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S100A10 protein expression is associated
with oxaliplatin sensitivity in human colorectal
cancer cells
Sayo Suzuki1, Yasuko Yamayoshi2, Akito Nishimuta1 and Yusuke Tanigawara1*

Abstract

Background: Individual responses to oxaliplatin (L-OHP)-based chemotherapy remain unpredictable. The objective
of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of
human colorectal cancer (CRC) cell lines. We performed expression difference mapping (EDM) analysis of whole cell
lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser
desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), and identified a candidate protein by liquid
chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF).

Results: Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11
human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly
correlated with the L-OHP sensitivity (50% inhibitory concentrations) (P < 0.001, R2 = 0.80). We identified this
protein as Protein S100-A10 (S100A10) by MS/MS ion search using LCMS-IT-TOF. We verified its differential
expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-
OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with
sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells.
S100A10 was detected in cell culture supernatant, suggesting secretion out of cells.

Conclusions: By proteomic approaches including SELDI technology, we have demonstrated that intracellular
S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly
correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive
markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein
markers.
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Background
Oxaliplatin (L-OHP) is a third-generation platinum
compound, used as a key drug for the treatment of col-
orectal cancer (CRC). L-OHP and bolus/infusional 5-
fluorouracil (5-FU) combined with folinic acid (FOL-
FOX) have yielded high response rates (≈50%) and good
overall survival [1-4]. However, approximately half of all
patients who receive FOLFOX gain no benefit, despite
the usual risk of toxicity. The ability to predict a

patient’s response to L-OHP-based regimens would thus
facilitate the rational use of chemotherapy for CRC.
Several predictive markers of the response to plati-

num-based chemotherapy have been proposed on the
basis of various mechanisms of chemoresistance to plati-
num drugs, including DNA-repair pathways and detoxi-
fication pathways, as well as drug metabolism and
transport [5]. Genomic polymorphisms participating in
nucleotide excision repair pathways, such as excision
repair cross-complementing rodent repair deficiency,
complementation group 1 (ERCC1) and xeroderma pig-
mentosum group D (XPD, also known as ERCC2), and
the glutathione-S-transferase family of isozymes in
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detoxification pathways are considered potential predic-
tors of clinical outcomes in patients given L-OHP-based
chemotherapy [6-9]. However, how to predict the clini-
cal response of CRC to L-OHP-based chemotherapy
remains unclear [10].
Protein expression profiles reflect the intracellular bio-

logical status more directly than gene markers because
gene expression provides no information on post-trans-
lational modifications. Recently, the ProteinChip® Sys-
tem, using surface-enhanced laser desorption/ionization
time-of-flight mass spectrometry (SELDI-TOF MS), has
been widely used to obtain protein profiles of biological
samples [11]. This system is high-throughput, requires
only small samples, and can comprehensively analyze
hundreds of proteins directly from crude samples [12].
Moreover, SELDI-TOF MS is well suited for analyzing
low-molecular weight proteins (< 20 kDa), which are
abundant in physiologically important proteins, such as
cytokines, chemokines, or fragments of larger proteins.
We aimed to identify protein biomarker candidates

predictive of L-OHP sensitivity. By proteomic
approaches including SELDI technology, we have identi-
fied a candidate protein using CRC cell lines.

Results
L-OHP sensitivity
The 50% inhibitory concentration (IC50) values of 11 CRC
cell lines with different chemosensitivities to L-OHP were
measured. The evaluated IC50 values (μM) (mean ± S.D.)
were as follows: COLO205, 0.822 ± 0.236; SW620, 0.937 ±
0.332; COLO-320, 1.48 ± 0.51; SW480, 1.80 ± 1.62;
LS174T, 1.90 ± 0.44; HCT15, 2.51 ± 0.61; COLO201, 2.87
± 1.67; WiDR, 7.72 ± 4.67; DLD-1, 8.29 ± 1.85; HT29, 12.4
± 5.7; SW1116, 29.7 ± 13.6 (Figure 1A).

