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Abstract

networks for identifying protein complexes.

accuracy compared to other competing approaches.

Background: Protein complexes can be identified from the protein interaction networks derived from
experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions
and the complex connectivity of the network. The integration of protein-protein interactions with the data from
other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms.

Methods: We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to
measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a
weighted graph representation by assigning the reliability values to each interaction as a weight. Following the
approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from
seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction

Results: The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies
many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and

Background

In the post-genomic era, one of the most important
issues is to systematically analyze and comprehensively
understand the topology of biological networks and bio-
chemical progress in cells. The current knowledge base
of protein-protein interactions has been built from the
heterogeneous data sources generated by high-through-
put techniques [1-4].Protein complexes can help us to
understand certain biological progress and to predict
the functions of proteins. A wide range of graphtheore-
tic approaches have been employed for detecting protein
complexes from protein interaction networks. However,
they have been limited in accuracy due to the presence
of unreliable interactions and the complex connectivity
patterns of the networks. The experimental data sets are
susceptible to false positives, i.e., some fraction of the
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putative interactions detected must be considered spur-
ious because they cannot be confirmed to occur in vivo
[5].

To resolve the inaccuracy resulting from false connec-
tions, other functional knowledge can be integrated into
the protein interaction networks. For example, many
groups [6-8] have investigated the integration of gene
expression data from microarray experiments to
improve protein complexes identification. However,
gene expression data are also susceptible to experimen-
tal sources of bias and noise. The correlations of mRNA
levels with even cognate protein expression may be
modest at best. These factors limit the usefulness of
microarray data for assessing the reliability of protein-
protein interactions. Gene Ontology (GO) [9] is another
useful data source to combine with the protein interac-
tion networks. The GO is currently one of the most
comprehensive and well-curated ontology databases in
the bioinformatics community. It provides a collection
of well-defined biological terms, called GO terms,
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spanning biological processes, molecular functions and
cellular components. The GO has been used to facilitate
the analysis of gene expression data [10-12].

In this work, we integrate protein-protein interactions
with the information content in the GO annotation
database and topology weights to enhance the modulari-
zation of interaction networks. An unweighted protein
interaction network can be converted into a weighted
graph representation by assigning a weight to each
interaction [13]. The weight of each interaction is inter-
preted as its reliability, i.e., the probability of the interac-
tion being a true positive. We propose a novel method
to measure the reliability of protein-protein interactions
using GO annotation data and topology weights. Follow-
ing the approach of that of the previously proposed
clustering algorithm IPCA[14] which expands clusters
starting from seeded vertices, we present a clustering
algorithm OIIP based on the new large weighted protein
interaction networks.

Methods
Weighted network
Weights quantify the likelihood of the interaction
between every pair of proteins, and they can be esti-
mated by encoding the proteins using gene ontology
(GO) consortium. “Ontology” is a specification of a con-
ceptualization that refers to the subject of existence. GO
is established by the following three criteria: (I) biologi-
cal process referring to a biological objective to which
the gene or gene product contributes; (II) molecular
function defined as the biochemical activity of a gene
product; (IIT) cellular component referring to the place
in the cell where a gene product is active. It is very
common for the same protein or proteins in the same
subfamily to form protein complexes, for example, pro-
tein Ste2p and Ste3p from a complex that is among acti-
vated G protein-coupled receptors in yeast cellular
mating.[15] It is also common for proteins in heterofa-
milies to form protein complexes if they share a conser-
vative motif, for example, protein Ctf19, Mcm21, and
Okpl from a heterocomplex in the budding yeast kine-
tochore.[16] Complicated protein complexes may be
formed by multiple proteins, some of which share same
biological processes and some are from the same sub-
family, for example, Dsl1p complex, involved in Golgi-
ER retrograde transport, includes Dsllp, Dsl3p, Q/t-
SNARE proteins, and so forth.[17] Thus GO consortium
is considered to be a very helpful vehicle for investigat-
ing protein-protein interactions,[18] because these three
criteria reflect the attribute of gene, gene product, gene-
product groups and the subcellular localization[19-21].
Semantic similarity has been used in Information
Science to evaluate the similarity between two concepts
in a taxonomy[22], and we applied it to protein-protein
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interactions to estimate the similarity between two pro-
teins. Based on the previous method [23], we proposed
our semantic similarity method. We define an annota-
tion size of a GO term as the number of annotated pro-
teins on the GO term. The semantic similarity between
two proteins is then calculated based on the annotation
size of the GO term, on which both proteins are anno-
tated. According to the transitivity property of GO
annotation, if a protein x is annotated on a GO term g;,
it is also annotated on the GO terms on the path from
g; to the root GO term in the GO structure. Thus, the
proportion of the annotation size of a GO term to the
total number of annotated proteins can quantify the
specificity of the GO term. If two proteins are annotated
on a more specific GO term and have more common
GO terms, then they are functionally more similar.

