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differentially accumulated proteins
associated with male and female A.
chinensis var. chinensis bud development
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Abstract

Background: Kiwifruit (Actinidia chinensis var. Chinensis) is abundant with vitamin C and is a rapidly developing
crop in China, New Zealand, and other countries. It has been widely used as a raw material for food and kiwifruit
wine. Among these, A. chinensis var. chinensis and A. chinensis var. deliciosa are the most valuable kiwifruit in
production. Kiwifruit is a typical dioecious plant and its female and male plants have different economic values.
Therefore, sex identification, especially at the seedling stage, has important implications for the scientific planning
of its production and economic benefits. However, the kiwifruit sex regulation mechanism is very complex and
molecular studies are in the initial stages. Currently, there is not a universal and effective sex identification method
for A. chinensis.

Methods: In this study, we used a label-free quantitative proteomics approach to investigate differentially
accumulated proteins, including their presence/absence and significantly different levels of abundances during A.
chinensis var. chinensis male and female flower bud development.

Results: A total of 6485 proteins were identified, among which, 203 were identified in male buds, which were
mainly associated with phenylalanine metabolism, tyrosine metabolism, and plant hormone signal transduction. In
female buds, 241 were identified, which were mainly associated with the ErbB signaling pathway, growth hormone
synthesis, secretion and action, and mRNA surveillance pathway. A total of 373 proteins were significantly
differentially accumulated proteins (fold change > 2; P < 0.05), of which, 168 were upregulated and 205 were
downregulated. Significant differences between proteins involved 13 signaling pathways, most of which were
involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Protein
interaction analysis showed that enriched protein nodes included cell division cycle 5-like protein, 40S ribosomal
protein S8, ribosomal protein, and 40S ribosomal protein like, which interact with 35, 25, 22, and 22 proteins,
respectively.
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Conclusions: This study provide valuable information for cloning key genes that control sex traits and functionally
analyze their roles, which lay a foundation to the development of molecular markers for male and female kiwifruit
identification.
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Introduction
Actinidia chinensis var. chinensis and A. chinensis var.
deliciosa are the most valuable kiwifruit in production.
As a typical dioecious plant, research has shown that
using male plants as rootstocks has strong grafting ad-
vantages, but most rootstocks currently used in produc-
tion consist of 1–2-year-old seedlings. Because there is
not a good method for distinguishing male and female
plants at the seedling stage, there are both female and
male plants being used as rootstocks. Thus, there is in-
consistent growth of fruit trees, which complicates the
later stages of management and leads to inconsistent ki-
wifruit quality. Additionally, the relatively long juvenile
kiwifruit phase lengthens its breeding time. Therefore, it
is important to identify the gender of kiwifruit at the
seedling stage. Since the 1980s, researchers have studied
genetic markers between male and female plants, includ-
ing morphological markers, flavonoid content [1], sol-
uble sugar content [2], chlorophyll content [3], and
protective enzyme activity [4]. However, these genetic
markers are unstable due to their sensitivity to the envir-
onment and have not been used effectively in practical
applications. Thus, the goal of this study was to resolve
the sex-determining mechanism of kiwifruit, which lay a
foundation to develop molecular markers to identify
gender at the seedling stage.
The sex determination mechanism of dioecious plants

is very complex. Sex chromosomes, sex genes, and tran-
scription factors are the key genetic factors that affect
the development of male and female individuals and sex
organs. Sex determination and sex differentiation are
two processes of male and female plant development,
but the differentiation process and regulation mechan-
ism remain unclear. Thus far, only a few reports exist on
kiwifruit sex development. In A. chinensis var. chinensis,
the literature suggests that chromosome 25 may be the
sex-chromosome [5] and a male related gene, friendly
boy (Frby), has been identified [6]. Frby was cloned and
the sequence was mapped to chromosome 8 in female
A. chinensis var. Chinensis [7], indicating that the hom-
ologous sequences on the X chromosome that corres-
pond with Frby vary considerably. Clearly, the sex
differentiation mechanism in kiwifruit is very complex
and requires further investigation.
Recently, the sex development mechanism has been

