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Background: Protein complexes are important for understanding principles of cellular organization and functions.
With the availability of large amounts of high-throughput protein-protein interactions (PPI), many algorithms have
been proposed to discover protein complexes from PPl networks. However, existing algorithms generally do not
take into consideration the fact that not all the interactions in a PPl network take place at the same time. As a
result, predicted complexes often contain many spuriously included proteins, precluding them from matching true

Results: We propose two methods to tackle this problem: (1) The localization GO term decomposition method:
We utilize cellular component Gene Ontology (GO) terms to decompose PPl networks into several smaller
networks such that the proteins in each decomposed network are annotated with the same cellular component
GO term. (2) The hub removal method: This method is based on the observation that hub proteins are more likely
to fuse clusters that correspond to different complexes. To avoid this, we remove hub proteins from PPl networks,
and then apply a complex discovery algorithm on the remaining PPl network. The removed hub proteins are
added back to the generated clusters afterwards. We tested the two methods on the yeast PPI network
downloaded from BioGRID. Our results show that these methods can improve the performance of several complex
discovery algorithms significantly. Further improvement in performance is achieved when we apply them in

Conclusions: The performance of complex discovery algorithms is hindered by the fact that not all the
interactions in a PPl network take place at the same time. We tackle this problem by using localization GO terms
or hubs to decompose a PPI network before complex discovery, which achieves considerable improvement.

Introduction

High-throughput experimental techniques have pro-
duced large amounts of protein interactions, which
makes it possible to discover protein complexes from
protein-protein interaction (PPI) networks. A PPI net-
work can be modeled as an undirected graph, where
vertices represent proteins and edges represent interac-
tions between proteins. Protein complexes are groups of
proteins that interact with one another, so they are
usually dense subgraphs in PPI networks. Many
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algorithms have been developed to discover complexes
from PPI networks [1-8].

As a model organism, Saccharomyces cerevisiae
(baker’s yeast) has been extensively studied, and its PPI
network is now relatively complete. However, the per-
formance of existing complex discovery algorithms on
the yeast PPI network is not very satisfactory. One rea-
son behind this is that each protein do not necessarily
participate in all its known interactions simultaneously.
With very few exceptions [9], existing complex discovery
algorithms generally do not take this into consideration.
As a result, the clusters generated often contain extra
proteins that preclude them from matching true com-
plexes. An ideal solution would be to decompose the
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PPI network into several smaller networks such that
interactions within each smaller network are contex-
tually coherent. In reality, it is very difficult to know
which subset of interactions take place together. Here
we choose to use cellular component GO terms to
decompose PPI networks because a protein complex can
be formed only if its proteins are localized within the
same compartment of the cell. We use only localization
GO terms that are relatively general for decomposition.
The existence of hub proteins is another factor that
makes it difficult for complex discovery algorithms to
decide the boundary of clusters. Hub proteins are pro-
teins that have a lot of neighbors in the PPI network,
and these neighbors often belong to multiple complexes
[10]. This may fuse clusters that correspond to different
complexes. To avoid this, we remove hub proteins from
PPI networks prior to clustering. After the clusters are
generated from the remaining PPI network, we then add
the removed hub proteins back to the clusters.

We tested the above methods on the yeast PPI net-
work downloaded from BioGRID [11]. The results show
that these methods can improve the performance of
existing complex discovery algorithms significantly. A
preliminary version of this paper was presented as a
short paper [12] in BIBM2010. In this version, we have
included more experimental results and further dis-
cussed why some complexes are so hard to detect. In
the rest of the paper, we first describe the two methods
for decomposing PPI networks, and then show experi-
ment results.

Methods

In this section, we first describe the two methods for
decomposing PPI networks for complex discovery, and
then briefly introduce the complex discovery algorithms
used in our experiments.

The localization GO term decomposition method

A protein complex can only be formed if its proteins are
localized within the same compartment of the cell.
Hence we use cellular component GO terms to decom-
pose a given PPI network into several smaller PPI net-
works such that all proteins in each smaller network are
annotated with the same localization GO term. We use
only localization GO terms that are relatively general for
decomposition. There are several reasons for this. First,
it is relatively easy to obtain the rough localization of
proteins, compared with obtaining the precise and speci-
fic localization of proteins. Secondly, very specific GO
terms are annotated to very few proteins. Using them to
decompose PPI networks produces many small frag-
ments, and lots of information may be lost due to the
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decomposition. Finally, some very specific cellular com-
ponent GO terms correspond to complexes, and they
are just as hard to decide as complexes.