Candidate biomarker selection
We obtained the protein profiles of 11 human CRC cell
lines other than HCT116 which was reserved for subse-
quent validation. Of the qualified mass peaks obtained
by expression difference mapping (EDM) analysis, 41
proteins were differentially expressed in 11 human col-
orectal cancer cell lines (Figure 1A). Of these, the peak
intensity of the 11.1 kDa protein strongly correlated
with the sensitivity to L-OHP (P < 0.001, R2 = 0.80; Fig-
ure 1B). This correlation was independent of cell type
and cell growth rate, because the doubling times of the
10 cell lines were similar (20.8-28.5 h). The doubling
time of SW1116 was 105 hr (data not shown). These
data suggest that this protein is a candidate biomarker
that strongly correlates with sensitivity to L-OHP.

Protein characterization
We first characterized the protein by SELDI retentate
chromatography mass spectrometer (SELDI-RCMS)

using cell lysates of HT29. This protein had a high affi-
nity to CM10 array in acidic environment and was
undetectable on the array at pH 7.0-7.5, indicating a pI
in this pH range (Figure 2A). The experimental molecu-
lar mass was estimated as m/z (mass-to-charge ratio)
11,072 by internal calibration (Figure 2B).

Protein identification
Figure 3A shows the Coomassie brilliant blue (CBB)-
stained 2D gels of cell lysates from HT29 and COLO-
320. Based on the experimental pI and mass determined,
we obtained 4 spots from the HT29-gel, which showed
over 3-fold differences in densitometric volumes in
HT29-gel as compared with those in COLO-320-gel.
Three proteins obtained by in-gel trypsin digestion of
the spots were identified (Table 1). The 11.1 kDa pro-
tein was identified as Protein S100-A10 (UniProtKB/
Swiss-Prot: P60903) (S100A10), which was derived from
spot 4 (Figure 3B). The theoretical molecular weight
(11,072 Da) and theoretical pI (7.31) of S100A10 (Uni-
ProtKB/Swiss-Prot, http://www.expasy.org) were consis-
tent with the experimental values determined by SELDI-
RCMS.

Validation of the identified protein by Western blot
analysis
To confirm the identified protein and to validate the
results of SELDI-TOF MS analysis, Western blot ana-
lyses of Protein S100A10 in whole cell lysates from 8
CRC cell lines (HCT15, COLO-320, LS174T, SW620,
SW480, HT29, DLD-1 and HCT116) were performed.
HCT116, which was not used in the candidate search
study, was newly introduced in this validation study.
Western blot densitometry of S100A10 was consistent
with the peak intensity detected on SELDI-TOF MS
(Figure 4A). Figure 4B shows a high correlation between
the peak intensity at m/z 11,072 detected on SELDI-
TOF MS and the Western blot densitometry for
S100A10 (P < 0.001, R = 0.81). We identified the candi-
date protein as S100A10 and confirmed that S100A10
was differentially expressed by the CRC cell lines.

Correlation between S100A10 protein expression levels
and sensitivity to L-OHP or 5-fluorouracil (5-FU)
To confirm the results of candidate search study by
SELDI-TOF MS analysis, we investigated the relation-
ship between the sensitivity to L-OHP and S100A10
protein expression levels quantified by Western blot
densitometry in 7 cell lines, which were used in the can-
didate search study, as the index data set. The cells with
higher S100A10 protein expression levels tended to
exhibit lower chemosensitivity to L-OHP (Figure 5A).
The data points of newly introduced HCT116 were
plotted in lower limit of the 95% prediction interval,
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showing its high chemosensitivity to L-OHP with a low
protein expression of S100A10, consisting with our find-
ings. On the other hand, there was no significant corre-
lation between S100A10 protein expression levels and
IC50 values for 5-FU (P = 0.40, R2 = 0.04, Figure 5B),
demonstrating that the S100A10 protein expression
level does not reflect chemosensitivity to 5-FU, the anti-
tumor mechanism of which differs from that of plati-
num-containing compounds. The IC50 values (μM)
(mean ± S.D.) of 8 cell lines for 5-FU were as follows:
HCT116, 1.84 ± 0.29; HCT15, 3.59 ± 1.29; COLO-320,
1.81 ± 0.34; LS174T, 16.5 ± 2.8; SW620, 9.72 ± 2.00;
SW480, 4.95 ± 0.16; HT29, 12.0 ± 3.5; and DLD-1, 4.73
± 0.96.

