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Abstract 

Chronic hepatitis B is a significant public health problem and complex pathologic process, and unraveling the under-
lying mechanisms and pathophysiology is of great significance. Data independent acquisition mass spectrometry 
(DIA-MS) is a label-free quantitative proteomics method that has been successfully applied to the study of a wide 
range of diseases. The aim of this study was to apply DIA-MS for proteomic analysis of patients with chronic hepati-
tis B. We performed comprehensive proteomics analysis of protein expression in serum samples from HBV patients 
and healthy controls by using DIA-MS. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, and protein network analysis were performed on differentially expressed proteins and were further 
combined with literature analysis. We successfully identified a total of 3786 serum proteins with a high quantita-
tive performance from serum samples in this study. We identified 310 differentially expressed proteins (DEPs) (fold 
change > 1.5 and P value < 0.05 as the criteria for a significant difference) between HBV and healthy samples. A total of 
242 upregulated proteins and 68 downregulated proteins were among the DEPs. Some protein expression levels were 
significantly elevated or decreased in patients with chronic hepatitis B, indicating a relation to chronic liver disease, 
which should be further investigated.
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Background
According to the latest WHO estimates, more than 257 
million people experience chronic hepatitis B virus 
(HBV) infection worldwide [1]. HBV infection results 
in approximately 887,000 deaths every year [1]. Chronic 
hepatitis B(CHB) is usually characterized by the presence 

of detectable hepatitis B surface antigen (HBsAg) last-
ing for longer than 6 months, including HBeAg-positive 
CHB and HBeAg-negative CHB [2]. Only 10.5% of peo-
ple with CHB infection are diagnosed, and 17% of them 
are on treatment [3]. The annual incidence of cirrhosis 
inpatients with CHB without antiviral therapy is 2–10%, 
and hepatocellular carcinoma in patients with cirrhosis 
is 3–10% [4–8]. HBV infection can cause both acute and 
chronic disease, including fulminant liver failure, acute-
on-chronic liver failure, cirrhosis, and even hepatocel-
lular carcinoma. Therefore, CHB is the leading cause of 
cirrhosis and the most important cause of hepatocellular 
carcinoma worldwide [9].

The pathological mechanism of CHB is very complex, 
and when HBV is chronically infected, many aspects 
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of CD8 + T cells are depleted [10, 11], such as their 
decreased cell proliferation capacity, and significantly 
reduced ability to secrete IFN-γ, IL-2, TNFα, granzyme, 
and perforin. Soluble programmed death ligand 1 (sPD-
L1) regulates T-cell depletion [12], and PD-1/PD-L levels 
[13] are associated with inflammatory responses to CHB, 
indicating that immunomodulation plays an important 
role in the pathogenesis of CHB. Similarly, studies have 
shown that IL-1β [14] is associated with the degree of 
inflammation in the liver in patients with CHB. However, 
the pathogenesis of CHB has not been fully elucidated.

Blood is considered a very important source of disease-
related biomarkers [15], and the supernatant remaining 
after isolating blood cells and fibrin is an ideal sample 
for bioanalysis, as it retains a wealth of biological infor-
mation, and serum proteomics is essential for disease 
biomarker discovery research [16, 17]. Circulating prot-
eomic panels can be used for diagnosis and risk stratifi-
cation of acute-on-chronic liver failure in patients with 
viral hepatitis B [18]. Data-independent acquisition mass 
spectrometry (DIA-MS) is a label-free quantitative pro-
teomics method that enables deep proteome coverage 
and precise relative quantification in a single liquid chro-
matography [19]. DIA-MS analysis has been successfully 
applied to the study of a wide range of diseases, includ-
ing pancreatic cancer [20], Parkinson’s disease [21] and 
aortic stenosis [22]. In this study, serum proteins from 
CHB patients and healthy controls were quantitatively 
analyzed by DIA-MS technology, and Gene Ontology 
(GO) terms, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, and protein network analysis were 
performed on differentially expressed proteins, and fur-
ther combined with literature analysis.