Suppose a protein x is annotated on m different GO
terms. S;(x) denotes a set of annotated proteins on the
GO term g;, whose annotation includes x, where 1<i<m.
In the same way, suppose both x and y are annotated
on n different GO terms, where n<m. Sj(x, y) denotes a
set of annotated proteins on the GO term gj, whose
annotation includes x and y, where 1<j<n. Then, the
minimum size of Sj(x), min;|S;(x)|, is less than or equal
to min;|Sj(x, y)|.C(x,y) denotes the sets of GO terms,
whose annotation includes x and y. |C(x,y)| is the num-
ber of common GO terms which x and y both have.

Suppose the size of annotation represents the number
of annotated proteins on a GO term. Using the annota-
tion size of the most specific GO term, on which two
proteins x and y are annotated, we define semantic simi-
larity Sgem(x, ) between x and y as follows:

min; |Sj(x,y)|

1
Sl W

Ssem(x/ y) == | C(x' y) | XIOg(

Smax 18 the maximum size of annotation among all GO
terms in a DAG structure. If two proteins x and y are
annotated on a more specific GO term and more com-
mon GO terms than x and z, then x is semantically
more similar to y than z.

Considering the graph topology, we also involve the
topology weight. For an input graph G = (V, E), we
assign the topology weight of an edge [u, v] to be the
number of neighbors shared by the vertices u and v.
Then we assigned the sum of Sg.,(u, v) and topology
weight to the edge between u and v as a weight.

Weighted vertex and selecting seed

We define the weight of each vertex to be the sum of the
weights of its incident edges. After all vertices are assigned
weights, we also sort in non-increasing order the vertices
by their weights and store them in a queue Sq (vertices of
the same weight are ordered in terms of their degrees).
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The complexity of calculating edge weights and vertex
weights is O(|V||E|), and the complexity of sorting all ver-
tices by their weights is O(| V| log |V]).

The notion that vertex weight is a good measure for
selecting seeds has been adopted by DPClus [40] and
MCODE[24]. Here, we also pick the highest weighted ver-
tices as the seeds. Our procedure proceeds as follows. We
pick the first vertex in the queue Sq and use it as a seed to
grow a new cluster. Once the cluster is completed, all ver-
tices in the cluster are removed from the queue Sq and we
pick the first vertex remaining in the queue Sq as the seed
for the next cluster. There is an important difference
between this seed selection procedure and the one used in
the IPCA algorithm [14]. Our procedure computes the
vertex weight for each vertex based on the weighted net-
works; while the IPCA algorithm computes the vertex
weight based on the original networks. We feel that our
approach is biologically more meaningful because a com-
plex is not only a dense structure in the original protein
network but also have biological function.

Extending cluster

We introduce a new concept to measure how strongly a
vertex v is connected to a subgraph K: the interaction
probability E,, of a vertex v to a subgraph K, where
vgK, is defined by

ik
Evk =% (2)
Wy

Where e,y is the sum of the weights of edges between
the vertex v and K, and wy is the sum of weights of
edges in K. We discuss the relationship between the
parameter E,, and IN,k introduced in the algorithm
IPCA[14]. According to [14], IN,x is defined as

IN,; =

" K where myx is the number of edges
K

between the vertex v and K, and ng is the number of
vertices in K. By the expressions, our parameter E,j is
similar to the parameter IN,x. While our parameter
considers with the biological weights, it have more bio-
logical meaning.