studied in dioecious and monoecious plants via

proteomics technology on the differential expression of
genes/proteins, and provide a theoretical basis for the
mechanism of flower bud development in different sexed
plants. Sex-related differential proteins of Pistacia chi-
nensis were identified using the proteomic method and
it was speculated that phosphoglycerate kinase and
temperature-induced lipid delivery proteins may be mo-
lecular markers related to gender differences in Pistacia
chinensis [8]. Moreover, in the dioecious and monoe-
cious plants of Pistacia chinensis, differentially expressed
proteins were detectable during antioxidant stress, ribo-
some activity, and photosynthesis [9]. According to re-
search on differentially expressed genes in male and
female flower buds of Ginkgo biloba (Xiaowen), it was
speculated that some female flower buds are located in
the female specific region of the W chromosome and
homologous gene sequences are present on the Z
chromosome [10].
Until now, kiwifruit sex differentiation has rarely been

studied. In order to explore the sex differentiation mech-
anism of A. chinensis var. chinensis, this study employed
the labor-free quantitative proteomics method to com-
pare and analyze related differential proteins between
male and female flower buds of A. chinensis var. chinen-
sis for the first time. The purpose of this study was to
provide valuable information for cloning key genes that
control sex traits and functionally analyze their roles, as
well as lay a foundation to develop molecular markers to
identify gender at the seedling stage.

Materials
Proteins extraction and peptide digestions
The male and female flower buds (about 2 cm in diam-
eter) were collected from the kiwifruit experimental farm
during the 2019 growing season in Ankang Municipaty
Agricultural Sciences Research Institute, China, (E:
108°47′47″, N:32°43′56″) on April 25th, with three bio-
logical replicates for each sample, and sample was
ground individually in liquid nitrogen.
For cell lysis, cell pellets were suspended on ice in

200 μL SDT (4%SDS, 100 mM Tris-HCl, 1 mM DTT,
pH 7.6) lysis buffer. The supernatant were collected and
quantified with a BCA Protein Assay Kit (Bio-Rad,
USA).
Digestion of protein was performed according to the

FASP (filter-aided sample preparation) procedure
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described by Wisniewski J.R [11].. The peptide of each
sample was desalted on C18 Cartridges (Empore™ SPE
Cartridges C18 (standard density), bed I.D. 7 mm, vol-
ume 3ml, Sigma), then concentrated by vacuum centri-
fugation and reconstituted in 40 μl of 0.1% (v/v) formic
acid. The peptide content was estimated by UV light
spectral density at 280 nm.

Liquid chromatography (LC) - electrospray ionization (ESI)
tandem MS (MS/MS) data acquisition
Each sample was separated by HPLC with an Easy-nLC
system (Thermo Fisher Scientific), which was coupled to
a Q-Exactive Mass Spectrometer (Thermo Scientific).
The samples was loaded onto the column (Thermo Sci-
entific Acclaim PepMap100, 100 μm*2 cm, nanoViper
C18) in buffer A (0.1% (v/v) formic acid), and separated
by analytical column (Thermo Scientific EASY column,
10 cm long, 75 μm inner diameter, 3 μm resin, C18-A2)
with a linear gradient of buffer B (84% (v/v) acetonitrile
and 0.1%(v/v) formic acid)at a flow rate of 300 nl/min,
the column was re-equilibrated with 95% buffer A.
MS data was acquired using a data-dependent top10

method dynamically choosing the most abundant pre-
cursor ions from the survey scan (300–1800m/z). Deter-
mination of the target value is based on predictive
Automatic Gain Control (pAGC). Target value for the
full scan MS spectra was 3 × 106 charges in the 300–
1800 m/z range with a maximum IT(injection time) of
50 ms and a resolution of 70,000 at m/z 200, dynamic
exclusion duration was 60s. The mass charge ratio of
polypeptide and polypeptide fragment was determined
according to the following method set: 20 fragments
(MS2 scan) were collected after each full scan, and the
MS2 activation type was HCD, isolation window was 2
m /z, the resolution of secondary mass spectrometry was
17,500 at 200 m / z, the Normalized Collision Energy
was 30 eV and the underfill ratio, which specifies the
minimum percentage of the target value likely to be
reached at maximum fill time, was defined as 0.1%.