Materials and methods
Clinical sample collection
According to the diagnostic criteria of CHB [23] and the 
exclusion criteria (other types of viral hepatitis, autoim-
mune liver diseases, alcoholic liver disease, drug-induced 
hepatitis, malignant tumors, other organ failure and 
psychiatric diseases), ten clinical samples were collected 
from the Department of Infectious Disease at the Affili-
ated Hospital of Southwest Medical University (Luzhou, 
China) in this study. Briefly, 5 patients with chronic 
hepatitis B (CHB, n = 5) and 5 healthy volunteers ( nor-
mal controls, NC, n = 5) were enrolled, and clinical data, 
including the patient’s medical history, physical exami-
nation and biochemical examination, were obtained. 
Serum samples of peripheral blood (5 ml) were collected 
from patients with CHB before they received treatment 
and from healthy controls, centrifuged at 4000 × g  for 
10  min and stored at − 80  °C until further proteomic 
analysis. The Ethics Committee of the Affiliated Hospital 

of Southwest Medical University approved the study 
(KY2021014). This trial was registered at the Chinese 
Clinical Trial Registry (www. chictr. org. cn) (trial registra-
tion number ChiCTR2100042896). All patients were over 
18 years old and signed the corresponding informed con-
sent form. This study was carried out in accordance with 
all the guidelines and principles stated in the Declaration 
of Helsinki.

Protein extraction, protein enrichment, and protein 
enrichment quality control
SDS-free lysate was added to 100 μL of serum sam-
ples and finally made up to a total volume of 1 ml.Then, 
the proteins were reduced and alkylated to disrupt the 
disulfide bonds as follows: a) DTT was added to sam-
ples at a final concentration of 10 mM, and the samples 
were incubates at 37 °C for 30 min. b) Iodoacetamide was 
added to the samples at a final concentration of 55 mM 
and incubated in the dark at room temperature for 
30  min. c) The mixture of proteins was passed through 
a solid phase extraction (SPE) C18 column for protein 
enrichment.

The the treated protein solution was enriched by C18 
column SPE (activating, conditioning, loading, washing, 
eluting, drying). The drained proteins were redissolved 
in a solution of 20 μL of 50 mM ammonium bicarbonate 
according to the instructions of the Pierce Quantitative 
Fluorometric Peptide Assay. An appropriate amount of 
protein solution was added to each sample, which was 
then mixed with an appropriate amount of sample buffer, 
heated at 95  °C for 5 min, and centrifuged at 25,000 × g 
for 5  min, The supernatant was loaded into a 12% SDS 
polyacrylamide gel, subjected to 80 V constant pressure 
electrophoresis for 30 min, and then subjected to 120 V 
constant pressure electrophoresis for 120 min. After elec-
trophoresis, the gel was stained and destained by a pro-
tein staining instrument for 10 min and the images were 
scanned.

Peptide fractionation(high pH reversed‑phase separation)
The LC-20AB HPLC system (Shimadzu, Japan) coupled 
to a high pH C18 column (Gemini, 5 μm, 4.6 × 250 mm) 
was used. An equal amount of peptides from each sam-
ple was taken to pool a mixture, and 20 μg of mixture 
was diluted with 2 mL of mobile phase A (5% ACN, pH 
9.8). The sample was placed on the column and then 
eluted through a gradient at a flow rate of 1  mL/min. 
The protocol was as follows: 5% mobile phase B (95% 
ACN, pH 9.8) for 10  min, 5% to 35% mobile phase B 
for 40 min, 35% to 95% mobile phase B for 1 min, flow 
phase B for 3 min, and 5% mobile phase B for 10 min. 
The elution peak was monitored at a wavelength of 
214 nm, and one component was collected per minute, 
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the samples were combined according to the chroma-
tographic elution peak map to obtain 10 fractions and 
were freeze-dried.

Mass spectrometry‑based proteomics analysis
The drained peptide samples were reconstituted with 
mobile phase A (2% ACN, 0.1% FA) and centrifuged at 
20,000 × g for 10 min, and the supernatant was taken for 
injection. Separation was carried out by an UltiMate 3000 
UHPLC liquid chromatograph (Thermo Fisher Scientific, 
San Jose, CA). The sample was first enriched in the trap 
column and desalted and then entered a tandem self-
packed C18 column (150 µm inner diameter, 1.8 µm col-
umn particle size, approximately 35  cm column length) 
and separated at a flow rate of 500 nL/min through the 
following effective gradient: 0–5  min, 5% mobile phase 
B (98% ACN, 0.1% FA); 5–90  min, mobile phase B rose 
linearly from 5 to 25%; 90–105  min, mobile phase B 
increased from 25 to 35%; 105–110  min, mobile phase 
B increased from 35 to 80%; 110–115  min, 80% mobile 
phase B; 115–120 min, 5% mobile phase B. The nanoliter 
liquid phase separation end was directly connected to the 
mass spectrometer with the following settings.