A cluster K is extended by adding vertices recursively
from its neighbors according to the priority. The priority
of a neighbor v of K is determined by the value E,;. This
procedure is similar to the one proposed in IPCA [14],
except that we do not use INy to judge the extending. So
whether a high priority vertex v is added to the cluster is
determined by the Extend-judgment test below.

Let T;, be a threshold ranging between 0 and 1, let d
be a positive integer, and let K be a subgraph. SP is the
shortest path. A vertex v¢K is added to the cluster if the
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following two conditions are satisfied (where K + v
denotes the subgraph induced by K and v):

1. EVkZTin; and

2. The(SP(K+v)<d)

Only when the candidate vertex v is satisfied the con-
ditions, can it be added to the cluster. Once the new
vertex v is added to the cluster, the cluster is updated.

Evaluation
Before we present the results of our comparative experi-
ments, let us first introduce the various evaluation metrics
that have been used to evaluate their computational meth-
ods for complex detection. We will then present the
experimental results of comparing different state-of-the-
art techniques using these evaluation metrics.

Overall, there are three types of evaluation metrics used
to evaluate the quality of the predicted complexes and
compute the overall precision of the prediction methods.

Precision, recall and f-measure

Precision, recall and F-measure are commonly-used eva-
luation metrics in information retrieval and machine
learning. For evaluating protein complex prediction, we
need to define how well a predicted complex which con-
sists of a set of protein members, matches an actual
complex, which is another set of protein members. The
neighborhood affinity score NA (p, b) between a pre-
dicted complex p =(V,E;, ) and a real complex b =(Vy,
E;, ) in the benchmark complex set, as defined in equa-
tion (3) below, can be used to determine whether they
match with each other. If NA (p, b) = o ,they are con-
sidered to be matching (o is usually set as 0.20 or 0.25).
Let P and B denote the sets of complexes predicted by a
computational method and real ones in the benchmark,
respectively. Let N, be the number of predicted com-
plexes which match at least one real complex and N,
be the number of real complexes that match at least
one predicted complex. Precision and Recall are then
defined as follows: [25-27]

2
Nagpty ~ e 0oL ®
[V, x[Val
Ny =|{p|pe P,3be B,NA(p,b) > }| @)
N =|{b|be B,Ipe P,NA(p,b) > o} ©)
Precision = T]TCT Recall = T;Cll’ ©)
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F-measure, or the harmonic mean of Precision and
Recall, can then be used to evaluate the overall perfor-
mance

F = 2 x Precision x Recall/(Precision+Recall) (7)

Sensitivity, positive predictive value and accuracy
Recently, sensitivity (Sn), positive predictive value (PPV)
and accuracy (Acc) have also been proposed to evaluate
the accuracy of the prediction methods [28,29]. Given n
benchmark complexes and m predicted complexes, let
Tj; denote the number of proteins in common between
iyn benchmark complex and jy, predicted complex. Sn
and PPV are then defined as follows:

- max{T}}
sn=Sit i T ®)
N;
i=1
. max{T}
ppy =2=2=)= t (9)
m
T

Here N;j is the number of proteins in the iy, bench-
mark complex.

n
Tj= Z i=1 Ti

Generally, high Sn values indicate that the prediction
has a good coverage of the proteins in the real com-
plexes, while high PPV values indicate that the predicted
complexes are likely to be true positives. As a summary
metric, the accuracy of a prediction, Acc, can then be
defined as the geometric average of sensitivity and posi-
tive predictive value,

Acc =/ Snx PPV

(10)

(11)

P-values (functional homogeneity)

As we gained more and more biological knowledge
about the proteins, we can associate a protein with (pos-
sibly multiple) functional annotations. The statistical sig-
nificance of the occurrence of a protein cluster
(predicted protein complex) with respect to a given
functional annotation can be computed by the following
hypergeometric distribution in equation (12) [30,31]:
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[E[Y(V]-|F]|
< | i )| [c|-i
P —value =1 -
= V]
C|

Where a predicted complex C contains k proteins in
the functional group F and the whole PPI network con-
tains |V| proteins. The functional homogeneity of a pre-
dicted complex is the smallest p-value over all the
possible functional groups. A predicted complex with a
low functional homogeneity indicates it is enriched by
proteins from the same function group and it is thus
likely to be true protein complex. By setting a common
threshold which specifies the acceptable level of statisti-
cal significance, the numbers of predicted complexes
with functional homogeneity under this threshold for
the various methods can then be used for evaluating
their respective overall performance.

