acid synthase Lipidic

Sorbitol dehydrogenase Carbohydrate

Malate dehydrogenase, cytoplasmic Carbohydrate, tricarboxilic

acid cycle (TCA)

ATP synthase subunit alpha, mitochondrial Respiratory chain

Adenylate kinase isoenzyme 1 Nucleotide
Elongation factor 1-alpha 1 Translation
Aldose reductase Transport

a decreased rate of amino acids release from the tissue,
in response to fasting [42].

In the adipose tissue of obese humans, levels of
mitochondrial branched-chain-amino-acid aminotrans-
ferase were reportedly decreased from lean levels in
the metabolically unhealthy but not in the healthy
subset of obese subjects [43]. Here, tissue levels of
mitochondrial branched-chain-amino-acid aminotrans-
ferase were increased in the restricted males, indicat-
ing that their metabolism was not affected at the
same extent as that seen in unhealthy obesity.

IUGR up-regulated the levels of elongation factor 1-
alpha 1, a GTPase that delivers aminoacyl-tRNAs to
ribosomes during protein translation [44, 45]. This
protein has been shown to interact with nascent pro-
teins ubiquitinated during translation, facilitating their
delivery to proteasome [46] and to be associated with
stimulation of cell proliferation in cancer cells [47].
In kidneys of streptozotocin diabetic rats, increased
expression of elongation factor-1A has been related to
hypertrophy of the adipose organ and to diabetes-
associated oxidative stress [48].

Obesity has recently been associated with increased
levels of several amino acids in the visceral adipose tis-
sue of humans [49]. Moreover, metabolomic analysis
showed increased levels of phenylalanine, tryptophan
and glutamate in the umbilical vein blood of IUGR
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neonates [50]. The increased levels of proteins related to
proteolysis stimulation, as observed in the present study,
may increase adipose tissue levels of amino acids. These
may be converted to intermediates of the tricarboxylic
acid (TCA) cycle. It is important to point out that, once
entering the TCA cycle, these amino acids could be
directed to either complete oxidation or generation of
citrate [51], an important precursor for de novo lipo-
genesis. It is thus reasonable to suggest that proteolysis
stimulation in the restricted males may provide amino
acids for metabolic reactions in the tissue, rather than for
release. A recent review has indicated that impairment of
TCA cycle metabolites by IUGR could be an important
biomarker of this condition [52].

Cytosolic malate dehydrogenase levels were up-regulated
in the restricted males. This enzyme is active in the
malate/aspartate shuttle, where it catalyzes the reduc-
tion of oxaloacetate to malate, using NADH. Malate
enters mitochondria and is oxidized to oxaloacetate
by mitochondrial malate dehydrogenase, with produc-
tion of NADH. This shuttle not only channels the
NADH produced during glycolysis to ATP production
but also maintains the cytosolic NAD+/NADH ratio, es-
sential for the oxidative metabolism of glucose [53-55].
Increased levels of mitochondrial malate dehydrogenase
have been reported in pancreatic islets of adult rats with
IUGR. However, ATP levels were not altered, which was
attributed to the concomitant decrease of ATP synthase
subunit 6 levels [55]. In the present study, ATP synthase
subunit alpha was up-regulated, indicating that ATP pro-
duction could be increased.

Some proteins down-regulated by IUGR in males are re-
lated to inflammation and cellular stress. Murinoglobulin-
1 is a serino-protease inhibitor [56] that plays a protective
role in the inflammatory response. Hemopexin is a posi-
tive acute-phase reactant that plays a protective role in
lipid peroxidation through its heme binding effect [57],
its levels being negatively associated with the severity of
chronic sepsis [58]. In diet-induced obese mice, up-
regulation of serum hemopexin levels has been sug-
gested to represent a dysfunctional response in this
chronic inflammatory condition [59].

The 78 kDa glucose-regulated protein is related to
proper protein folding, protecting the cell from endo-
plasmic reticulum stress [60, 61], which has been de-
scribed to link obesity to insulin resistance [61]. Obese
mice overexpressing 78 kDa glucose-regulated protein in
pancreas were protected against endoplasmic reticulum
stress and had improvement of insulin sensitivity [62].
Heat shock protein HSP 90-beta is an important chaperone
whose levels reportedly increase in obese humans, play-
ing a role in mitigating the inflammatory stress present
in obesity [63, 64]. Taken together, these protein alter-
ations indicate that the restricted males presented
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Fig. 2 Representative image of a 2DE gel of a control female retroperitoneal adipose tissue depicting the proteins significantly affected by IUGR.
The numbers indicate the protein acession number. Numbers in squares indicate the over-expressed identified proteins. Numbers in circles indi-
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impairment of anti-inflammatory reactions in the adi-
pose tissue.