The liquid-separated peptides were ionized by nanoESI 
and entered the tandem mass spectrometer Q-Exactive 
HFX (Thermo Fisher Scientific, San Jose, CA) for data-
dependent acquisition (DDA) detection mode.. The DDA 
parameter settings were as follows: ion source voltage 
1.9  kV; MS scan range 350–1,500  m/z; MS resolution 
120,000; maximum ion implantation time (MIT) 50 ms; 
secondary MS/MS collision type HCD (HCD-MS/MS); 
collision NCE 28; MS resolution 30,000; MIT 100  ms; 
and the dynamic exclusion time 30 s. The starting m/z for 
MS/MS was fixed at 100. Precursors for MS scan satisfied 
the following criteria: charge 2 + to 6 + , and among the 
top 20 precursors an intensity over 2E4. The AGC was 
MS 3E6, and MS/MS 1E5.

The liquid-separated peptides were ionized by 
nanoESI and injected into the tandem mass spectrom-
eter Q-Exactive HFX (Thermo Fisher Scientific, San Jose, 
CA) for in data-independent acquisition (DIA) detec-
tion mode. The main parameter settings were as follows: 
ion source voltage 1.9 ~ 2 kV; first-stage MS (mass spec-
trometry) scanning range 400 ~ 1250 m/z; MS resolution 
120,000; maximum ion implantation time (MIT) 50 ms; 
the 400–1250 m/z range was equally divided into 45 con-
tinuous window fragments, and the signal was acquired. 
The ion fragmentation mode was HCD, the MIT was 
selected as automatic mode, the fragment ions were 
detected in Orbitrap, the resolution was 30,000, and the 
fragmentation energy was distributed fragmentation: 
22.5, 25, and 27.5; AGC was 1E6.

Mass spectrometry analysis
This study was executed using MaxQuant (http:// www. 
maxqu ant. org) [24] for identification of DDA data and 
served as a spectrum library for subsequent DIA analy-
sis. The analysis used raw data as input files, set corre-
sponding parameters and databases, and then performed 
identification and quantitative analysis. The identified 
peptides FDR (false discovery rate) ≤ 1% were used to 
establish the final spectral library. The DIA data were 
analyzed using the iRT peptides for retention time cali-
bration. Then, based on the target-decoy model appli-
cable to SWATH-MS, the false positive control was 
completed at 1% FDR to obtain significant quantitative 
results. MSstats [25] is an R package that can be used for 
statistical evaluation of significant differences in proteins 
or peptides. Proteins with a fold change ≥ 1.5 and P < 0.05 
were considered to be differentially expressed proteins 
(DEPs).

Bioinformatics and statistical analyses
To further understand the functions of the DEPs in CHB, 
these DEPs were assessed by GO analysis (http:// geneo 
ntolo gy. org/). The signaling pathways of these DEPs were 
enriched and analyzed by using the KEGG pathway data-
base (https:/kegg.jp/). All DEPs were compared with the 
KOG database (https:// mycoc osm. jgj. doe. gov/ help/ kogbr 
owswe. jsf/), and the corresponding KOG annotation 
results were obtained. PPI network analyses were applied 
to find the interactions among all DEPs by using the 
STRING database 11.0 (https:// string- db. org/). The DEPs 
in the centre of the network between the normal group 
and the CHB group were clarified.

The patients’ clinical information and ELISA data were 
analyzed with SPSS 21.0 software. Measurement data are 
described as the mean ± standard deviation, and counting 
data are presented as percentages (%) using the Mann–
Whitney U test or unpaired Student’s t test. Furthermore, 
the chi-squared or Fisher exact tests were used to com-
pare the categorical variables. p values < 0.05 were con-
sidered statistically significant.

Results
Clinical characteristics of serum samples
A total of 10 serum samples from CHB patients and 
healthy controls were used for proteomic analysis, and 
there were differences in basic data between the CHB 
group and the healthy group (Table 1).