We use a threshold Ngo to select GO terms for
decomposition, where Ngo should be large. The selected
GO terms are annotated to at least Ngo proteins, and
none of their descendant terms is annotated to at least
Ngo proteins. If a GO term is selected, then none of its
ancestor terms or descendant terms will be selected.

Given a selected GO term, we first remove all the pro-
teins that are not annotated to the term from the given
PPI network, and then apply a complex discovery algo-
rithm on the resultant network. This process is repeated
for every selected GO term. The final set of clusters is
the union of the clusters discovered from every filtered
network. Duplicated clusters are removed.

The hub removal method

Hub proteins are those proteins that have many neigh-
bors in the PPI network. We use a threshold Nj,,; to
define hub proteins. We call a protein a hub protein if it
has at least Nj,,;, neighbors. A hub protein often con-
nects proteins that belong to different complexes, which
makes it hard to decide the boundary of the complexes
and the membership of the hub proteins.

To alleviate the impact of the hub proteins, we first
remove hub proteins from a given PPI network, and
then use an existing complex discovery algorithm to
find clusters from the remaining network. After the
clusters are generated, hub proteins are added back to
the clusters. We add a hub protein u back to a cluster C
based on the connectivity between u and C, which is
defined as follows:

ZveCW(u, l/) (1)

Connectivity(u, C) =

where w(u,v) is the weight of edge (,v), and it is cal-
culated from the original PPI network using iterative
AdjustCD [8] before removing hubs. If there is no edge
between u and v, then w(u, v)=0. A hub protein u is
added to a cluster C only if Connectivity(u, C) =
hub_add_thres, where hub_add_thres is a number
between 0 and 1.

Combining the two methods
We combine the two methods by first removing hub
proteins from the given PPI network, and then decom-
posing the resultant PPI network using selected GO
terms. The whole process is described below:

1. Let C be the set of clusters generated. Initially C
is empty.
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2. Remove hub proteins that have at least Nj,,;, neigh-
bors from the given PPI network G. Let G’ be the resul-
tant network.

3. Let g1,...,, be the localization GO terms that are
selected using threshold Ngo. For each g;, do the
following:

» Remove proteins that are not annotated with g; from
G'. Let G; be the resultant network.

« Apply a complex discovery algorithm on G; to find
clusters. Let C; be the set of clusters generated.

. C = C U Ci;

4. Remove duplicated clusters from C .

5. Add hub proteins back to clusters in C .

Complex discovery algorithms

We used the following complex discovery algorithms in
our study. MCL and RNSC generate a partition of the
PPI network, and they do not allow overlap among clus-
ters. The other two algorithms, IPCA and CMC, allow
overlap among clusters.

Markov Cluster Algorithm (MCL) [1] is motivated by
a heuristic formulated in terms of stochastic flow. It
iteratively enhances the contrast between regions of
strong and weak flow in the graph. The process con-
verges towards a partition of the graph, with a set of
high-flow regions (the clusters) separated by boundaries
with no flow. The performance of MCL is mainly
affected by the“-I inflation” option, which controls the
granularity of the output clustering.

Restricted Neighborhood Search Clustering (RNSC)
[13] is a cost-based local search algorithm that explores
the solution space to minimize a cost function, calcu-
lated according to the number of intra-cluster and inter-
cluster edges. RNSC searches for a low-cost clustering
by first composing an initial random clustering, and
then iteratively moving a node from one cluster to
another in a randomized fashion to reduce the cluster-
ing’s cost. It also makes diversification moves to avoid
local minima. RNSC performs several runs, and reports
the clustering from the best run. The number of runs is
controlled by the “-e” option.

IPCA[7] follows the general approach of cluster
expanding based on seeded vertices. It first assigns
weights to edges and vertices, and then picks the vertex
with the highest weight as the seed of a new cluster.
Other vertices are then added to the cluster based on
their connectivity. For each of the subsequent cluster,
the vertex with the highest weight among those vertices
that do not appear in previous clusters is chosen as the
seed, and the cluster is expanded using all the vertices
except those seed vertices in the previous clusters.
Whether a vertex can be added to a cluster is deter-
mined by the diameter of the resultant cluster (the “-P”
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option) and the connectivity between the vertex and the
cluster (the “-T” option).