Overall, the results found in the male rats indicate
that, even though the restricted males did not have aug-
mented fat pads or glucose intolerance, the alterations in
adipose tissue metabolism point to a tendency to de-
velop obesity.

In the females, IUGR affected the glycolysis/gluco-
neogenesis pathway. L-lactate dehydrogenase B was
down-regulated in the restricted females, indicating
low production of lactate from pyruvate. Due to its
low blood supply, the adipose tissue produces consid-
erable amounts of lactate, which can serve either as
precursor to energy production or fatty acid synthesis
[65, 66] or be released to the systemic circulation
[67], even in normoxia conditions [68]. Adipose tissue
lactate production has been shown to correlate with
lactate dehydrogenase activity, both under normal and
cafeteria diet feeding, and suggested to contribute to
glycemic control, through consumption of excess cir-
culating glucose [69].

Glyceraldehyde-3-phosphate dehydrogenase, the enzyme
catalyzing the reversible conversion of glyceraldehyde-3-
phosphate to 1,3 bisphosphoglycerate and NADH,
was up-regulated in the restricted females. Stimulation of

glyceraldehyde-3-phosphate dehydrogenase has been
reported in pre-obese, normoinsulinemic, Zucker rats
[70]. Maternal peri-conceptional overnutrition, but
not food restriction, increased fat mass of postnatal fe-
male lambs and glyceraldehyde-3-phosphate dehydrogen-
ase gene expression correlated positively with perirenal fat
amount [71].

Transketolase was down-regulated in the restricted
females. This enzyme catalyzes the formation of
glyceraldehyde-3-phospate in the non-oxidative branch
of the pentose phosphate pathway, in which ribose is
re-converted to glucose. Moreover, the pentose phos-
phate pathway generates NADPH for lipid synthesis.
In obese individuals, decreased activity of the lipo-
genic pathway, with down-regulation of transketolase,
has been interpreted as a mechanism aimed at redu-
cing the growth of adipose tissue [72].

Reduced levels of mitochondrial branched-chain-amino-
acid aminotransferase and mitochondrial 2-oxoisovalerate
dehydrogenase (also known as branched-chain alpha-keto
acid dehydrogenase E1), enzymes participating in the
pathway of degradation of branched-chain amino acids,
were found in the subcutaneous adipose tissue of un-
healthy obese humans but not in the healthy obese subset
[43]. Here, the latter enzyme was down-regulated in the
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Table 5 Identified proteins with significant expression alteration between control and restricted females
Accession number Protein name Matched Score Coverage (%) Fold change (R/CQ) MW (Da)/ pl
peptides
Down-regulated proteins
F1LMZ8 265 proteasome non-ATPase regulatory subunit 11 2 89 4 044 47724/6.08
P35738 2-oxoisovalerate dehydrogenase subunit (3. 1 45 4 0.46 43550/6.41
mitochondrial
P30713 Glutathione S-transferase theta-2 1 47 5 0.38 27596/7.75
A7ZVIC2 Heterogeneous nuclear ribonucleoproteins A2/B1 4 96 13 0.35 37513/8.97
P20760 lg gamma 2-A chain C 3 79 9 0.53 35685/7.72
Ilg gamma 2-A chain C 4 109 13 0.23
P42123 L-lactate dehydrogenase B 1 30 2 0.57 36879/5.70
P43884 Perilipin 1 2 74 5 041 55986/6.37
Q9Z1H9 Protein kinase C delta binding protein 5 119 18 033 27894/5.79
P62836 Ras-related protein Rap-1A 1 39 5 0.32 21322/6.38
P05545 Serine protease inhibitor A3K 3 119 10 045 46764/5.31
P05544 Serine protease inhibitor A3L 1 46 2 0.29 46442/548
P12346 Serotransferrin 6 133 8 0.38 78550/7.14
P12346 Serotransferrin 2 110 3 031 78550/7.14
Q66X93 Staphylococcal nuclease domain-containing 3 38 4 0.39 103585/6.76
protein 1
P50137 Transketolase 3 115 9 045 68355/7.23
P17475 a-1 antiproteinase 6 255 14 0.50 46281/5.70
P85515 a-centractin 2 57 8 063 42703/6.19
Up-regulated proteins
P04797 Glyceraldehyde-3-phosphate dehydrogenase 1 34 4 249 36095/8.14
QIWTT6 Guanine deaminase 6 312 16 1.54 51564/5.56
P11598 Protein disulfide-isomerase A3 5 117 119 3.20 57052/5.88
Q970V6 Thioredoxin-dependent peroxide reductase. 2 78 9 2.09 28567/7.14