Identification of DEPs
In this study, we compared the serum proteome profiles 
of the CHB group and the control group. Quantification 
of proteins was performed based on a fold change > 1.5 
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and P value < 0.05 as the criteria for a significant differ-
ence. DEPs were assessed by using the MSstats software 
package. A total of 310 proteins were identified with dif-
ferential expression between the CHB group and the con-
trol group, of which 242 proteins were upregulated and 
68 proteins were downregulated (Fig. 1). The results visu-
ally reflected a significant difference in protein expression 
between the CHB group and the healthy control group. 
The volcano plot directly shows the expression intensity 
of these proteins.

GO enrichment analysis
We performed GO enrichment analysis on 310 differ-
entially expressed proteins. The results showed that 
242 upregulated proteins and 68 downregulated pro-
teins have potential functions. GO functional classifica-
tion maps of all differentially expressed proteins, with 
upregulated proteins and downregulated proteins dis-
tinguished (Figs. 2, 3). GO has a total of three ontolo-
gies, which describe the molecular function, cellular 
component, and biological process of genes. Upregu-
lated proteins and downregulat proteins were involved 
in cellular process, metabolic process, response to 
stimulus, biological regulation, regulation of biologi-
cal process, localization, multicellular organismal pro-
cess, immune system process, and so on. This result 
indicated that the molecular mechanisms may differ 
between the CHB group and the healthy control group. 

Table 1 Baseline characteristics of patients enrolled

P value < 0.05 for comparisons between CHB and Health control

Characteristic Health control (n = 5) CHB (n = 5) P

Gender(male/female) 3/2 1/4 1.00

Age (years) 34.20 ± 4.27 42.80 ± 9.6 0.11

Laboratory parameters

 WBC  (109/L) 5.87 ± 1.13 4.72 ± 1.50 0.03

 NEU  (109/L) 3.23 ± 0.63 2.98 ± 0.91 0.63

 HGB  (109/L) 145.60 ± 14.26 147.80 ± 9.09 0.78

 PLT  (109/L) 265.40 ± 80.77 154.40 ± 42.07 0.03

 ALT (IU/L) 22.14 ± 10.63 782.54 ± 168.88 0.00

 AST (IU/L) 17.92 ± 2.07 429.08 ± 131.67 0.00

 ALB (g/L) 46.18 ± 2.59 44.18 ± 2.63 0.26

 TB (umol/L) 10.26 ± 3.98 24.42 ± 11.88 0.04

 DB (umol/L) 3.34 ± 1.14 9.70 ± 4.40 0.01

 ALP (umol/L) 23.84 ± 6.14 137.86 ± 80.79 0.00

 CER (umol/L) 66.44 ± 8.63 70.00 ± 14.81 0.66

 INR N/A 1.07 ± 0.07 N

 HBV-DNA (Log) 0 4.03 ± 3.96 N

 K N/A 3.93 ± 0.32 N

 NA N/A 139.40 ± 1.34 N

 CL N/A 106.16 ± 2.46 N

 AFP N/A 11.07 ± 9.56 N

Fig. 1 Volcano plot (where the x-axis represents the log2 of the normalized fold change, and the y-axis represents the negative decadic logarithm 
of the significance value) of the differentially expressed proteins between the CHB group and the health control group. Red represents significantly 
upregulated proteins, green represents significantly downregulated proteins, and gray represents unchanged proteins
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In addition, these differentially expressed proteins were 
also involved in molecular function binding, catalytic 
activity, and molecular function regulation. The cell 
component is also involved, specifically the extracel-
lular region part, extracellular region, organelle, cell, 
and cell part. However, some separated enrichment of 
upregulated proteins (reproduction, reproductive pro-
cess, behavior, supramolecular complex, synapse, and 

molecular transducer activity) or downregulated pro-
teins (cell killing) was observed.

