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Abstract

To understand the function of protein complexes and their association with biological processes, a lot of studies
have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in
high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of
noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering
algorithms and further analysis of their interactions.
In addressing and solving these problems we present a novel random walk based algorithm that converts the
incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe
that if two proteins share some high-order topological similarities they are likely to be interacting with each other.
Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the
interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm
(Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein
complexes for significance in biological processes. To help visualize and analyze these protein complexes we also
developed an interface that displays the resulting complexes as well as the characteristics associated with each
complex.
Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein
interaction pairs with high topological similarities have more significant biological relevance than the original
protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing
algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores.
Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex
predictions.

Introduction
Protein-protein interaction (PPI) is the core to many
fundamental biological processes. New high-throughput
techniques, such as yeast two-hybrid and tandem affinity
purification [1], have vastly increased the size of the
protein-protein interaction data. With this large amount
of protein-protein interaction (PPI) data which is usually

modeled by PPI networks, the cell mechanistic can be
understood at system level.
The growing PPI database helps both biological and

computational scientists to predict gene functions, func-
tional pathways, protein complexes and improve the diag-
nosis and treatment of diseases [2-16]. However, the
growing of PPI network poses multiple challenges at the
same time, such as PPI networks often have a high false
positive rate and an even higher false negative rate [17].
PPI networks are also known to have skewed degree distri-
bution, meaning that they have more than expected quan-
tity of hub genes [18]. Additionally, the PPI networks are
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typically binary (sometimes with limited discrete value)
and sparse, partially due to the high false negative rate,
which places a hurdle for protein complex prediction.
In biological networks, community structures (protein

complexes) normally have key biological significance.
Identifying and analyzing such communities leads to the
understanding of the nature of the system as well as
potential novel relationships between communities [19].
One approach to identifying communities is using modu-
larity-based method which aims at optimizing modularity
(Q) and shown to be effective in measuring the overall
quality of community structures [20]. Qcut [19] is an effi-
cient heuristic algorithm that combines spectral graph par-
titioning and local search to optimize Q. It is able to find
stronger community structures in large and relatively
dense networks. For larger networks, the modularity func-
tion may face resolution limit problem since communities
with relatively high intercommunity connectivity may be
merged into a single community [21]. HQcut [19] solves
this resolution limit problem by applying Qcut recursively
to the communities that have already been identified.
Recently, we proposed a novel idea to predict protein-

protein interactions based on topological similarity
between nodes in a given PPI network [18,22]. Basically,
we consider two nodes to be similar if they have similar
distances to all other nodes in the network (instead of only
their direct neighbors), measured by a novel random walk
procedure. While the results suggest that the predicted
edges likely represent true physical protein-protein interac-
tions, the algorithm relies on an arbitrary similarity cutoff
to distinguish between interacting vs non-interacting pro-
tein pairs. In particularly, given the sparsity of the known
PPI networks, we believe the coverage of PPIs can be sig-
nificantly improved if an optimal cutoff can be selected.
In this work, we extend our work to introduce a novel

approach for determining an optimal cutoff to predict
protein-protein interactions from the weighted topologi-
cal similarity matrix. Our idea is that a good cutoff
should result in a network that is highly modular. Based
on this idea, we also present a parameter-free, recursive
algorithm, Auto-HQcut, to identify protein complexes
from the PPI network. We also developed a graphical
user interface to enable visualization of the weighted
network and the predicted protein complexes.
To evaluate our approach, we applied the network

reconstruction algorithm to a yeast PPI network and
examine the biological relevance of the resulting PPI
network. The resulting PPI network showed interactions
with more functional relevance in comparison to the
original PPI network. Comparison with existing methods
showed that the network reconstructed by our method
has the highest overall quality. Furthermore, applying
Auto-HQcut clustering algorithm, we found that the

reconstructed network had significantly improved pre-
diction accuracy of protein complexes.

Results
For evaluation, we applied our algorithm to a yeast core
PPI network obtained from [23], which covers 2708 genes
with 7123 edges. By performing a modified random walk
on this network and calculating similarities between every
pair of nodes based on their topology equivalence, we
derived a modified Protein-Protein Topological Similarity
matrix (called PP-TS matrix), which covers all the topolo-
gical similarities between any pair of genes in the network.
To evaluate the functional relevance of the newly pre-
dicted pairwise similarities, we resort to two types of
sources, gene ontology and gene expression.
For clustering, we used the methods based on the opti-

mization of a modularity function (Q). We developed an
approach, Auto-HQcut, to automatically determine the
best parameter for the algorithm HQcut. We compared
the clustering accuracy of each resulting protein complex
to the known complexes. The results showed that our
approach could be used to deduce the significant biologi-
cal processes from any PPI network.