mitochondrial

Accession number, protein name, number of matched peptides, proein score, percentage coverage, fold change (restricted/control) and theoretical molecular

mass (Da) and pl of identified proteins

restricted females. It is possible to suggest that the metab-
olism of branched-chain-amino-acids in the adipose tissue
of the restricted females resembled that found in obesity
associated with metabolic derangements. This con-
trasts with the result in the restricted males, in which
mitochondrial branched-chain-amino-acid aminotrans-
ferase was increased.

The restricted females also showed down-regulation
of perilipin-1, an enzyme active in lipid droplet forma-
tion [73] and inversely correlated with adipocyte size
and basal lipolysis [74]. Perilipin gene suppression in-
creased basal lipolysis and prevented high-fat diet obes-
ity in mice [75].

Glutathione S-transferase theta-2 was down-regulated
in the restricted females. This protein is part of the
antioxidant enzymes family, which catalyzes the conju-
gation of glutathione to a wide variety of compounds.
Decreased glutathione or glutathione-S transferase levels

have been linked to diabetes, due to its role in antioxidant
pathways [76, 77]. On the other hand, high levels of
glutathione-S transferase P in obese subjects activated
inflammatory pathways and endoplasmic reticulum
stress [78].

Other proteins related to antioxidant pathways were
up-regulated by IUGR in the females. Protein disulfide-
isomerase A3 is a thiol-disulfide oxidoreductase present
in the endoplasmic reticulum and it catalyzes the forma-
tion, breakdown and rearrangement of disulfide bonds
[79]. Increased levels of protein disulfide-isomerase A3
in the adipose tissue of obese subjects have been
suggested to activate inflammatory pathway and endo-
plasmic reticulum stress [79]. Mitochondrial thioredoxin-
dependent peroxide reductase regulates H,O, levels,
protecting the cell from the toxicity resulting from its ac-
cumulation [80], and depletion of this protein accelerated
apoptosis [81].
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Table 6 Biological process classification of identified proteins of
female rats

Protein name Metabolic process

Down-regulated in restricted females
Serine protease inhibitor A3K Proteolysis

Serine protease inhibitor A3L

265 proteasome non-ATPase regulatory subunit 11

Alpha-1-antiproteinase

Transketolase Carbohydrate, Amino

2-oxoisovalerate dehydrogenase subunit beta, acid, Lipidic
mitochondrial

Perilipin-1 Lipidic
Glutathione S-transferase theta-2 Protein

L-lactate dehydrogenase B chain Glycolysis, TCA

Heterogeneous nuclear ribonucleoproteins A2/B1  Nucleotide
Protein kinase C delta-binding protein Transcription

Staphylococcal nuclease domain-containing

protein 1

Ras-related protein Rap-1A
Up-regulated in restricted females

Guanine deaminase Purine
Protein disulfide-isomerase A3 Protein folding
Glyceraldehyde-3-phosphate dehydrogenase Glycolysis

Thioredoxin-dependent peroxide reductase,
mitochondrial

Classification of proteins in metabolic process

A protein down-regulated in the restricted females, «-1-
antiproteinase, also known as serpin Al and al-antitrypsin,
is a serine protease inhibitor with anti-inflammatory effects.
It caused inhibition of lipopolysaccharide-mediated
activation of in vitro human monocytes [82] and
inhibited lung neutrophil chemotaxis [83-85]. Inhal-
ation of a-l-antiproteinase decreased protein levels of
IL-1PB and IL-8 [86] while addition of purified plasma
a-1-antiproteinase to pancreatic -cells in vitro inhibited
cytokine-induced apoptosis [87]. Alpha-1-antiproteinase
gene therapy prevented the development of type 1
diabetes in non-obese mice [88]. Decreased levels of
a-1-antiproteinase was reported by proteomic analysis
of adipose tissue of women with gestational diabetes
mellitus [89] impair the protection against inflamma-
tion and oxidative stress, compensatory mechanisms
were recruited in the restricted females.