(12)

Results and discussion

The protein interaction database is downloaded from
the Gavin database [31] and BioGrid (version yeast HC-
BIOGRID-2.0.31). The protein-complex dataset
CYC2008 [38] which we used is a comprehensive catalo-
gue of 408 manually curated heterometic protein com-
plexes reliably backed by small-scale experiment
reported. We apply the proposed algorithm OIIP to this
two databases. In the following subsections, we discuss
the effect of the value T;, on clustering, compare the
predicted clusters with the known complexes, evaluate
the significance of the predicted clusters. We will also
compare the algorithm OIIP to eight competing pre-
vious methods for their performance of identifying pro-
tein complexes. Since most proteins in the same
complex have same or correlative function and involve
in the same biological process, we employ biological
annotation information, including Go cellular compo-
nent annotation [39], GO Molecular Function annota-
tion [39] and GO Biological process annotation [39] to
assess the predicted protein-complexes.

The effect of T;, on clustering

To understand how the value of T;, influences the out-
come of the clustering, we generate 9 sets of clusters by
using T;, = 0.1, 0.2,..., 0.9 from the Gavin PPI dataset.
The effect on the predicted clusters with different Tj, is
given in Figure 1.

Figure 1(a) shows that the total number of the pre-
dicted clusters is increasing as T, increases. However,
there is a abrupt decrease at T;, = 0.5. This is probably
caused by the Hub structures in the protein interaction
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decreasing. Thus, the size of the predicted clusters is also decreasing.

Figure 1 The effect of T;, on clustering. The effect on the predicted clusters with different T;, is given in this Figure 1. Figure 1(a) shows that
the total number of the predicted clusters is increasing as T, increases. However, there is an abrupt decrease at T;, = 0.5. Figure 1(b) shows
that the size of the biggest cluster is decreasing as Tj, increases. With the increasing of T;,, the probability of neighbors added to the cluster is

Table 1 The Precision, Recall, F-measure, sensitivity, PPV and Accuracy of the predicted complexes by OIIP using

different parameters

Parameter Precision Recall F-measure sensitivity PPV Accuracy
Tin=0.1 04819 0.335784 0.395787 0.525 0465604 0494491
Tin=02 0498113 0.352941 0413146 0.511979 048535 0498487
Tin=03 0482112 0.365196 0415588 0.501042 0.516012 0.508472
Tin=04 0.559816 0.384804 0456097 0.484896 0.560703 0.521424
Tin=0.5 0.606195 0.335784 0432177 0420312 057216 0490394
Tin=06 0.582645 0.340686 0429963 0409375 0.621008 0.504207
Tin=0.7 0485768 0.343137 0402181 0.386458 0.638547 0496761
Tin=0.8 0458477 0.338235 0.389283 0.360417 0.653266 048523
Tin=09 0466227 0.345588 0.396944 0.340625 0.663043 0475236
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Figure 2 Comparison of the predicted clusters with the known complexes on Gavin PPI dataset. Figure 2 shows the numbers of known
complexes (size>2) matched to the clusters generated by OIIP and by other eight previous known methods: CoreMethod[15], Mcode[9], MCL
[13], RNSC[12], CMC[14], CFinder[11], COACHI10], IPCAI5].
A\

network. When T;, = 0.5, these Hub structures are
decomposed into complexes that consist of only 2 pro-
teins. Figure 1(b) shows that the size of the biggest clus-
ter is decreasing as Ty, increases. With the increasing of
T, the probability of neighbors added to the cluster is
decreasing. Thus, the size of the predicted clusters is
also decreasing.

As shown in Table 1, the Precision of the algorithm
OIIP is about 0.6 when T;,=0.5, which implies that the
clusters generated by OIIP are reliable. The F-measure
is about 0.45 when T;,=0.4, which represents overall
performance of an algorithm. The Accuracy takes into
account of both the sensitivity and PPV, and is deter-
mined by the larger one. In this experiment, the

Accuracy is mostly influenced by the PPV. The PPV of
the clusters generated by OIIP increases with the
increasing of Tj,. Especially, an obvious increase appears
when T;, = 0.5.