Presence of S100A10 in the culture supernatant
To assess the extracellular secretion of S100A10, Wes-
tern blotting was performed for serum-free conditioned
medium (SFCM) incubated with HT29 or DLD-1, which
exhibit high protein expression levels of intracellular
S100A10. The result demonstrated the presence of
S100A10 in culture supernatant (Figure 6). Cell viability

was > 80% after incubation with serum-free medium
(data not shown).

Discussion
Predictive markers of chemotherapeutic response are
urgently needed to improve the outcomes of cancer
treatment. Predictive markers of the response to L-OHP
have not yet been established [5], and clinically available
protein markers of drug-response are also limited [13].
In this study, by proteomic approach, we found that
intracellular S100A10 protein expression levels were sig-
nificantly correlated with sensitivity of CRC cells to L-
OHP, providing a new clue to predictive markers of the
response to L-OHP.
The SELDI peak intensity of S100A10 varied more

than 4-fold among various CRC cell lines (Figure 1),
and Western blot analysis confirmed the differential
expression of S100A10 (Figure 4). This is the first time
to report the differential protein expression of S100A10
in a variety of CRC cell lines. These data also confirmed
the quantitative accuracy of SELDI peak intensity, indi-
cating the usefulness of ProteinChip technology for
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Figure 1 L-OHP sensitivity and candidate peak selection. (A) Protein expression profiles of each cell line on CM10 array at pH 4.5. The
candidate peak is enclosed by the rectangle. (B) Peak intensity of the 11.1 kDa protein in 11 CRC cell lines strongly correlates with L-OHP
sensitivity. The peak intensity and IC50 value of each cell line are plotted as means ± S.D. (peak intensity, n = 3; IC50, n = 3 or 4).
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Table 1 List of identified proteins.

Mass spectrum data: protein data of all 2-DE spots selected, peptide data from spot 4 and sequence coverage of spot 4 (Protein S100-
A10).

Protein Data

Physical data MS/MS ion search
results

Characterization of 11.1 kDa
protein by SELDI-TOF MS

Swiss-Prot In gel digestion
from 2-DE

Spot
(s)

Protein
name

Swiss-Prot
Accession No.

Theoretical molecular weight
using Expasy tool (Da)

Theoretical pI
using Expasy tool

Sequence
coverage

(%)

Mowse
score

Observed
molecular

mass
(m/z)

Observed pI

1 Protein S100-
A11

P31949 11741 6.55 26 78

2 No hit - - - - -

3 Beta-2
microglobulin

P61769 11731 6.08 17 65

4 Protein S100-
A10

P60903 11072 7.31 10 38 11072 7.0-7.5

Peptide data from spot 4 (Protein S100-A10)

Start - End Observed Mr (expt) Mr (calc) Delta Miss Sequence

18 - 27 550.29 1098.57 1098.57 0.00 1 K.
FAGDKGYLTK.

E

Sequence coverage

Matched peptide is underlined
1 PSQMEHAMET MMFTFHKFAG DKGYLTKEDL RVLMEKEFPG FLENQKDPL
51 VDKIMKDLDQ CRDGKVGFQS FFSLIAGLTI ACNDYFVVHM KQKGKK

Mowse score > 30 indicates identity or extensive homology (p < 0.05). Search parameters: MS/MS ion search, enzyme: trypsin, fixed modificaton:
carbamidomethyl (C), variable modification: oxidation (M), peptide tolerance: ± 0.05 Da, fragment mass tolerance: ± 0.05 Da, max missed cleavage: 1.
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Figure 4 Comparison of Western blot densitometry and SELDI peak intensity. (A) A Western blot illustrating the differential expression of
S100A10 derived from cell lysates of 8 CRC cell lines (a). SELDI-TOF MS gel view (b) and mass peak (c) illustrating the differential expression of
the protein at m/z 11,072 in cell lysates from 8 CRC cell lines. The results are representative of three separate experiments. (B) The results of
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further clinical validation of S100A10 in the next step of
our research with high sample throughput.
S100A10 is a member of the S100 family of proteins.