Conclusions

In the restricted males, the high levels of proteasome
subunit o type 3, branched-chain-amino-acid amino-
transferase and elongation 1- alpha 1 indicate increased
proteolysis rate in the adipose tissue. High tissue levels
of amino acids could generate lipogenesis precursors, a
suggestion supported by the high levels of fatty acid
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synthase. The increased levels of cytosolic malate de-
hydrogenase and ATP synthase subunit alpha may favor
ATP production. These results indicate that, in the re-
stricted males, the alterations in protein expression in-
duced by IUGR pointed to a metabolic status favoring
the development of obesity.

In the restricted females, the decreased levels of
perilipin-1 are indicative of increased lipolysis while the
low levels of mitochondrial branched-chain alpha-keto
acid dehydrogenase E1 indicate low proteolysis rate. The
low levels of transketolase could represent low activity
of the pentose phosphate pathway and, consequently,
decreased lipogenesis rate. Down-regulation of L-lactate
dehydrogenase may lead to impairment of glycemic con-
trol. These alterations point to a metabolic status of
established obesity in the restricted females. In both gen-
ders, the protein variations indicated impairment of
pathways involved in the responses to oxidative stress
and inflammation (Fig. 5).

Methods

Rats

Wistar rats were cared for in accordance with the guide-
lines of the committee on animal research ethics of the
Federal University of Sdo Paulo (approval 486691). Three
months-old rats were mated and the first day of pregnancy
was determined by examination of vaginal smears for the
presence of sperm. From day 1 of pregnancy, the dams
were randomly assigned to be a control or a restricted
dam. The control dams were fed ad libitum throughout
pregnancy and lactation. The restricted dams received only
50 % of control intake during the whole pregnancy and
were fed ad libitum during lactation. On the day of deliv-
ery, the pups were adjusted to eight per dam.

After weaning, the male and female offspring from
control and restricted dams were housed four/five per
cage and fed ad libitum until 4 months of age. The food
provided to dams and offspring consisted of standard rat
chow (Nuvital Nutrients, Columbo, PR, Brazil) contain-
ing (w/w) 4.5 % fat, 23 % protein, and 33 % carbohy-
drate, with 2.7 kcal/g, as determined at the Bromatology
Division of the Federal University of Sdo Paulo. All ani-
mals were maintained in controlled conditions of light-
ing (12-h light/12-h dark cycle, lights off at 18:00 h) and
temperature (24+1 °C) and had free access to water
throughout the experimental period.

The numbers of animals used in the study were 16
male and 14 female controls and 17 male and 14 female
restricted rats.

Weight gain, weight of white adipose tissue and blood
and tissue measurements

Food intake and body weight were measured once a
week since weaning. At 4 months of age, the animals
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were killed by decapitation. The retroperitoneal adipose
tissue was rapidly removed, weighed and frozen in liquid
nitrogen. The tissue was stored at - 80 °C until analysis.
The gonadal and mesenteric white adipose tissues were
dissected and weighed.

Trunk blood was centrifuged and the serum stored
at - 80 °C. Glucose analysis was performed by the
glucose oxidase method, using a commercially available
kit with detection limit of 0.32 mg/dL (Glucose Pap Liqui-
form, Labtest Diagnostica, Sdo Paulo, Brazil). Triglycerides
levels were determined using a commercially available kit

with detection limit of 0.82 mg/dL (Labtest Diagnostica,
Sdo Paulo, Brazil). Insulin, corticosterone, adiponectin,
TNF-a and IL-1f levels were measured by multiplex kit
(Millipore, Bedford, MA, USA). The measurements of
TNF-a, IL-10 and IL-6 in tissue were performed by Elisa
(Millipore, Bedford, MA, USA).

Proteome analysis
Sample preparation
An aliquot of 700 mg of retroperitoneal adipose tissue
was homogenized in 1 ml of extraction buffer (7 M urea,
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2 M thiourea, 4 % (w/v) CHAPS, 0.5 % (v/v) Triton
X-100) containing complete Mini Protease Inhibitor
Cocktail Tablets (Roche Diagnostics, Germany), added
immediately before use. Sample lysates were centrifuged
(19,000 g/30 min.) and supernatants stored at - 80 °C until
analysis.