Clustering by Maximal Cliques (CMC) [8] first gener-
ates all the maximal cliques from a given PPI network,
and then removes or merges highly overlapping cliques
based on their inter-connectivity as follows. Each maxi-
mal clique is assigned a score based on their weighted
density and size. If the overlap between two maximal
cliques exceeds a threshold overlap_thres, then CMC
checks whether the inter-connectivity between the two
cliques exceeds a threshold merge_thres. If it does, then
the two cliques are merged together; otherwise, the cli-
que with lower score is removed.

Results and discussion

In this section, we first describe the datasets and the eva-
luation method used in our experiments, and then study
the impact of the two decomposition methods on the
performance of the four complex discovery algorithms.

Experiment settings

PPI data

We used the yeast PPI dataset downloaded from Bio-
GRID [11] (version 3.0.64) in our experiments. We kept
only physical interactions that are generated by the fol-
lowing experiment types: Affinity Capture-Luminescence,
Affinity Capture-MS, Affinity Capture-RNA, Affinity
Capture-Western, Biochemical Activity, Co-crystal Struc-
ture, Co-fractionation, Co-localization, Co-purification,
Far Western, FRET, PCA, Protein-peptide, Protein-RNA,
Reconstituted Complex, Two-hybrid. Self-interactions are
removed. The dataset contains 5765 proteins and 52096
binary interactions.

Evaluation methods

We match the generated clusters with reference com-
plex sets, and calculate recall (sensitivity) and precision.
Let S be a cluster, C be a reference complex, Vs and V¢
be the set of proteins contained in S and C respectively.
We define the matching score between S and C as the
Jaccard index between Vs and V.

[Vs N Vel
tch _ S,C)=— 2
match _ score(S, C) Ve UV| (2)

Given a threshold match_thres, if match_score(S, C) >
match_thres, then we say S and C match each other.
Given a set of reference complexes C ={C;,C,,---,C,}
and a set of predicted complexes P ={S;,S,,---,S,,},
recall and precision are defined as follows:

[Ci|CieC A3S;€P,S; matches ci}‘

3)
C]

Recall = ‘
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Table 1 Statistics of reference complexes
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Datasets #cmplx #tproteins max size avg size median size avg density median density
Aloy 63 544 34 9.22 7 0.865 0.944
CYCo8 148 1115 81 884 6 0.831 0.944
MIPS 156 nmn 95 14.86 9 0.565 0.564
Combined 305 1543 95 11.85 7 0.697 0.800

Only complexes of size >4 are considered.

HS]»|Sje P A3C; e C,C; matches Sj}‘
Precision = |7D|

(4)

There is often an inverse relationship between preci-
sion and recall. We combine the two measures into a
single measure called F1-measure to assess the overall
performance. F1-measure is defined as follows:

_ 2 Precision - Recall

F1 (5)

Precision + Recall

Reference complexes

Three reference sets of protein complexes are used in
our experiments. Two set of complexes are hand-
curated complexes from MIPS [14] and the CYC2008
catalogue [15]. The third set is generated by Aloy et al.
[16]. We combine these three sets of complexes
together, and keep only those complexes with size no
less than 4. Duplicated complexes are removed. Table 1
shows the number of complexes, number of proteins,
the maximal, average and median size, and the average
and median density of the complexes in the three refer-
ence complex sets and the combined set. In all the
experiments below, we used the combined reference
complex set, and considered complexes and clusters
with size no less than 4.

Parameter settings of the four complex discovery
algorithms

Unless stated explicitly, the parameters of the four com-
plex discovery algorithms are set as in Table 2. Para-
meters not shown are set to their default values.