Comparison of OIIP and other methods

Since there have been protein complexes that were
experimentally determined, a good protein complexes
detecting algorithm should identify these known com-
plexes as many as possible. Figure 2 shows the numbers
of known complexes (size>2) matched to the clusters
generated by OIIP and by other eight previous known
methods: CoreMethod[37], Mcode[24], MCL[34], RNSC
[33], CMC[36], CFinder[32], COACH][35], IPCA[14].

Table 2 Performance comparison of Identify protein complexes methods on Gavin dataset

Method Precision Recall F-measure Accuracy P-Value
GO_Function GO_Process GO_Component
CoreMethod 0526596 0.279412 0365101 0491702 0579787 0430851 0478723
Mcode 0.733333 0.294118 0419847 0469031 0511111 0.392593 0474074
MCL 0.540373 0.27451 0.364071 0.509139 0.503106 0391304 0459627
RNSC 0400651 0.348039 0372497 0489759 0.332248 0.247557 0.309446
cMC 0.608 0218 03211 0474 0692 055 0633
CFinder 0663 0.191 0.297 0419 0.602 0439 0.551
COACH 0524 0331 0406 049 0.656 0.525 061
IPCA 0.526032 0.338235 0411731 048789 0.719928 0.587074 0.666068
OlIP T=04 0559816 0.384804 0456097 0.521424 0.697853 0.553681 0.636503
OlIP T=0.5 0.606195 0335784 0432177 0490394 0.769912 0.639381 0.710177
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Figure 3 The Precision, Recall and F-value of results predicted from various methods on BioGrid PPl dataset. As show in Figure 3, RNSC
has the highest recall and CMC has the highest precision, while our method OIIP also gets the highest F-measure on BioGrid PPl dataset.
.

Our method predicted more complexes than others on
Gavin PPI dataset. As show in Table 2 OIIP also get the
highest F-measure (T;,=04). Although Mcode has the
highest precision, its recall is very low. The fact is that
the predicted protein complexes are fewer than our
method. Some predicted clusters which are not matched

with criterion complexes are possible actual complexes
which are undiscovered. So it is necessary to predict
more clusters with high F-measure value.

And we count the number of clusters with p-value
less than 0.01, a threshold which represents significant
biological sense and compute the proportion of clusters

Table 3 Some predicted clusters which matched with benchmark complexes

ID Predicted clusters

Benchmark NA p-value
complexes ID in
CYC2008
GO_Component GO_Function GO_Process
1 YBR123C YOR110W YPL0O7C YDR362C YALOO1C YGR047C 402 1 0 3.16E-06 2.59E-05
2 YLR208W YGLO92W YDL116W YJR042W YKLO57C YGL100W 181 1 1.10E-05 2.50E-06 3.81E-06
3 YLR166C YBR102C YPRO55W YILO68C YERO08C YDR166C YGL233W 90 1 2.68E-06 2.06E-04 4.37E-03
YJLOBSW
4 YBR234C YLR370C YJR065C YDLO29W YILO62C YNRO35C YKLO13C 12 1 1.19E-03 4.95E-06 9.54E-07
5 YER157W YGR120C YPR105C YNLO5TW YMLO71C YGL223C 112 1 1.05E-05 6.91E-02 2.50E-06
YNLO41C YGLOO5C
6 YHRO8TW YHR069C YOL021C YGR095C YGR195W YDR280OW 178 0.923077 3.00E-03 0 0
YGR158C YCR035C YDL111C YNL232W YOROOTW YOL142W
YOR076C
7 YGL048C YKL145W YHR027C YHLO30W YLR421C YHR200W 2 0911157 1.09E-05 2.68E-06 4.17E-06
YDR427W YDL147W YFRO52W YDL097C YPR108W YILO75C
YFROO4W
8 YPL210C YDLO92W YML105C YPRO88C YPL243W YDLO51W 248 0.857143 3.46E-06 1.198-07 1.19E-07
YKL122C
9 YOR179C YDR195W YGR156W YER133W YAL043C YKLO59C 341 0.816667 943E-04 0 2.32E-06
YPR107C YLR115W YDR30TW YNL317W YKROO2W YKLO18W
YLR277C
10 YMR223W YGLO66W YBRO81C YGR252W YDR448W YGL112C 227 0.802778 1.39E-04 0 0

