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Abstract

Background: Protein-RNA interactions play an important role in numbers of fundamental cellular processes such
as RNA splicing, transport and translation, protein synthesis and certain RNA-mediated enzymatic processes. The
more knowledge of Protein-RNA recognition can not only help to understand the regulatory mechanism, the site-
directed mutagenesis and regulation of RNA–protein complexes in biological systems, but also have a vitally
effecting for rational drug design.

Results: Based on the information of spatial adjacent residues, novel feature extraction methods were proposed to
predict protein-RNA interaction sites with SVM-KNN classifier. The total accuracies of spatial adjacent residue profile
feature and spatial adjacent residues weighted accessibility solvent area feature are 78%, 67.07% respectively in 5-
fold cross-validation test, which are 1.4%, 3.79% higher than that of sequence neighbour residue profile feature and
sequence neighbour residue accessibility solvent area feature.

Conclusions: The results indicate that the performance of feature extraction method using the spatial adjacent
information is superior to the sequence neighbour information approach. The performance of SVM-KNN classifier is
little better than that of SVM. The feature extraction method of spatial adjacent information with SVM-KNN is very
effective for identifying protein-RNA interaction sites and may at least play a complimentary role to the existing
methods.

Background
The interaction between Protein and RNA play an
essential role in many cellular processes, such as regula-
tion of gene expression, protein synthesis, as well as
replication and assembly of many viruses [1,2]. Although
there are some literatures to investigate the mechanisms
by which protein bind to DNA, the identification of
RNA-binding proteins, especially their binding sites in
residue level is quite poor. The mechanism that RNAs
interact with protein and their binding sites is still a
major challenge in the Post-genome era. The ability to
identify the specific amino acid that contribute to the
specificity of protein-RNA interaction can broaden our
understanding of the molecular recognition, the

mechanisms of many important biological processes and
guide for the mutant design and drug design [3-5].
Unfortunately, the experimental methods such as NMR,
immunoprecipitation, and crystallography are all both
expensive and laborious for determining the protein-
RNA interaction sites. Therefore, there is necessary to
develop potential computational methods for predicting
the protein-RNA interaction sites.
Recently, the number of the structures of known pro-

tein-RNA complexes solved by X-ray crystallography
and other high throughput technical is increasing, which
supply more potential data resources for developing
computing methods. Although some computing meth-
ods have been triggered to predict protein-RNA interac-
tion sites for complementing experimental data, these
methods are mainly based on sequence and structure
information. With single sequence and secondary struc-
ture information, Jeong [6] trained an artificial neural
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network classifier to identify Protein-RNA interacting
residues. Terribilini [7] developed a Naive Bayes-based
method to predict protein-RNA interaction sites with
single protein sequence information. Different from
Jeong and Terribilini, Wang and Brown [8] developed a
SVM-based tool named BindN for prediction of DNA
and RNA binding sites based on the information of side
chain pKa value, hydrophobicity index and molecular
mass of an amino acid. Later, Wang [9] also develop a
SVM-based method PRINTR to identify RNA binding
sites in proteins using different feature information,
such as single sequence, multiple sequence alignment,
secondary structure and solvent accessibility. Manish
[10] developed an improved method with evolutionary
information and SVM to predict protein-RNA interac-
tion sites. Though these methods have made some pro-
gress, developing effective computing methods for
predicting protein-RNA interaction sites is also a hot-
spot area.
Inspiring by the work of Wang [11] who used spatial

sequence profile to predict protein-protein interaction
sites, we proposed a novel feature extraction method
which integrates spatial adjacent residues information
and protein structure information, and introduced SVM
[12] and Nearest Neighbour classifier [13] algorithm to
predict protein-RNA interaction sites. It well known
that in the cell, RNA binding protein are showed in a
three-dimensional structure or in the form of polymer,
thus, in this paper, we consider the influences of the
spatial adjacent residues of the target residue.

Methods
Dataset
In order to evaluate the performance of the predictor
capturing the properties of residues located on a pro-
tein-RNA interface, a dataset PRNA79 was established
with the dataset RNA109 used by Terribilini [7]. First,
we retrieved 59 RNA-binding protein complexes (RBP)
solved by X-ray crystallography with a better resolution
than 3.5 Å in the PDB. Then, the protein chains with
sequence identity value >30% were removed. Last, a pro-
tein residue and a RNA base are considered in contact if
the closest distance between any pair of heavy atoms
from them is less than 5 Å and the residue in protein is
defined as interface residues. According above defini-
tion, we yielded the dataset PRNA79, which contain 79
non-redundant protein RBP chains and 6157 interface
residues.