Results of the GO term decomposition method
The first experiment studies the impact of the GO term
decomposition method on the performance of the four

Table 2 Parameter settings of complex discovery
algorithms

algorithms parameter settings
MCL 118
RNSC -e10 -D50 -d10 -t20 -T3
IPCA -T04
CMC overlap_thres=0.5, merge_thres=0.4

algorithms. We use annotations in Gene Ontology [17]
(dated 4 June, 2010) to select GO terms for decomposi-
tion. Table 3 shows the number of GO terms selected
under different Ngo values. If a protein is annotated to
none of the selected GO terms, then the protein is dis-
carded because it does not occur in any of the small PPI
networks after decomposition. The number of such pro-
teins is shown in the third column. If the two proteins
of an interaction do not share a common selected GO
term, then the two proteins do not occur in any com-
mon PPI network after decomposition and the interac-
tion between them is lost too. The number of such
interactions is shown in the last column of Table 3. The
number of proteins and interactions that are discarded
is considerably large when Ngo is small.

Figures 1 shows the recall and precision of the four
complex discovery algorithms when different Ngo thresh-
olds are used for selecting localization GO terms. The pre-
cision of all the four algorithms is improved considerably
under all the different Ngo values. The recall is improved
as well when N5 = 300. When Ngo=30 or 100, recall of
the four algorithms decreases. This is mainly because too
much information is lost in these two cases as shown in
Table 3. Hence we should use GO terms that are relatively
general to decompose PPI networks to avoid breaking the
whole network into tiny fragments. Overall, the perfor-
mance of all the four algorithms improves. We have also
tested other parameter settings of the four complex dis-
covery algorithms besides that shown in Table 2. The
improvements achieved are all very similar.

We also compared the above improvement with that of
using random protein groups for decomposition. Ran-
dom protein groups are generated by replacing proteins
of the selected GO terms with randomly picked proteins.
We generated 100 sets of random protein groups and use
their mean Fl-measure as the result. Figures 2 shows

Table 3 Number of GO terms selected under different
Ngo values

Ngo  #GO terms selected  #proteins discarded  #PPls discarded
1000 6 2067 27151
500 10 2193 27477
300 10 2481 33425
100 29 3023 39992
30 57 3461 43638
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that using random protein groups to decompose the PPI
network decrease the performance of the four algorithms
greatly, where the random protein groups were generated
from GO terms selected at a threshold of 500.

Results of the hub removal method

The second experiment studies the impact of the hub
removal method on the performance of the four algo-
rithms. Table 4 shows the number of hub proteins and
interactions removed under different Ny, values. The
numbers indicate that a small number of hub proteins
account for a large number of interactions. For example,
the percentage of proteins with at least 100 neighbors is
less than 2%, while they account for about 37% of the
interactions.

We use parameter hub_add_thres to determine when
a hub can be added to a cluster. In our experiments, we
found that the proper range for hub_add_thres is [0.2,
0.9]. In the rest of the experiments,
hub_add_thres to 0.3.

we set

Table 4 #hub proteins and #PPls removed under
different Ny,

Nhnub #hub proteins removed #PPIs removed
100 97 19292
75 207 26331
50 446 35632
40 651 40534
30 996 45568
20 1550 49775
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Figure 3 Recall and precision of the four algorithms when different N, values are used for removing hubs The X-axis is match_thres.
“hubn” means that a value of n is used to define hub proteins. For example, “hub100” means proteins with at least 100 neighbors are regarded
as hubs. “original” means that complex discovery is performed on the original network without hub removal.
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Figures 3 shows the recall and precision of the four
complex discovery algorithms when different Ny,
thresholds are used for removing hub proteins. The
recall of the four algorithms decreases greatly when
Nyup < 30, which indicates that too many proteins and
interactions are removed as shown in Table 4. The hub
removal strategy is not helpful for RNSC and MCL, but
is very helpful for IPCA and CMC. The main improve-
ment of IPCA and CMC is on precision.

It has been proposed that two types of hubs exist:
party hubs that interact with all their neighbours simul-
taneously, and date hubs that interact with different
neighbours at different times [10]. We postulate that
when Nj,,;, > 30, most of the hubs removed correspond
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Table 5 F1-measure of the four algorithms when
match_thres=0.5

original Hub50 GO500 Hub50+GO500
MCL 0250 0272 0354 0.406
RNSC 0353 0347 0471 0436
IPCA 0.191 0405 0.368 0469
CMC 0.207 0421 0.359 0.501