Protein identification and quantification analysis
Raw files were processed with MaxQuant (v 1.5.3.17)
using the standard settings against a Actinidia chinensis
protein database (uniprot_Actinidia_chinensis_
33232.fasta, 76,417 total entries, downloaded 2014/12/12).
An initial search was set at a precursor mass window of 6
ppm. The search followed an enzymatic cleavage rule of
Trypsin/P and allowed maximal two missed cleavage sites
and a mass tolerance of 20 ppm for fragment ions. The
cutoff of global false discovery rate (FDR) was set to 1%
for protein and peptide identifications. Protein aboun-
dance was calculated on the basis of the normalized spec-
tral protein intensity (LFQ intensity) [12].The
differentially accumulated proteins, including proteins of

presence or absence abundant (with two or more null
values in one group samples), and proteins were defined
as regulated with at least 2 fold changes and a p-value
≤0.05 between male flower buds and female flower buds.

Identification of differentially expressed proteins
The differentially expressed proteins, including proteins of
presence or absence expressed (with two or more null
values in one group samples), and significant differentially
expressed proteins (up-regulated more than 2 fold or
down regulated less than 0.5 and p-value< 0.05) were
screened by UniProt database (https://www.uniprot.org/).
The differentially expressed proteins were analyzed;
follow-up bioinformatics.

Bioinformatic analysis
Gene ontology (GO) term
Bast2Go (HTTPS:0/www.blast2go.com/) software was
employed to annotate the GO term of all the proteins
identified in this study. The process of GO annotation
includes Blast, Mapping, Annotation, and Annotation
Augmentation was conducted in InterProScan (https://
www.ebi.ac.uk/interpro/search/sequence/).

Kyoto encyclopedia of genes and genomes (KEGG) pathway
KAAS (KEGG automatic annotation server) was
employed to annotate the KEGG pathway.

GO and KEGG pathway enrichment analysis
The enrichment analysis of GO term or KEGG pathway
was performed by Fisher’s exact test.

Protein clustering analysis
Hierarchical clustering method was used to cluster the
differentially accumulated proteins in the male and fe-
male flower buds, and the results were displayed in the
heat map.

Protein-protein interactions (PPIs) analysis
To investigate how these significantly differentially accu-
mulated proteins (A total of 373 proteins) are function-
ally associated with each other, PPI analysis was
conducted by using the String (https://string-db.org/),
the corresponding results from the String database were
downloaded in STV format, then visualized and edit by
Cytoscape software (http://www.cytoscape.org/, v3.7.1),
as well as further analyze the degree of each targeted
protein within the PPI network, which estimate its cor-
responding significance.

Results
Protein identification
A total of 6485 proteins were identified. Among these,
404 proteins were found in female plants, 384 in male

Zhang et al. Proteome Science            (2021) 19:8 Page 3 of 12

https://www.uniprot.org/
http://www.blast2go.com/
https://www.ebi.ac.uk/interpro/search/sequence/
https://www.ebi.ac.uk/interpro/search/sequence/
https://string-db.org/
http://www.cytoscape.org/


plants, and 5526 identical proteins were found both
males and females (Fig. 1c).

Differential accumulated proteins screening
The number of differentially accumulated proteins in
each comparisons are shown in Table 1. Consistent
presence/absence abundant profile means the differential
proteins with two or more non null values in one group
of samples and null values in the other group. Signifi-
cantly changing in abundance means fold change be-
tween the two groups of samples and p-value obtained
by T test, were used to draw the volcano map (Fig. 1d).

Cluster analysis of differentially accumulated proteins
Using the hierarchical cluster to cluster the differentially ac-
cumulated proteins in the comparison group, the genes
usually classified as one group have practical relationship in
some biological processes, or in some metabolism and sig-
nal pathway. In this study, proteins with similar accumu-
lated patterns were clustered together and displayed in the

form of heat map by differentially accumulated proteins
(Fig. 2). It were identified 373 proteins that were signifi-
cantly differentially accumulated between male and female
buds. These differentially accumulated proteins were
mainly divided into two clusters, of the 205 proteins which
were up-regulated in female and down-regulated in male,
168 which were up-regulated in male and down-regulated
in female. It can be seen that there is a significant difference
in protein expression between male and female flower buds
of A. chinensis, indicating that different proteins have differ-
ent functions and ways of action between the development
and differentiation of male and female flower buds.