It has been shown to interact with a variety of proteins,
including plasma membrane-resident receptors and
channels such as serotonin 1B (5-HT1B) receptor
[14-17], indicating that S100A10 is an active regulator
and/or is involved in the trafficking of cellular/mem-
brane proteins which lead to various biological func-
tions. S100A10 mRNA, S100A10 protein, or both have
been found in many types of cells, tissues, and tumors
[18-23]. S100A10 has been identified as a plasminogen
receptor, suggesting its promotion of angiogenesis and
tumor metastasis [24,25]. S100A10 has thus attracted

considerable attention for its role in cancer develop-
ment. However, our present results demonstrate for the
first time that S100A10 correlates with the chemosensi-
tivity of CRC cells to L-OHP.
In this study we indicate that intracellular S100A10 in

CRC cells is associated with cell survival after L-OHP
exposure, not 5-FU exposure (Figure 1, Figure 5), sug-
gesting that S100A10 is a potential biomarker more spe-
cific to L-OHP. ERCC1 has been suggested to play an
important role in resistance to platinum-based che-
motherapy [5]. However, the UK MRC FOCUS (Fluor-
ouracil, Oxaliplatin, CPT-11: Use and Sequencing)
clinical trial, the largest randomized biomarker trial in
metastatic CRC to date, reported no significant associa-
tion of response with ERCC1, ERCC2, glutathione-S-
trasnferase-P1 (GSTP1), or other candidate biomarkers
that had previously shown promise [10]. The value of
ERCC1 as a predictive marker of the response to L-
OHP-based chemotherapy remains uncertain [26].
Mechanisms of S100A10 involvement in chemoresis-

tance are unknown at this moment. However, a few stu-
dies have reported an association of S100A10 with cell
viability. S100A10 interacts with BAD (Bcl-xL/Bcl-2
associated death promoter), a death enhancer, and
blunts its pro-apoptotic activity [27]. S100A10 is
induced by nerve growth factor, and increased S100A10
levels promote the proliferation of PC12 cells, a pheo-
chromocytoma cell line [28]. These previous results
agree with our finding that CRC cells with high intracel-
lular S100A10 expression enhanced cell survival after L-
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OHP exposure. S100A10 interacts with cytosolic phos-
pholipase A2 (cPLA2, 85-kDa) and inhibits its activity,
resulting in decreased release of arachidonic acid (AA)
[29]. S100A10 also interacts with 5-HT1B receptor and
modulates its function [17]. Both AA and serotonin play
important role in CRC physiology [30-33]. S100A10
may be involved in releasing pro-inflammatory cyto-
kines. Down-regulation of S100A10 in human macro-
phages inhibits the plasmin-induced release of pro-
inflammatory cytokines such as interleukin-6 [34],
which has been suggested to promote cell growth and
apoptosis-escape of colon cancer [35,36].
A number of factors were reported to regulate

S100A10 expression [37], leading to another speculation
that intracellular S100A10 is a surrogate of other active
molecules related to cell survival after exposure to antic-
ancer agents, as follows. Down-regulation of caveolin-1,
which has recently attracted attention for its potential
role in chemoresistance [38,39], reduces intracellular
S100A10 protein expression and its localization to
caveolae in HCT116, although the mechanisms involved
are unknown [40].
Most S100A10 is tightly associated with the dimers of

annexin A2 (ANXA2), forming an (ANXA2)2-(S100A10)