KOG classification
Eukaryotic orthologous groups (KOGs) are databases for 
direct homologous classification of proteins. The analy-
sis compares the identified proteins with the KOG data-
base (Fig.  4), predicted the possible functions of these 

Fig. 2 GO functional classification of DEPs. The x-axis represents the number of DEPs. The y-axis represents GO terms. All GO terms are grouped into 
3 ontologies: biological process, cellular component and molecular function; blue indicates molecular function, green indicates cellular component, 
and orange indicates biological process



Page 6 of 11Wang et al. Proteome Science            (2023) 21:9 

Fig. 3 GO functional classification between upregulated proteins and downregulated proteins.The x-axis represents GO terms.The y-axis represents 
the number of DEPs. Red indicates upregulated proteins, and blue indicates downregulated proteins

Fig. 4 Histogram presentation of KOG classification. The x-axis represents the number of DEPs, and the y-axis represents the KOG classification 
entry
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proteins, and generated functional classification statis-
tics. The most representative KOG category was cel-
lular processes and signaling, with main associations of 
differential proteins being posttranslational modifica-
tions, protein turnover, chaperone activity, signaling, and 
defense mechanisms.

KEGG enrichment analysis
Next, we performed KEGG enrichment analysis to fur-
ther identify differential protein biological functions and 
to distinguish upregulated proteins and downregulated 
proteins (Figs. 5, 6). Upregulated differentially expressed 
proteins were annotated to a total of 30 pathways, where 
the main pathway was the metabolic pathway: downregu-
lated differentially expressed proteins ware annotated to 
22 pathways, and the most important pathway was also 
the metabolic pathway.

Protein‒protein interaction network
Proteins usually interact with each other to perform 
their functions after binding as complexes. Next, the 
differentially expressed proteins were imported into the 
STRING database (STRING 11.0), DEPs were analyzed 
by comparison with the STRING [26] protein interac-
tion database, and the network interaction diagram 
(Fig.  7) was drawn by taking the interaction relation-
ship of the top 100 proteins based on the confidence 
level. The most strongly upregulated differential protein 
relationships were with CATD (cathepsin D), CATES 
(cathepsin S), CATB (cathepsin B), and PGRN (pro-
granulin). The most strongly downregulated differen-
tially expressed protein relationships were with LEG3 
(galectin-3), and ITIH4 (inter-alpha-trypsin inhibitor 
heavy chain H4).

Fig. 5 Differential protein pathway classification statistical chart. The x-axis represents the number of differentially expressed proteins, and the 
y-axis represents the pathway annotation entry
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Discussion
Chronic infection with HBV, characterized by high mor-
bidity and mortality sequelae, is the leading cause of both 
acute and chronic liver disease, including fulminant liver 
failure, acute-on-chronic liver failure, cirrhosis, and even 
hepatocellular carcinoma. CHB is still a major global 
health problem [9]. The pathogenic mechanism of CHB 
is complex and unclear. Metabolomics and proteom-
ics studies have revealed that some proteins can reflect 
deficiencies in hematological functions and are highly 
associated with HBV-related acute-on-chronic liver fail-
ure progression [18]. Another study revealed that some 
proteins were highly associated with significant fibrosis 
in patients with nonalcoholic fatty liver disease [27].

In this study, we successfully identified a total of 3786 
serum proteins with a high quantitative performance 
from CHB patient serum samples using DIA-MS prot-
eomic analysis. By bioinformatics analysis, we found 310 
DEPs between chronic Hepatitis B patients and healthy 
controls. The GO analysis and KEGG analysis showed 

that 242 upregulated proteins and 68 downregulated 
proteins have potential functions. DEPs were enriched 
in immune-rated pathways and metabolic pathways. 
Immunity plays an important role in CHB. Liver damage 
during CHB occurs mostly through immunological pro-
cesses [28].

Combined with the results of the protein‒protein 
interaction network, our results indicated that the 
expression of cathepsins (cathepsin B, cathepsin D, and 
cathepsin S) and PGRN was significantly higher than 
that in healthy controls. Cathepsin D, a soluble lyso-
somal aspartic protease has many  biological functions 
and is involved in the degradation of proteins, regula-
tion of cell death, and activation of inflammatory cells 
and plays a crucial role in promoting cancer invasion, 
metastasis, and angiogenesis [29, 30]. In some stud-
ies, Currently, circulating cathepsin D levels in nonal-
coholic fatty liver disease were shown to be useful for 
the assessment of disease severity [31]. In our study, 
GO enrichment of differentially expressed proteins 