GO enrichment analysis of differentially accumulated
proteins
GO functional enrichment analysis showed that 1257
terms were annotated including 710 terms in the bio-
logical process (BP), 365 terms in the molecular function
(MF) and 185 terms in the cellular component (CC).

Fig. 1 Differentially accumulated proteins (DAPs) analysis: a Venn diagram of protein identified in female group. b Venn diagram of protein
identified in male group. c Venn diagram of DAPs in multiple pairwise comparison. d The volcano map of DAPs analyzed in male vs female. Note:
In the Fig. 1d, the red dot is the protein with significant differentially accumulated proteins, and the black dot is the protein without
difference change
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GO enrichment analysis of proteins of presence or
absence
The top 20 functional enrichment proteins were ana-
lyzed (Fig. 3). For biological processes, mitochondrial fis-
sion is a representative GO term, followed by organelle
fission. Among the molecular functions, the nutrient res-
ervoir activity is highly representative. For cell compo-
nents, nuclear part, histone methyltransferase complex,
set1c/Compass complex are highly representative.

GO enrichment analysis of significant differentially
accumulated proteins
For biological processes, carbohydrate metabolic process
is a representative GO term, followed by lipid
localization and lipid transport. Among the molecular
functions, the proteins with redox activity and catalytic
activity were highly representative. For cell components,
protein DNA complex and DNA packaging complex
(DNA packaging) were highly representative. Complex
and nucleosome were also highly representative (Fig. 4).

KEGG enrichment analysis of differentially accumulated
proteins
KEGG enrichment analysis of proteins of presence or
absence
KEGG enrichment pathway of proteins only in fe-
male buds or in male buds was showed in Fig. 5,
among which ErbB signaling pathway, growth hor-
mone synthesis, secretion and action, mRNA surveil-
lance pathway are occured mainly in female plants
(Fig. 5a), and phenylalanine metabolism, tyrosine
metabolism and plant hormone signal transduction
are occured mainly in male plants (Fig. 5b). Phenyl-
alanine metabolism is one of the most important
pathways of plant secondary metabolism [13], which
includes mainly two metabolic pathways, namely
phenylpropanoid pathway and flavonoid biosynthesis
pathway [14–16].
KEGG enrichment pathway of all proteins that contain

expressed only in female and in male buds was showed
in Fig. 6, five metabolic pathways have been found by
analyzing whether there are differential proteins
enriched in KEGG pathway, in order of P-value from
small to large, including ErbB signaling pathway, plant
hormone signal transduction and so on.
Among all pathways, the plant hormone signal trans-

duction was the most important, in which, five proteins
were identified, including jasmonic acid-amido

synthetase and auxin transporter-like protein, which
were expressed only in male buds, and three proteins
that were expressed only in female buds (Table 2). jas-
monic acid-amido synthetase is an enzyme in the jasmo-
nates metabolism pathway [17]. Jasmonate is an
important class of lipid-derived plant hormone that reg-
ulates multiple aspects of plant growth and develop-
ment, as well as plays key roles in stamen development
[18–23]. jasmonic acid-amido synthetase (Jar1) is a regu-
latory gene that regulates the metabolism of jasmonic
acid (JA) to jasmonic acid-isoleucine conjugate (Ja-ile).
Wang Jing et al. [24] showed that the reproductive activ-
ities of the root knot nematode in a JA deletion mutant
and JA-ile deletion mutant (aos1, opr3, Jar1) were sig-
nificantly lower than the wild type. Exogenous Ja-ile re-
stored the reproductive capacity of root knot nematodes
in Jar1 roots to the same level as wild type roots. Dai
Liangying et al. [15] analyzed Jasmonate functioning and
its biosynthesis and metabolic pathway, and found that
some jasmine are involved in growth and pollen devel-
opment, while some are resistant to insects, disease, and
stress through the participation of Jar1. It was also
proved that auxin regulates stamen development [25]
and there were no stamen or abnormal anther morph-
ology as the germination rate of anthers decreased in an
auxin transporter protein mutant [26]. Once the auxin
transporter is destroyed, it affects stamen development,
which thereby affects pollination and fertilization, result-
ing in reduced fruit yield and quality.