Biological functional relevance
The performance of the algorithm can be tested by evalu-
ating the pairwise genes with top similarity scores in the
PP-TS matrix for functional relevance. It is expected for
the gene pairs with high PP-TS scores to be functionally
more relevant. To determine the functional relevance
between the gene pairs, we used the functional annota-
tions in gene ontology (GO) and gene expression (GE)
patterns across diverse conditions.
To represent the functional relevance of the top gene

pairs in the PP-TS matrix, we calculated the average gene
ontology similarity (called Average GO score) and gene
co-expression (called Average GE score) of the gene pairs
with the top PP-TS scores, as shown in Figure 1.
For GO, we used the gene pairs with top PP-TS score to

obtain the same average GO score as the original PPI net-
work to identify more associated gene pairs (26170 com-
pared to 7123) which were not available in the original
network. On the other hand, if we keep the same number
of edges ("Original PPI edges” in Figure 1) as in original
PPI network, the average GO similarity score is improved
from 0.5512 to 0.6956. Similar to the GO, for GE, keeping
the same average GE score, we get more associated gene
pairs (15480 compared to 7123). Keeping the same num-
ber of edges as in original PPI network, the average GE
similarity score is improved from 0.1865 to 0.2295.
With these two independent sources of evidence, the

results show that the gene pairs with higher topological
similarity scores have higher biological functional relevance.
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The results also show a consistent pattern between gene
ontology similarity and gene co-expression.
We compared our algorithm with four existing methods,

namely Euclidean commute time (ECT) [24], random walk
with restart (RWR) [25], multiple dimensional scaling
(MDS) [26], and global geometric affinity (GGA) [27]. The
ECT and RWR methods are well-known in data mining
and network analysis communities, while the MDS and
GGA methods were recently proposed to improve the
quality of PPI networks. All four algorithms calculate
some topology-based similarity scores for pairs of nodes.
Figure 2 shows the average GO similarity score of the top
gene pairs in the PP-TS matrix. As shown in the figure,
the average score generated by our method has the highest
GO similarity.
The average GE similarity scores are shown in Figure 3.

Among all the 5 algorithms, both RWS and ECT have the
best performance in gene co-expression score, however
ECT has much lower GO similarity score compared to
RWS as shown in Figure 2.

Protein complex accuracy
As the PP-TS matrix is a weighted and completely con-
nected network, thresholds values are used to convert it to
a sparse network. To this end, we chose the cutoff value
such that the average GO value of the interacting pairs in
the modified network is the same as that of the original
PPI network. This resulted in 26170 edges, as mentioned
above. We then applied two network clustering algo-
rithms, Qcut and HQcut, to the original and RWS modi-
fied networks, and compared the predicted complexes

with the MIPS known protein complexes (see Methods).
As shown in Figure 4, the prediction accuracy is signifi-
cantly improved for both Qcut and HQcut on the RWS
modified network compared to the original network,
demonstrating that the network quality improvement by
RWS is general. On the other hand, HQcut always
achieves better accuracy than Qcut, due to HQcut’s strat-
egy in addressing the resolution limit problem.
Again, we compared our algorithm with the four exist-

ing methods, ECT, RWR, MDS and GGA. For a fair com-
parison, we choose a different cutoff for each algorithm so
that the predicted PPI networks from different algorithms
all have the same number of edges as the RWS modified

Figure 1 Quality of the pairs of proteins with top PP-TS scores.
Predicted interactions are ranked by the PP-TS scores. All
interactions above a particular rank are then used to calculate the
average gene ontology similarity (GO) and gene co-expression (GE)
score. Two horizontal reference lines are the average GO and GE
score of all edges in the original PPI network. The vertical reference
line represents the number of edges in the original PPI network.

Figure 2 Comparison with other algorithms on gene ontology
based similarities. Comparison between RWS and other network
reconstruction algorithms. GO similarity score is the average GO
value of the gene pairs with the top PP-TS scores.

Figure 3 Comparison with other algorithms on gene co-
expression. Comparison between RWS and other network
reconstruction algorithms. GE similarity score is the average GE
value of the gene pairs with the top PP-TS scores.
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PPI network. These networks are then subject to protein
complex prediction using the HQcut algorithm. As shown
in Figure 5, only RWS and RWR increased the complex
prediction accuracy, and RWS is slightly better than RWR.
In order to further improve the protein complex predic-

tion accuracy of HQcut, we reconstructed a series of
weighted PPI networks with different cutoffs, and run
HQcut on each of the network to identify potential protein
complexes. We also measured the modularity differences
between the selected networks and random generated net-
works. As shown in Figure 6, the modularity difference is
well correlated with the protein complex prediction accu-
racy. Using the automatically determined PP-TS similarity