2 heterotetramer [41-43]. ANXA2 is a member of the
annexin family which has been reported to have multi-
ple functions [44-47], and requires S100A10 for its
action and translocation to the cell surface [48]. These
previous observations indicate the possibility that intra-
cellular S100A10 protein reflects the handling of other
active molecules related to cell survival after exposure to
anticancer agents.
S100A10 appears to merit further investigation as a

potential predictive biomarker of the response of CRC
to L-OHP. We have also demonstrated the presence of
S100A10 in cell culture supernatant (Figure 6), suggest-
ing that S100A10 undergoes extracellular secretion. In
addition, recently, S100A10 was detected in human
serum and the list of plasma protein [49,50], thereby
allowing blood level monitoring of S100A10 for further
clinical validation as a biomarker for the L-OHP
sensitivity.
Thus, molecular backgrounds of S100A10 described in

previous reports are partly consistent with our hypoth-
esis that S100A10 expression level may reflect the che-
mosensitivity, from a view of chemosensitivity. However,
mechanisms of S100A10 involvement in chemoresis-
tance are unknown and the reason why S100A10 is
more predictive of L-OHP sensitivity than 5-FU sensitiv-
ity is not clarified in this study. The present study was
designed to identify and characterize S100A10 asso-
ciated with the chemosensitivity. The molecular
mechanisms of S100A10 as a predictive biomarker of L-
OHP response will be addressed in subsequent studies.

Conclusions
We have demonstrated by proteomic approaches
including SELDI technology that intracellular S100A10
protein expression levels in drug-untreated CRC cells
differ according to cell lines and are significantly corre-
lated with sensitivity of CRC cells to L-OHP exposure.
Our results provide new primary findings for searching
predictive markers of the response to L-OHP, suggest-
ing that S100A10 is expected to be one of the candi-
date protein markers. To confirm this hypothesis,
further clinical validation and functional analysis to
elucidate the underlying biological mechanisms are
necessary.

Methods
Agents and antibodies
L-OHP was kindly provided by Yakult Honsha, Co., Ltd.
(Tokyo, Japan). 5-FU was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Purified mouse anti-human
annexin II Light Chain (S100A10) mAb was obtained
from BD Biosciences (Mississauga, ON, Canada), and
anti-human GAPDH mAb was obtained from Applied
Biosystems (Foster City, CA, USA). All other chemicals
and reagents were of the highest purity available.

Cell cultures
Twelve human CRC cell lines were used. DLD-1, HT29,
SW480, SW1116, WiDR, and HCT116 were purchased
from the European Collection of Cell Cultures (Salis-
bury, UK), and SW620 was purchased from the Ameri-
can Type Culture Collection (Manassas, VA, USA).
COLO205, HCT-15, and LS174T were provided by the
Cell Resource Center for Biomedical Research, Tohoku
University (Sendai, Japan). COLO201 was provided by
the Japanese Collection of Research Bioresource (Tokyo,
Japan), and COLO-320 was provided by RIKEN Bio-
Resource (Tsukuba, Japan). The cells were cultured in
RPMI 1640 medium supplemented with 10% FBS and 2
mM glutamine at 37°C in humidified air containing 5%
CO2. Exponentially growing cells were used.

Chemosensitivity tests and IC50 determination
The cells were plated at the following densities in 96-
well plates: COLO205, HCT15, HT29, and WiDR, 1000
cells/well; COLO201, DLD-1, LS174T, HCT116, and
SW620, 1500 cells/well; COLO-320 and SW480, 3000
cells/well; and SW1116, 5000 cells per well. The cells
were cultured for 24 h before addition of various con-
centrations of L-OHP, ranging from 0 to 1000 μM. Cell
viability after incubation with L-OHP for 48 h was
assayed using the CellTiter96® AQueous One Solution
Cell Proliferation Assay (MTS assay, Promega Corpora-
tion, Madison, WI, USA) according to the manufac-
turer’s protocol. The sensitivity of cells to L-OHP was
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evaluated by determining the IC50 values by fitting the
concentration-survival curve to a logistic function:

P = 1/
(
1 + exp

(−α − β · logD))

P: ratio to drug-free control
D: drug concentration
IC50 = 10(-a/b)

IC50 values of cells treated with 5-FU were also evalu-
ated with the MTS assay after 72 h of exposure to 5-FU
in concentrations ranging from 0 to 10 mM. The IC50

values for L-OHP or 5-FU were log transformed for
normal distribution, and the log10IC50 values were used
for further statistical analysis.