KEGG enrichment analysis of significant differentially
accumulated proteins
In the KEGG pathway (Fig. 7), the first three pathways
were flavonoid biosynthesis, arginine biosynthesis, and
starch and sucrose metabolism. Flavonoid serves many
functions, among which, it can attract pollination and
regulate seed germination through flower and fruit pig-
mentation. Previous studies showed that a Petunia
hybrida mutant exhibited pollen sterility, while wild-type
stigma possess a certain substance that restores pollen
fertility. The analysis found that this substance is a fla-
vonoid compound that can promote pollen tube growth
and pollen function [27]. Arginine serves a variety of
functions that promotes cell division, seed germination,
flower bud differentiation, root growth, and develop-
ment. In flower bud differentiation, arginine synthesizes
polyamine to promote bud and pollen germination and
increases the fruit setting rate [28]. During arginine

Table 1 Data statistics of protein quantitative test

Comparisons Consistent presence/absence abundant profile Significantly changing in abundance

Increased Decreased Increased Decreased

Male vs Female 203 241 168 205
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metabolism, putrescine is synthesized first, then poly-
amine is synthesized.

Network analysis of protein-protein interaction (PPI)
Protein-protein interactions (PPIs) engage in dynamic
biological processes and play important roles in these di-
verse processes, and are essential for understanding life
at the system-level. Results revealed 243 nodes (proteins)
and 542 edges (interactions), indicating a highly pro-
found network of sex differentiation of A. chinensis var.
chinensis buds (Fig. 8). Aoa2r6pkf6, a cell division cycle
5-like protein (Cdc5L), was a node protein that inter-
acted with 35 proteins (yellow); the proteins that inter-
acted with Cdc5L were mainly related to ribosome
formation. The expression level of Cdc5L in female buds
was 2.22-fold higher than male buds. A previous study
found that Cdc5L is a regulator of mitotic progression as
a pre-mRNA splicing factor. The deletion of endogenous
Cdc5L decreases cell viability via dramatic mitotic arrest
[29], which has not been reported in plants, but has been
widely studied in animals, especially in the proliferation
of cancer cells [30]. Cdc5L is also essential for porcine
oocyte maturation [31]. Cdc5L could be a potential mo-
lecular marker in neuroblastoma [32] and may play an
important role in mitosis and cell activity during female
flower bud formation.

Discussion
In production, dioecious plants are utilized differently
based on sex. The reproductive function of female plants
is higher than male plants, but the growth potential of
female plants is lower than male plants [33]. The differ-
ent evolutionary directions of male and female plants de-
termine their growth patterns [34], and plants exhibit
different stress responses to environmental stress based
on sex [35]. Studies on kiwifruit production using male
plants as rootstocks showed that they have a strong ad-
vantage. Significant differences were detected mainly be-
tween molecular functional proteins, of which, most
were involved in catalytic activities. In the KEGG enrich-
ment analysis, the plant hormone signaling pathway was
mainly involved in the male and female plants compari-
son, which indicated that the signaling pathways of male
and female flower bud development and differentiation
were different, while the pathway of significantly differ-
ent proteins mainly concentrated on flavor biosynthesis,
phylopanoid biosynthesis, and sucrose metabolism.
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Fig. 6 The KEGG pathway enrichment of identified proteins on presence/absence in male vs female buds

Fig. 5 The top 20 KEGG pathway enrichment of differentially accumulated proteins in male vs female buds; a. Proteins accumulated only in
female buds. b. Proteins accumulated only in male buds
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Studies on the content differences of key substances in
the significant pathways between male and female plants
and sex changes induced by these key substances in ki-
wifruit have been reported. Among them, the effects of
hormones and polyamines on sex differentiation in
horticultural plants are more frequently reported [36].
Zheng Hanyu et al. [1] reported that the flavonoid con-
tent in female kiwifruit leaves was higher than male
leaves. Xu Linyue et al. [37] found that the content of
putrescine and spermidine in male leaves was signifi-
cantly higher than female leaves, and the spermine con-
tent in female leaves was significantly higher than male
leaves. Studies have also shown that exogenous putres-
cine and spermidine increase the number of plant flower
buds [28]. Hale et al. [38] used genotyping-by-
sequencing (GBS) technology to locate a sex-linked
marker, ac36306, in the natural population of Chinese
gooseberry in the United States. After analysis, it was
found that the marker was closely linked to arginine de-
carboxylase, a key enzyme in the polyamine biosynthesis