cutoff (0.65) at the largest modularity difference value
(0.49), the corresponding complex prediction accuracy is
close to the optimal prediction accuracy. As shown in
Figure 6, RWS modified PP-TS matrix with the fully auto-
mated parameter determination HQcut (called Auto-
HQcut) has significantly improved the prediction accuracy
compared to other algorithms, demonstrating that both
the RWS and Auto-HQcut can help improve complex pre-
diction accuracy.
Figure 7(a) and 7(b) show the accuracy distribution for

the original PPI network and the RWS modified network
with automatic parameter determination HQcut. Among
the 170 known complexes, 77 clusters had increased accu-
racy, while 65 of them kept the same accuracy, and 28
clusters had decreased accuracy. As shown in Figure 7, the
number of protein complexes with near perfect prediction
is much improved from 22 complexes to 39 complexes.
Also, there is a dramatic drop in the number of complexes
at the accuracy level of 0.2 which is attributed to the more
accurate prediction of the small size clusters. We also
observed that most of the improved complexes are small
in size.
To display the result of protein complexes obtained, we

developed an interface to show the complexes and their
associated properties. The result on Figure 8 shows some
of the protein complexes obtained from using our
approach. It can be seen the proteins belonging to the
same complex are colored the same and are strongly con-
nected. Protein belonging to different complexes are
colored differently and the edges between complexes (outer
edges) are fewer compared to edges within the complex
(inner edges). More statistics related to the network and

Figure 4 Clustering Accuracy for Qcut algorithm and HQcut.
The figure demonstrates the clustering accuracy when Qcut and
HQcut was applied to the original PPI network and RWS
reconstructed PPI network.

Figure 5 HQcut clustering accuracy comparison. The figure displays
a comparison of clustering accuracy when applying HQcut to the
original, RWS reconstructed, and other four algorithms reconstructed
networks. These results are compared to the clustering accuracy when
applying Auto-HQcut to the reconstructed RWS network.

Figure 6 Relationship between modularity difference value and
complex prediction accuracy. The modularity difference value and
complex prediction accuracy show the same trend with different
cutoffs.
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complexes obtained are displayed in the result panel for
further exploration.

Methods
Protein-protein topological similarity matrix
Since the original PPI network is binary, incomplete in
nature, and is not good for the clustering algorithms, we

used the Random Walk with Resistance(RWS) [22] to
reconstruct the network for better clustering performance.
Let G(V, E) be an undirected graph, V the set of ver-

tices and E the set of edges. With the basic random
walk idea, the probability to move from an initial node v
to its neighbor node u in the next step is Pvu = 1/d(v)
for (v, u) Î E, where d(v) is the degree of node v. In

Figure 7 Complex prediction accuracy distribution for the predicted complexes.

Figure 8 Protein complexes identified with Auto-HQcut. In the figure, the left panel displays the obtained network using a Cytoscpace
plugin for HQcut and the right panel displays statistics about the network and the identified protein complexes.
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RWS algorithm, we introduced two types of resistance ε
and b and the probability for a random walker initiated
from node v to take the edge (i, j) at time point k + 1
can be calculated by Equation (1), where

f (k+1)ij =

⎧⎪⎨
⎪⎩

max(0, q(k)i Pij − ε), if q(k)j > 0;

max(0, q(k)i Pij − ε), if q(k)j > 0 andmaxi(q
(k)
i Pij) ≥ β ;

0, otherwise.

(1)

and the probability for the random walker to reach
node j at time point k + 1 can be calculated as

q(k+1)j =
∑
i

f (k+1)ij . (2)

The RWS algorithm is a modified Random Walk algo-
rithm which uses two types of resistances. The first type
of resistance(ε) makes the final convergence status dif-
ferent for each node based on its topology within the
network. The second type of resistance(b) is used to
control the depth of a random walk and helps to avoid
the hub node effect. When applying the RWS algorithm
to the original PPI network, we obtain all the topological
profiles for each node. These topological profiles are
used to calculate the correlation between all pairs of
nodes, where correlation value represents the topological
similarity between two nodes. The combined topological
similarity for all pairs of nodes builds the PP-TS matrix,
which can be viewed as a network with weighted edges.

Clustering procedure
In clustering the network, we first apply Qcut algorithm
[19] which optimizes the modularity function (Q) of a
given network [20]. However, because Qcut faces a reso-
lution limit problem where communities smaller than a
certain scale will never be identified, we further applied
HQcut algorithm to the network to solve this problem.
Even though HQcut works well, unlike the initial Qcut
algorithm, a user has to input parameters to obtain the
best Q value. Using HQcut, we devised Auto-HQcut
which automatically picks the cutoff that gives the maxi-
mum Q value. A brief description of each algorithm is
provided below.
Qcut algorithm
Qcut algorithm involves two steps: partitioning and refin-
ing. In partitioning, the network is recursively divided each
time calculating the Q value until no further improvement
is found in the Q value. In refining stage, the communities
obtained in the partitioning stage are further refined to try
to improve the Q value. In order to achieve this, the com-
munities obtained are changed by: either moving the vertex
from one community to another, combining two commu-
nities to form a new bigger community, or splitting a com-
munity to form two small communities. If the change in
the original community results into a better Q value, a