Sample preparation
Cells were washed 3 times with cold PBS and lysed in a
lysis buffer containing 9 M urea, 2% CHAPS, 1 mM
dithiothreitol, and protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MO, USA). After incubation on ice
for 10 min followed by sonication on ice, the lysates
were centrifuged at 15,000 × g for 30 min at 4°C, and
the supernatant was collected. The protein concentra-
tion was determined by DC Protein Assay (Bio-Rad
Laboratories, Hercules, CA, USA), and aliquots were
quickly frozen in liquid nitrogen and stored at -80°C
until analysis.

SELDI ProteinChip array preparation
Weak cation-exchange ProteinChip CM10 arrays (Bio-
Rad Laboratories, Hercules, CA, USA) were used for
protein profiling. Protein concentrations of the cell
lysates were adjusted to 5 mg/mL by adding lysis buffer
and then diluted to 1 mg/mL with binding/washing buf-
fer (50 mM sodium acetate [pH 4.5]). CM10 arrays were
equilibrated with 150 μL binding/washing buffer for 5
min, and incubated with 100 μL of diluted sample. After
1 h, each spot was washed 3 times with 150 μL binding/
washing buffer and rinsed twice with 400 μL of distilled
water. After air-drying, 0.5 μL of a saturated solution of
sinapic acid in 50% (v/v) acetonitrile containing 0.1% (v/
v) trifluoroacetic acid was applied twice to the surface of
each spot and dried.

SELDI-TOF MS analysis
The prepared CM10 arrays were analyzed using a Pro-
teinChip SELDI Reader, Model PBS IIc (Ciphergen Bio-
systems, Fremont, CA, USA), for EDM analysis in the
candidate selection study, and Model PCS-4000 personal
edition (Bio-Rad Laboratories, Hercules, CA, USA) for
the subsequent confirmation study. Mass spectrometry
profiles were generated using 108 laser shots with a
laser intensity of 220 and a detector sensitivity of 8 for
PBS IIc, or 265 laser shots with a laser intensity of 3000

nJ for PCS-4000. The m/z of each protein was deter-
mined with the use of externally calibrated standards
(ProteoMass™ Peptide & Protein MALDI-MS Calibra-
tion Kit, Sigma-Aldrich, St. Louis, MO, USA). Peaks
were auto-detected at an m/z of 2,000 to 30,000 and a
signal-to-noise ratio of > 5 for PBS IIc or a valley depth
of 5 for PCS-4000. Spectra were baseline-subtracted and
normalized to the total ion current. All calculations
were performed using ProteinChip data manager soft-
ware (Bio-Rad Laboratories, Hercules, CA, USA).

Correlation analysis between protein expression and
chemosensitivity
To identify protein biomarkers, we screened proteins
whose peak intensity was associated with the sensitivity
to L-OHP, by investigating the relations between IC50

values for L-OHP and each peak intensity on EDM ana-
lysis across 11 cell lines (excluding HCT116) by linear
regression analysis. Candidate peaks were then selected
according to the following criteria: P value < 0.05 and
coefficient of determination (R2; R, Pearson correlation
coefficient) > 0.5.