pathway from arginine to putrescine. Zhu Daye et al. [2]
found that the soluble sugar content in male leaves was
significantly higher than female leaves. Understanding
which genes and metabolic pathways are involved in the
sex developmental process of Chinese kiwifruit is im-
portant for developing androgynous markers suitable for
different natural populations of kiwifruit varieties.
DNA molecular markers have also been reported for

kiwifruit [5, 38–40]. Accordingly, we identified male and
female plants in natural populations of A. chinensis var.
chinensis and A. chinensis var. deliciosa at the seedling
stage, however, none of the aforementioned DNA
markers were 100% accurate. This may be due to the
fact that most of the mapping populations are specific
populations (most were F2) and the DNA markers are
only suitable for specific materials. Therefore, it may be
that these DNA markers do not co-segregate with sex-
determining genes during meiosis; the exchange between
markers and sex-determining genes will occur, which
will lead to false positives or negatives.

Table 2 Enriched pathway information of plant hormone signal transduction

Protein ID Gene name Protein description Chromosome Gender

A0A2R6Q7S6 CEY00_Acc19795 Jasmonic acid-amido synthetase LG18 Male

A0A2R6R6W9 CEY00_Acc10793 Auxin transporter-like protein LG9 Male

A0A2R6PMH5 CEY00_Acc28148 Abscisic acid receptor like LG24 Female

A0A2R6PZF3 CEY00_Acc23499 Serine/threonine-protein kinase LG21 Female

A0A2R6RBH6 CEY00_Acc09459 Histidine-containing phosphotransfer protein LG18 Female

Fig. 7 The KEGG pathway enrichment of significantly differential accumulated proteins in male vs female buds
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By combining the protein interaction network analysis
and pathway annotation results, we obtained a more
comprehensive and systematic view of male and female
development at the molecular level, which will aid fur-
ther research and mining for molecular mechanisms.
The protein interaction network analysis showed that
most proteins interacted with Cdc5L, which promotes
cell activities. According to the GO annotations, the mo-
lecular function of the protein family is DNA binding
and the biological process is cellular response to

fibroblast growth factor stimulus (FGF). The genes in-
volved in microspore development and pollen formation
in Arabidopsis are cellulose loss deposition [41]. Cdc5L
stimulates fibroblast growth and may participate in
pollen formation. Through the GO, KEGG, and PPI ana-
lyses, the differences between male and female plants ul-
timately resulted in sex differentiation.
The sex determination mechanism of dioecious plants

is very complex. Sex chromosomes, sex genes, and tran-
scription factors are the key genetic factors that affect
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Fig. 8 PPI networks of proteins from differentially identified proteins in the bud
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the development of male and female individuals or or-
gans. Sex determination and sex differentiation are two
processes of male and female plant development. Plant
sex can be determined only at the reproductive growth
stage. However, the differentiation process and regula-
tion mechanism remain unclear, and research on kiwi-
fruit sex development is limited. DNA molecular
markers, which are used to distinguish male and female
A. chinensis var. chinensis, were all located at different
positions on chromosome 25 [5]. Further analysis indi-
cated that most genes on chromosome 25 are associated
with the metabolic pathways of plant hormone signal
transduction. Thus, it was inferred that chromosome 25
may play a key role as a sex chromosome in A. chinensis
var. chinensis sex development and differentiation. Add-
itionally, among the differentially accumulated proteins
that were identified, we found that the number of stress
resistance proteins in male plants was greater than in fe-
male plants, indicating that male plants are more stress
resistant. This finding was consistent with the results of
previous studies, which found that male plants were
more salt and drought tolerant than female plants [42].
Our findings are also consistent with practical applica-
tions, wherein male plants used as rootstocks possess
higher growth dominance in production.

Conclusion
Taken together, This study employed the labor-free
quantitative proteomics method to compare and analyze
related differentially accumulated proteins between male
and female flower buds of A. chinensis var. chinensis for
the first time, which provide valuable information for
cloning key genes that control sex traits and functionally
analyze their roles, and lay a foundation to the develop-
ment of molecular markers for male and female kiwifruit
identification. Combined with genome-wide association
study (not published), in the future, we will focus on sev-
eral candidate genes/proteins that occured in KEGG en-
richment analysis, such as jasmonic acid-amido
synthetase, auxin transporter-like protein and so on.
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