Protein assay

Protein concentration of supernatants was determined
using 2-D Quant Kit (GE Healthcare, Pittsburgh, USA)
and bovine albumin as standard, according to manufac-
turer’s recommendations.

Protein precipitation

Aliquots of 900 pg of protein were precipitated with a
solution of 35 % KCl, 44 % chloroform, and 21 % metha-
nol (v/v). The mixture was homogenized and centrifuged
at 19,000 g and 4 °C for 15 min. The pellet was air-dried
at room temperature.

A
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T Lipogenesis

dehydrogenase

lResponse to Oxidative StressfInflammation «—
—

Elongation factor 1-alpha 1 1‘

Proteasoma subunit alpha T
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Branche d-chain-amino-acid T
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Fig. 5 Diagram of the suggested pathways modified by IUGR in the retroperitoneal adipose tissue of male (a) and female (b) rats
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Two-dimensional gel electrophoresis and image analysis
For isoelectric focusing (IEF), the pellet was dissolved in
500 pL of rehydration buffer (7 M urea, 2 M thiourea,
4 % (w/v) CHAPS, 0.5 % (v/v) Triton X-100, 100 mM
DTT, 0.2 % (v/v) IPG Buffer pH 3-10, and traces of Bro-
mofenol blue). IEF was carried out on a Protean IEF cell
(Bio-Rad, CA, USA) using immobiline dry strips (18 ¢cm
linear gradient, pH 3-10) previously rehydrated for
12-14 h. IEF was performed with the current limit
set at 50 mA per IPG strip with the following condi-
tions at 18 °C: 100 V for 30 min, 250 V for 2 h,
500 V for 30 min, 1000 V for 30 min, 2000 V for
30 min, 4000 V for 1 h, 8000 V for 1 h followed by
8000 V until 30000 Vh.

After focusing, strips were equilibrated for 25 min in
buffer containing 6 M urea, 50 mM Trisma base pH 8.8,
34 % (v/v) glycerol, 2 % (w/v) SDS, and 1 % (w/v) DDT,
followed by an additional 25 min in the same buffer con-
taining 2.5 % (w/v) iodoacetamide instead of DTT. Strips
were then loaded onto 12 % SDS- polyacrylamide gels.
After running in Protean II Multi-Cell (Bio-Rad, CA,
USA), at 50 mA per gel for 6 h, the gels were stained for
48 h with Coomassie Blue G-250 (Bio-Rad, CA, USA).
Stained gels were scanned (GS-710 Calibrated Imaging
Densitometer) and analyzed using PDQuest Image Ana-
lysis Software version 7.2 (Bio-Rad, CA, USA).

Matrix-assisted laser desorption ionization time-of-flight
mass spectrometry
The selected spots were manually excised, distained and
digested. The spots were excised and distained in 50 %
methanol and 5 % acetic acid overnight. The excised
spots were treated with 25 mM ammonium bicarbonate
and 50 % acetonitrile (1:1) and dried in SpeedVac. To
the dried spots, 10 mM DTT was added and incubated
for 1 h at 56 °C, followed by 55 mM IAA for 45 min on
the dark. The spots were dehydrated with 25 mM am-
monium bicarbonate followed by 25 mM ammonium bi-
carbonate with 50 % acetonitrile and dried in SpeedVac.
Digestion was performed overnight with 15 ng of trypsin
(Promega, WI, USA) in 25 mM ammonium bicarbonate,
at 37 ° C. Digested samples were desalted using C18 Zip
Tips (Millipore, Bedford, MA, USA). Two microliters of
sample were applied on the spectrometer plate and
air-dried at room temperature. The matrix solution
(10 mg/mL a-cyano-4 hydroxycinnamic acid in 70 %
acetonitrile/0.1 % trifluoroacetic acid) was applied on
the spectrometer plate and air-dried at room temperature.
MALDI-TOF/TOF MS was performed using an
Axima Performance ToF-ToF, (Kratos-Shimadzu Bio-
tech, Manchester, UK) mass spectrometer. The instru-
ment was externally calibrated with [M + H]" ions of
bradykinin (1-7 fragment, 757.4 Da), human angiotensin
IT (1046.54 Da), P14R synthetic peptide (1533.86 Da), and
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human ACTH (18-39 fragment, 2465.20 Da). Following
MALDI MS analysis, MALDI MS/MS was performed on
the 7 most abundant ions from each spot.