SVM-KNN algorithm
In the present work, SVM-KNN algorithm was used to
construct predictors to determine whether a residue is
an interaction site or not. SVM-KNN was an improved
method combination the advantage of SVM and k-

Nearest Neighbour (KNN) [14], and it has been success-
fully applied to many pattern recognition problems.
Because the SVM classifier can be regarded as a 1-NN
classifier in which only one representative point is
selected for each class, and the classification perfor-
mance of the samples near the optimal classification
hyperplane is not very perfect. After integrating K-NN
algorithm, the SVM-KNN algorithm chooses more
representative points rather than one for the samples
near the optimal classification hyper-plane, and it can
reduce the classification error caused by just selecting
one representative point respectively.
To solve the prediction problem, the SVM-KNN

adopts the same training process as SVM to obtain the
support vectors and parameters respectively, which were
used to construct the decision function:
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Where b is a bias, K(x, xi) denotes the kernel function
and ai is coefficient, the kernel function is RBF in this
paper. The difference between SVM and SVM-KNN is
at the class phase. The SVM-KNN should compute the
distance from the test sample to the optimal hyperplane
of SVM in feature space firstly, then according the dis-
tance to make a decision, if the distance is greater than
the given threshold, the test sample would be classified
by SVM; otherwise, the class of the sample will be up to
the KNN algorithm, which can be expressed as follows:

g x
sign f x if f x C T f x C T

KNN x else
( )

( ( )) ( ) ( )

( )
=

≥ ∗ < − ∗⎧
⎨
⎩

  or 1 2 (2)

Where C1 and C2 are weight parameters used to bal-
ance the sample number difference in order to improve
the performance, T is threshold value.

Feature representation
If a protein sequence has N residues, its PSSM (Posi-
tion-Specific Iterated Matrix) is a 20 × N matrix which
can be generated by PSI-BLAST [15] programme. Here,
the default values of PSI-BLAST were used to search
the Swissprot database [16] which contains 348,901 pro-
tein sequences, and the substitution matrix is BLO-
SUM62 [17]. Meanwhile, the secondary structural unit
information and accessibility solvent area (ASA) of each
residue in each protein chain were calculated by DSSP
[18].

Spatial adjacent residues profiles
Considering that the RNA-binding proteins exist in the
form of three-dimensional conformation or polymer and
the influence of adjacent residues, we use a sliding
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window of size w to represent the target residue based
on spatial adjacent residues profiles for the i-th target
residue in the protein sequence, then the i-th target
residue can be represented by the following 20w dimen-
sion vector:

SpaPF pssm psm pssm pssm wi i i i i w= −−[ , , / , , / ( )], , ,1 2 12 1  (3)

where pssmi is the sequence profile of i-th target resi-
due, pssmi, j is the sequence profile of j-th nearest spa-
tial adjacent residue of i-th residue, and the adjacent
residues are sort in ascending order according the dis-
tance of the target residue with other residues which
were calculated based on their three-dimensional struc-
ture. For the PRNA79 dataset, selected w=15, thus, each
target residue is represented by a 300D vector. Conveni-
ently, the feature set based on the spatial adjacent resi-
dues profiles can be wrote written as SpaPF.

Spatial adjacent residues weighted accessibility solvent
area
In order to consider and measure the variety and influ-
ences of accessibility solvent area when the protein and
RNA interact with each other, the feature extraction
approach of spatial adjacent residue weighted accessibil-
ity solvent area was introduced. The i-th amino acid tar-
get residue in protein sequence can be described by the
accessibility solvent area of target residue and spatial
adjacent residues within a sliding window of size w,
written as:

SpawASA ASA ASA j i ASA wi i i j i w= − −−[ , , / , , / ], ,  1 1 (4)

where ASAi is the accessibility solvent area of i-th tar-
get residue, and ASAi,j is the solvent accessibility of j-th
nearest spatially adjacent residue of i-th residue.
Selected w=15, each target residue is represented by a
15D vector. Conveniently, the feature set based on the
spatial adjacent residues weighted accessibility solvent
area information can be wrote written as SpawASA.

Spatial adjacent residues secondary structure information
According to definition of DSSP, the secondary struc-
tural units are classified to alpha helices, beta strands
and coils. Then the i-th target residue can be repre-
sented the following feature vector, which integrates the
secondary structure information of target residue and
spatial adjacent residues within a window w:

SpaSencond f f fi i H i E i C= [ , , ], , , (5)

where fi, H, fi, E, fi, C are the occurrence frequencies of
helix content, beta strand content and coil content
within the window w respectively. Conveniently, the fea-
ture set based on the spatial adjacent residues secondary

structure information can be wrote written as
SpaSecond.

Evaluation of prediction system
Generally speaking, the jackknife test is widely used to
examine the prediction performance of the classifier.
The cross-validation by jackknife is thought the most
objective and rigorous way in comparison with q-fold
cross test or independent data set test [19], however, it
have a big computational power, especially for a large
dataset. In this paper, we used 5-fold cross-validation
(5CV) test approach. The total prediction accuracy (Q),
the sensitivity (Sen), the specificity (Spe) and Matthew’s
Correlation Coefficient (MCC) [20] were used to evalu-
ate prediction system.

Q TP TN
N= +( ) (6)
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TN
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Here, N is the total number of residues, TP is the
number of RNA-binding residues predicted correctly; FP
is the number of RNA-binding residues predicted
wrongly; TN denotes the number of non-RNA-binding
residues predicted correctly; FN denotes the number of
non-RNA-binding residues predicted wrongly.