to date hubs, as it is physically unlikely for a protein to
bind to so many other proteins at the same time due to
its limited surface area. However, when removing hubs
with fewer neighbours, it might be helpful to identify
and remove only date hubs, while ignoring party hubs.
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Figure 4 F1-measure of the four algorithms when the two methods are performed in tandem The X-axis is match_thres. “original” means
the original network with neither hub removal nor GO term decomposition. “GO500” means that the network is decomposed using GO terms
selected at a threshold of 500. “Hub50" means that hub proteins with at least 50 neighbors are removed. “Hub50+GO500" means that first hub
proteins with at least 50 neighbors are removed, and the network is then decomposed using GO terms selected at a threshold of 500.
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To test this hypothesis, we removed only hubs that are
part of at least 3, 5, or 7 reference complexes, for Ny,
=5-9, 10-14, or 15-19. This experiment assumes that we
have a classifier which is able to accurately distinguish
between date hubs (hubs that belong to many reference
complexes) and party hubs (hubs that belong to fewer
complexes). However, none of these settings show any
significant improvement over not removing these hubs
with fewer neighbours, possibly because too few hubs
were removed to have a significant impact on
performance.

Results of combining the two methods

The last experiment is to examine the combined impact
of the two decomposition methods. We set Ngo to 500
and Ny, to 50. Figures 4 shows the results. RNSC and
MCL do not benefit much from the hub removal
method, so for these two algorithms, combining the two
decomposition methods yields little improvement com-
pared with using GO decomposition alone. The perfor-
mance of IPCA and CMC improve when both methods
are used.

Table 5 shows the F1 of the four algorithms when
match_thres=0.50. RNSC shows the best performance
on the original PPI network, while CMC performs the
best when the two decomposition methods are used.

Discussion
Even though the performance of the four algorithms
improves significantly after applying the two pre-
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processing methods, many reference complexes remains
undetected by all four algorithms. On the original net-
work, 116 reference complexes cannot be detected by
any of the four complex discovery algorithms when
match_thres=0.5. This number reduces slightly to 113
after applying the two pre-processing methods. To find
out why these complexes cannot be detected, we study
the density of the reference complexes and the connec-
tivity of the vertices in the complexes. We define a ver-
tex in a complex as an isolated vertex if it connects to
none of the other vertices in the same complex. We
define a vertex in a complex as a loose vertex if it con-
nects to less than half of the other vertices in the same
complex. Complexes with low density or containing
many isolated/loose vertices are very difficult to detect.
Figure 5 shows the density of the complexes. Figure 6
shows the proportion of isolated vertices and loose ver-
tices in the complexes. Among the 305 complexes, 81
complexes have a density less than 0.5, and 42 com-
plexes have a density less than 0.25. There are 144 com-
plexes with more than half of their proteins being loose
proteins, and these complexes are not easy to detect.
There are 18 complexes with more than half of their
proteins being isolated vertices, and these complexes are
almost impossible to discover. Figure 7 shows the den-
sity of the complexes that are detected or are not
detected separately. Most of the complexes that are
detected have high density. For all the four algorithms,
90% of the detected complexes have a density no less
than 0.5. On the contrary, many complexes that are not
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detected have a density less than 0.5, and they also have
many loose vertices. There are some complexes that
have very high density but cannot be discovered by the
four algorithms. We found that for such complexes,
usually there exists some cluster such that the complex
is a subset of the cluster but the size of the cluster is
too large to qualify as a match. If we lower the matching
threshold to 0.33, then most of these high density com-
plexes can be matched by some clusters.

Conclusions

In this paper, we proposed two methods to decompose
PPI networks for complex discovery. We used four com-
plex discovery algorithms to experimentally study the
effectiveness of the two methods. The results show that
the two decomposition methods help improve the per-
formance of the four algorithms significantly. The two
partitioning clustering algorithms, MCL and RNSC, ben-
efit more from the GO decomposition method, while
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the two algorithms that allow overlap among clusters,
CMC and IPCA, benefit from both.

For the GO term decomposition method, we recom-
mend using localization GO terms that are relative gen-
eral because their annotations are easier to obtain and
they also preserve more information than GO terms
that are very specific.

There are two main reasons why some complexes can-
not be detected. First, there might be too few interac-
tions existing between proteins in the complex.
Secondly, the complex itself might be densely con-
nected, but so is the region surrounding it, which makes
it difficult to correctly delineate the boundary around it.
Both cases are difficult to handle. We may need to use
other information besides PPI data to detect such
complexes.
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