YDR145W YMR236W YDR167W YBR198C YOL148C YLRO55C
YPL254W YDR392W YCLO10C YDR176W YHRO99W YMLOO7W
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Table 4 Some predicted complexes which don’t match with benchmark complexes

ID Main proteins P-value

GO_Component GO_Function GO_Process

Complex YOR201C YNL284C YCR046C YBLO38W YDR237W YDR462W YDR296W YDR322W 9.89E-06 2.32E-06 8.94E-07
a YNLOO5C YMR024W

Complex YILO70C YNL137C YHLOO4W YPLO13C YBR251W YDR0O41W YDR0O36C 5.39E-05 8.58E-06 4.95E-06
b

Complex YNLT12W YDR091C YMR309C YPRO41W YBR0O79C YDR429C YOR096W YMLO63W 0 2.03E-06 3.04E-04
C

Complex YDR164C YOR204W YBLO38W YML025C YGR220C YCR046C YNLOO5C YDR296W 9.36E-06 9.18E-06 745E-06
d YDR237W YNL284C YDR322W YDR462W YLR439W

YEROMC
YAR0GC YOROMW
@ A
YMLOEONY YORLONC
YRR TW
(c) (d)-

Figure 4 Some predicted complexes which don’t match with benchmark complexes. Some of predicted clusters from our method are not
matched with complex from criterion dataset. But we find that they have highly biologically significant and have high local density, so some of
them may be real complexes which are still undiscovered. We also give some examples in Figure 4. Their p-value of biological annotation shows
that some of them may be the candidate protein complexes. The results are useful for biologists to find the new protein complexes.




Xu et al. Proteome Science 2011, 9(Suppl 1):S7
http://www.proteomesci.com/content/9/51/S7

which achieve low p-value. The proportion of clusters
from various methods with low p-value is shown in
Table 2. Table 2 also shows that the clusters predicted
by our method have achieved highest biological signifi-
cance than predicted clusters from others on all the
three biological annotation datasets when T is set to 0.5.
Compare to the IPCA, we have better performance in
all evaluation measurements. So the ontology interaction
to the PPI network is valuable to predict protein
complexes.

As show in Figure 3, RNSC has the highest recall and
CMC has the highest precision, while our method OIIP
also gets the highest F-measure on BioGrid PPI dataset.

Examples of predicted complexes

From the results of the experiment above we know that
most of our predicted clusters have highly biological
meanings. We give some examples of predicted clusters
with detailed information which are matched with the
benchmark complexes in Table 3. We also list the best
matched benchmark complexes, NA and the p-value of
three protein annotation.

Some of predicted clusters from our method are not
matched with complex from criterion dataset. But we
find that they have highly biologically significant and
have high local density, so some of them may be real
complexes which are still undiscovered. We also give
some examples in Table 4 and Figure 4. Their p-value
of biological annotation shows that some of them may
be the candidate protein complexes. The results are use-
ful for biologists to find the new protein complexes.

Conclusions

It is believed that identification of protein complexes is
useful to explain certain biological progress and to pre-
dict functions of proteins. In this paper, we developed
an algorithm OIIP to identify protein complexes based
on the new large weighted protein interaction networks.
Experimentally generated protein-protein interaction
data includes an enormous amount of false positives. So
we introduced a semantic similarity method to measure
the reliability of interactions. For this measurement, we
use the annotations in Gene Ontology (GO), which pro-
vides the comprehensive functional information. When
we implemented the OIIP algorithm with weighted net-
works, the overall F-measure and accuracy of complexes
is substantially improved. This result strongly appeals
the necessity of integrating of functional information for
the analysis of protein-protein interaction data.

The fact that biological properties are poor at the
identification reveals that the higher-level structures (e.
g., secondary and tertiary structure) of proteins cannot
be accurately represented by the primary structure
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under the current coding techniques. The experimen-
tally determined protein interaction network has not
been used in the research, and a possible future research
could combine the experimentally determined protein
interactions with the GO estimated interactions to
further improve the identification.
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