Results and discussion
The optimal parameters for SVM-KNN are very impor-
tant which have a vital influence on the performance of
the classifier. In this work, the kernel function is RBF,
the parameters C and g were chosen in 5CV test, the
weighted parameters C1 and C2 were set based on the
number of interaction residues (N+) and the number of
noninteraction residues (N- ) in the training set. For the
dataset PRNA79, the optimal parameters are C = 1, g =
0.0625, C1 = 1 and C2 = N-/N+ = 1.5 .
The three feature sets of SpaPF, SpaASA and SpaSe-

cond feature were employed to train SVM-KNN classi-
fier and SVM classifier respectively. The classification
results in 5CV test are summarized in Table 1. From
Table 1, we can find that the performance of SpaPF is
better than that of other two feature sets. The overall
accuracy of SpaPF with SVM-KNN is 78.00%, which is
14.7%, 10.0% higher than that of SpaSecond and SpaASA
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respectively. The MCC of SpaPF with SVM-KNN is
0.32, 0.23 higher than that of SpaSecond and SpaASA
respectively. The results show that the SpaPF includes
more information about the protein-RNA interaction
sites due to the profile contained the conservation infor-
mation through multiple sequence alignment, which
also has been demonstrated by other work [9]. Mean-
while, we can also find that the performance of SVM-
KNN classifier is little better than that of SVM. It shows
that the SVM-KNN can improve classification perfor-
mance in some degree compared with SVM.

Selection of window width w
The window size has some effect to the prediction per-
formance. If window size selected too short, it would
lose some important classification information. But if
the window size selected too long, it will include more
noise information. Unfortunately, there is no rule guid-
ing the window size selection. In this work, in order to
find the optimal window size, we test different window
length from 13 to 19 with PRNA79 dataset using SVM.
The results of different window lengths for SpaPF fea-
ture in 5-fold cross validation test (5CV) are shown in
Figure 1.
From Figure 1, we can see that the prediction perfor-

mance in 5CV test changes with the window width, and
the total accuracy is not always monotonous increasing

(or decreasing) with window size. The best result can be
arrived when the window width size equals 15.

Comparison with other feature extraction methods
In order to evaluate our feature extraction method, the
performance of our method was also compared with
other existing feature extraction methods. The compari-
son results with SVM-KNN and 5CV test for PRNA79
dataset are summarized in Table 2. From Table 2, we
can see that the total accuracy of SpaPF and SpawASA
is 1.4%, 4.72% higher than that of feature extraction
methods of sequence neighbour residues profiles (Seq-
Profile) [9] and sequence neighbour residues accessibility
solvent area (SeqASA) [7]. It means that the SpaPF and
SpawASA contain more protein-RNA interaction site
information than SeqProfile and SeqASA, which will be
helpful for predicting the protein-RNA interaction sites.
These results show that the novel feature extraction
method is quite promising and useful to improve the
prediction quality of protein-RNA interaction sites.

Conclusions
For distinguishing the interface residues from other sur-
face residues in protein– RNA complexes known struc-
ture, a novel feature extraction method integrated
spatial adjacent residues information was introduced to
predict protein-RNA interaction sites. The results show
that feature sets extracted through spatial adjacent resi-
dues profiles and accessibility solvent areas contain
more information than that of sequence neighbour resi-
dues profiles and accessibility solvent areas, the SVM-
KNN can improve the performance of predicting pro-
tein-RNA interaction sites. The novel feature extraction
method integrated spatial adjacent residues information
with SVM-KNN is quite promising and may at least
play a complimentary role to the existing methods.

List of abbreviations used
RBP: RNA-binding proteins; NA: Nucleic-acid; PSSM: Position-Specific Iterated
Matrix; SpaPF: Spatial adjacent residues profiles; SpawASA: Spatial adjacent
residues weighted accessibility solvent area; SpaSecond: Spatial adjacent
residues secondary structure information; SeqProfile: Sequence neighbour
residues profiles; SeqASA: sequence neighbour residues accessibility solvent
areas.

Table 1 Results of different feature sets with SVM-KNN
and SVM

Classifier Feature set Spe (%) Sen (%) MCC Accuracy (%)

SVM-KNN SpaSecond 75.47 44.34 0.21 63.28

SpawASA 86.74 38.86 0.30 68.00

SpaPF 88.18 62.14 0.53 78.00

SVM SpawASA 92.68 27.27 0.27 67.07

SpaPF 87.31 62.37 0.52 77.55

Figure 1 The relationship between the window width w (x-
axis) and the prediction accuracy (y-axis) with SVM for SpaPF.

Table 2 Comparison with other feature extraction
methods with SVM

Feature set Accuracy (%) MCC

SeqProfilea 76.60 0.48

SpaPF 78.00 0.53

SeqASAb 63.28 0.16

SpawASA 68.00 0.30

a) SeqProfile: sequence neighbour residues profiles [9].

b) SeqASA: sequence neighbour residues accessibility solvent area [7].
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