Fig. 6 Differential protein pathway classification statistical chart. The x-axis represents the pathway annotation entry, and the y-axis represents the 
number of proteins. Red indicates upregulated proteins, and blue indicates downregulated proteins
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revealed that cathepsin D mainly functions in col-
lagen catabolic process and extracellular region, and 
KEGG enrichment analysis of differentially expressed 
proteins showed that cathepsin D is mainly involved 
in lysosomes, while KOG classification analysis of dif-
ferentially expressed proteins showed that cathepsin D 
is involved in posttranslational, protein turnover, and 
chaperones. Evidence has shown increased cathepsin D 
in human liver tissues with chronic HBV infection [29]. 
Cathepsin B and cathepsin S are cysteine proteases 
that play important roles in various physiological and 
pathological processes. Cathepsin B was increased in 
the fibrotic liver and was significantly correlated with 

hepatic hydroxyproline levels. This result suggests 
that cathepsin B is induced by hepatic collagen levels 
and is implicated in degrading collagens [32]. A pre-
vious study reported that cathepsin B plays a key role 
in hepatocellular apoptosis and liver injury and medi-
ates liver cancer cell apoptosis contributing to inflam-
mation and fibrogenesis [33]. Cathepsin S plays a key 
role in tumor invasion and metastasis.  A recent study 
demonstrated that cathepsin S induced apoptosis of 
hepatocellular carcinoma cells and increased their che-
mosensitivity by regulating nuclear factor kappa-B and 
activating cleaved caspase-3 [34]. PGRN (progranulin), 
a secretory glycoprotein, has many biological functions 

Fig. 7 Differential protein interaction network diagram. Red indicates upregulated proteins, and blue indicates downregulated proteins. The size of 
the circle indicates the density of the relationship
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involved in tissue development, regeneration, inflam-
mation, metabolic disease, and neurodegeneration [35]. 
A study demonstrated that PGRN improved inflamma-
tion and fibrosis and reduced steatosis and hepatocel-
lular injury in mouse models of hepatic fibrosis and 
nonalcoholic steatohepatitis. PGRN showed protective 
effects against hepatic injury, inflammation, and fibro-
sis by downregulating the inflammatory response [35].

In this study, our results indicated that the expression 
of LEG3 (galectin-3), ITIH4(inter-alpha-trypsin inhibi-
tor heavy chain H4), was significantly lower than that in 
healthy controls. Galectin-3, a member of the galectin 
family, has many  biological functions  involved in cell 
growth, apoptosis, differentiation, inflammation, fibro-
sis, and the pathogenesis of autoimmune and inflamma-
tory processes [36].  Galectin-3 expression levels were 
significantly increased in tumor tissue and serum, and 
in vitro and in vivo studies indicated that galectin-3 can 
facilitate hepatoma cell proliferation and reduce apopto-
sis among these cells [37]. A study indicated that serum 
galectin-3 levels in CHB patients were decreased com-
pared with those in patients with hepatocellular carci-
noma and cirrhosis and confirmed that there was no 
difference in serum galectin-3 levels between patients 
with hepatocellular carcinoma and patients with cirrho-
sis [38, 39]. In this study, serum galectin-3 levels in CHB 
patients were decreased compared with those in healthy 
controls. The biological function of galectin-3 in chronic 
viral hepatitis B has remained unknown.

ITIH4 is a plasma glycoprotein that belongs to a family 
of proteins called the inter-alpha-trypsin inhibitor fam-
ily. Many studies have found that ITIH4 is involved in 
chronic liver diseases, including chronic viral hepatitis, 
autoimmune liver disease, and hepatocellular carcinoma 
[40–42]. Previous research has shown that the serum 
levels of ITIH4 increased successively as fibrosis pro-
gressed  in children with chronic hepatitis C [40]. How-
ever, another study confirmed that the serum levels of 
ITIH4 decreased as fibrosis progressed  in patients with 
chronic hepatitis C [43]. In this study, we showed that 
ITIH4 was highly decreased in patients with CHB.

In conclusion, we successfully identified a total of 310 
proteins in serum samples of patients with CHB. Some 
protein expression levels were significantly elevated or 
decreased in patients with CHB, indicating a relation 
to chronic liver disease. Furthermore,, in CHB patients, 
some proteins should be further investigated.
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