Identification of candidate biomarker proteins
Characterization of target proteins
A SELDI-RCMS on CM10 arrays was used to estimate
the experimental pI of the target protein [51]. Briefly,
whole cell lysates from HT29 were diluted with binding
buffers (pH 3.0-10.0 in 0.5 increments) and analyzed
using the PCS-4000. To estimate the experimental mole-
cular mass of the target protein, internal calibration was
carried out using bovine insulin (5733.5 Da) and equine
cytochrome C (12361.0 Da) of ProteoMass™ Peptide &
Protein MALDI-MS Calibration Kit (Sigma-Aldrich, St.
Louis, MO, USA), which bookended the target protein.
Two-dimensional electrophoresis (2-DE)
To identify the target protein, we used HT29 and
COLO-320, which show high or low expression of this
protein, respectively. After desalting and concentrating
the cell lysates (250 μg) by acetone precipitation, cell
extracts dissolved in isoelectric focusing (IEF) buffer
containing 6 M urea, 2 M thiourea, 3% CHAPS, 1% Tri-
ton X-100 and DeStreak reagent (GE Healthcare, Little
Chalfont, UK) were rehydrated in Immobiline DryStrip
gel (pH 3-10 non-linear, GE Healthcare, Little Chalfont,
UK) for 12 h. Then, IEF was performed at 150 V for 1
h, followed by 5,000 V ramping for 2.5 h and 5,000 V
IEF for 15 h. Before 2-dimensional PAGE (2D-PAGE),
the strip gel was equilibrated in sample buffer (6 M
urea, 20% glycerol, 2% DTT, 2% SDS, 375 mM Tris-
HCl, pH 8.8) for 45 min. 2D-PAGE was performed
using polyacrylamide gradient gel (10-18%). SDS-PAGE
gels were stained with CBB G-250 (Bio-Rad Labora-
tories, Hercules, CA, USA). Images were acquired with a
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GS-800 calibrated densitometer (Bio-Rad Laboratories,
Hercules, CA, USA) and analyzed with PDQuest 7.2.0
software (Bio-Rad Laboratories, Hercules, CA, USA).
MS/MS ion search and protein identification
Protein identification of gel spots was performed by
LCMS-IT-TOF (Shimadzu, Kyoto, Japan). The gel pieces
of interests were excised from the gel, and in-gel diges-
tion of protein was performed. Tryptic peptides were
separated via reversed-phase liquid chromatography/
mass spectrometry using DiNa nanoLC (KYA Tech Cor-
poration, Tokyo, Japan) for analytical separation on a
New Objective PicoFrit BetaBasic C18 column (100 mm
× 75 μm). Mass spectrometric analysis ([+] ESI) was car-
ried out on an LCMS-IT-TOF with argon gas for ion
cooling and CID experiments. Tandem mass spectrome-
try data were obtained in a data-dependent manner. A
Mascot search engine (Matrix Science, Boston, MA,
USA) was used for protein database searching. Search
parameters are described in Table 1. Proteins with sta-
tistically significant MASCOT/Mowse score (> 30), indi-
cating identity or extensive homology (p < 0.05), were
considered to be identified.

Preparation of SFCM
HT29 or DLD-1 cells were plated at a density of 1 × 107

cells per 10-cm dish and incubated for 24 h. The med-
ium was changed, and after additional incubation for 24
h, the cells were washed 6 times with serum-free fresh
medium (SFM) and received 8 mL of SFM per 10-cm
dish. After 24 h incubation with SFM, the resultant con-
ditioned medium containing secreted proteins was cen-
trifuged to remove cell debris and concentrated 1000-
fold by ultrafiltration with an Amicon® Ultra Centrifugal
Filter and a 3,000 Dalton molecular mass cutoff spin
column (Millipore Corporation, Billerica, MA, USA). As
a negative control, a ‘cell-free’ dish was treated with the
same protocol.

Western blot analysis
Total cell lysates (5 μg protein) and concentrated SFCM
(15 μL) were fractionated by SDS-PAGE. The separated
proteins were transferred electrophoretically to PVDF
membranes by using an iBlot® Dry Blotting System
(Invitrogen, Carlsbad, CA, USA). After blocking, the
blots were probed with a 1:5000 dilution of mouse anti-
human S100A10 primary antibody or a 1:4000 dilution
of mouse anti-human GAPDH primary antibody and
developed with a WesternBreeze® Chemiluminescent
Western Blot Immunodetection Kit according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA,
USA). GAPDH was used as a loading control. Protein
bands were visualized with an LAS 4000 mini imaging
system (FUJIFILM, Tokyo, Japan) and analyzed with
Multi Gauge software Ver 3.0 (FUJIFILM, Tokyo, Japan).

Statistical analysis
Statistical analyses were performed using SPSS software
17.0J for Windows (SPSS, Chicago, IL, USA). To evalu-
ate relations between two variables, correlation analysis
and regression analyses were used. P values < 0.05 were
considered statistically significant. All tests were two-
sided.
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