MASCOT (Matrix Science, UK) server was used to
search Swiss-Prot protein database (http://www.matrix
science.com). The following parameters were used in
this search: no restrictions on protein molecular weight,
trypsin digest with one missing cleavage, monoisotopic
mass, taxonomy limited to Rattus, carbamidomethyla-
tion of cysteine as fixed modification, possible oxidation
of methionine and tryptophan, peptide mass tolerance of
0.5 Da, fragment mass tolerance of 0.8 Da, and peptide
charge +1. False discovery rate (FDR) assessment was es-
timated using Mascot decoy database approach and only
proteins identified with 0 % FDR were included in the
results. Protein matching probabilities were determined
using MASCOT protein scores, with identification confi-
dence indicated by the number of matching and the
coverage of protein sequence by the matching peptides.
The presence of at least one peptide with significant
ion score was required for positive protein identifica-
tion. Only statistically significant MASCOT score re-
sults (p < 0.05) were included in the analysis.

The identified proteins were classified in Panther
(http://www.pantherdb.org/) according to biological
process.

Western Blot analysis

A sub-set of adipose tissue samples was used in western
blot experiments. A 700 mg aliquot was homogenized in
1.0 ml of solubilization buffer (10 mM EDTA, 100 mM
Tris pH 7.5, 10 mM sodium pyrophosphate, 100 mM
sodium fluoride, 10 mM sodium orthovanadate, 2 mM
PMSE, aprotinin 2 pg/mL, and 1 % Triton X-100). Insol-
uble material was removed by centrifugation (19,000 g
at 4 ° C for 40 min.). The supernatant was collected
and one aliquot was separated for protein concentra-
tion determination. Tissue extracts were denatured by
boiling for 5 min in Laemmli buffer [90] containing
100 mM DTT. The protein concentration was deter-
mined by colorimetric method (BCA Protein Assay,
Bioagency Biotecnologia, Brazil).

Subsequently, protein extracts (100 pg) were resolved
in 12 % SDS polyacrylamide gels and transferred to
nitrocellulose membranes using a semi-dry transfer sys-
tem (Bio-Rad, CA, USA). Non-specific binding sites
were blocked for 2 h in 1 % bovine serum albumin. The
nitrocellulose membranes were then incubated overnight
with primary antibody and for 1 h with the appropriate
secondary antibody conjugated with horseradish perox-
idase. The quantitative analysis was performed by densi-
tometry using Scion Image software (Scion Corporation,
Frederick, MD, USA).
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The results were expressed in arbitrary units, as
percentage changes in relation to the control group.
For evaluation of protein loading, all membranes were
stripped and reblotted with anti-p-tubulin (for male)
and anti-B-actin (for female) primary antibody. The
antibodies against 78 kDa glucose regulated protein
(1:1000; ab53068), mitochondrial stress 70 protein
(1:1000; ab106654), and glutathione S-transferase theta-2
(1:2500; ab102045) were obtained from ABCAM
(Cambridge, UK). The antibody against [-tubulin
(1:5000; #2146S) was purchased from Cell Signaling
(Danvers, MA, USA). The antibody against [-actin
(1:1000; sc-130657) was purchased from Santa Cruz
(Dallas, TX, USA).

Statistical analysis

The data are expressed as mean + SEM. Comparisons
between groups (control and restricted) were performed by
Student ¢ test. Statistical significance was set at p < 0.05.

Additional files

Additional file 1: Table S1. Optic density of the spots with significant
differences between the control and the restricted groups. (XLSX 12 kb)

Additional file 2: Table S2. Protein name, gene name and biological
process of the proteins identified in the adipose tissue of males.
(XLSX 11 kb)

Additional file 3: Table S3. Protein name, gene name and biological
process of the proteins identified in the adipose tissue of females.
(XLSX 10 kb)

Abbreviation

2DE: two-dimensional gel electrophoresis; ATP: adenosine triphosphate;
BW: body weight; FC: Fold change; IL: interleukin; IUGR: intrauterine growth
restriction; MW: Molecular weight; NADH: Nicotinamide adenine dinucleotide;
TCA: trycarboxilic acid cycle; TNF-a: tumor nuclear factor alpha.
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