change is considered, otherwise no change is made to the
original community.
HQcut algorithm
HQcut algorithm [19] improves Qcut algorithm by solving
the resolution limit problem. It uses the Qcut algorithm to
obtain the community structure which results in the high-
est Q value. To determine if the individual communities
should further be partitioned, Qcut is applied again to the
individual communities using threshold value that mea-
sures the strength of the community structure and the sta-
tistical significance of the original communities obtained.
HQcut uses Q ≤ 0.3 threshold and p-value of 0.05 as a
measure of community structure strength and its statisti-
cal significance respectively to decide whether the indivi-
dual communities should further be partitioned and find
whether partitioning would result in a better Q value.
Auto-HQcut
As seen from the algorithm description above, HQcut
can further optimize the Q value hence increase predic-
tion accuracy of protein complexes. However, it is hard
to choose the best cutoff to apply on the PP-TS matrix
that would produce the network with the best prediction
accuracy of the protein complexes. As a result, we run
HQcut to the networks generated from PP-TS matrix
with different cutoffs, and measure the statistical signifi-
cance of the resulting Q value by comparing the selected
networks with the random generated networks. By using
the modularity difference between these two values, we
can tell if the selected network can predict the protein
complexes from the random one. At the end, we pick the
cutoff which gives the largest modularity difference value
to be used to generate the protein complexes.

Evaluations
Biological functional relevance
To evaluate the biological relevance of the newly predicted
edges, we resort to gene ontology and gene expression,
which are widely used in the functional evaluation. To
measure the biological functional relevance between any
pair of genes, we used the semantic similarity between the
GO terms annotated with the proteins, with a popular
method [28,29], which incorporates both a global metric
and a local metric for balance and consistency. Results
shown in this paper are based on the “Molecular Func-
tion” branch of Gene Ontology. Using “Biological Process”
yielded very similar values, and “Cellular Localization”
resulted in slightly lower but consistent values. We also
measured the Pearson correlation coefficient between the
gene expression profiles of every pair of genes using the
yeast stress response microarray data [30]. With the results
from above two methods, we can use the GO/GE similar-
ity between a pair of nodes to represent the biological rele-
vance of those two proteins.
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Complex prediction accuracy
To investigate the protein complexes prediction accuracy
improvement, we compared the predicted complexes with
the MIPS known protein complexes [31], which include
767 proteins in 170 known complexes after intersecting
with the PPI network. To measure the accuracy of the pre-
diction, we used the Fowlkes-Mallows index for compar-
ing clustering [32,33]. Formally, let A be the list of gene
pairs that fall into the same complex in the set of pre-
dicted complexes and B be the list of gene pairs in the set
of known complexes, the prediction accuracy is measured
by |A ∩ B|/√|A| × |B|, where |A| denotes the cardinality of
the set A.

Visualization
To help visualize protein complexes obtained from our
approach, we developed an interface also used as a plugin
in Cytoscape [34]. The interface was developed in
MATLAB and compiled into java classes using MATLAB
java compiler. The interface displays the interaction of
the obtained protein complexes and the properties of the
protein complexes such as average connectivity, ratio
between intra-cluster edges and intercluster edges, and
the number of proteins within the complex. One unique
feature of the interface is its ability to uniquely color the
protein complexes so that different complexes within the
network can easily be differentiated.

Conclusion
In this paper, we developed a random walk based algo-
rithm that converts the PPI network into a protein-pro-
tein topological similarity matrix which is then used to
construct weighted networks. The key idea is that two
proteins sharing some high-order topological similarities
are likely to be interacting with each other and be
involved in the same biological processes. Using the
reconstructed weighted network, we can measure the
interactions of all the protein-protein pairs using a real
value as opposed to the “connected/non-connected” mea-
sure in the original PPI network, which also helps to
reduce noise and uncover significant biological interac-
tions that would otherwise be overlooked when analyzing
the original PPI network. We then used a parameter free
modularity based community finding algorithm (Auto-
HQcut) to identify protein complexes from PPI network
by optimizing the modularity function. Finally, we used
the interface we developed to visualize and analyze the
characteristics of the protein complexes obtained. The
results showed that the algorithm can find higher modu-
larity protein complexes with better prediction accuracy.
In summary, the weighted network reconstructed from

PP-TS matrix has much higher biological relevance than
the original network and Auto-HQcut significantly
improved protein complex prediction accuracy. Since our

method improved the protein-protein similarity quality
without any additional biological information involved,
the algorithm can be easily combined with other appro-
aches to improve the analysis of PPI networks and pro-
tein complex prediction.
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