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Abstract

Background: Studying the large-scale protein-protein interaction (PPI) network is important in understanding
biological processes. The current research presents the first PPI map of swine, which aims to give new insights into
understanding their biological processes.

Results: We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions
from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural
topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine
proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into
567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks.
Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and
863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized
networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam
domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted
PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized
networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods.
The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively.

Conclusion: The results reveal that the predicted PPI networks are considerably reliable. The present research is an
important pioneering work on protein function research. The porcine PPI data set, the confidence score of each
interaction and a list of related data are available at (http://pppid.biositemap.com/).

Keywords: protein-protein interaction network, Interolog, D-MIST, M-MIST topological properties, Pfam domain
annotations, GO annotations

1 Background
Protein-protein interactions (PPIs) [1] were previously
determined based on only a single molecule, thus a
comprehensive understanding of the entire biological
processes could not be acquired. To obtain a thorough
perspective, merely listing the proteins of an organism is
far from enough: all the interactions among them need
to be delineated as well [1]. The investigation of these
processes demands the utilization of proteome-wide
PPIs, and constructing a PPI network can lead to a

more complete understanding of biological processes. A
crucial step toward this feat is a complete and accurate
mapping of the networks of physical DNA and RNA
interactions and PPIs, the “interactome network” of an
organism [2]. The yeast Saccharomyces cerevisiae has
been used to develop a eukaryotic unicellular interac-
tome map [3-6]. The current research aims to decipher
the porcine network of proteome PPIs by constructing
of a porcine PPI network using three methods. The
experimental techniques for the detection and validation
of PPIs are time-consuming [7], and labor-intensive, and
these experimentally detected interactions show high
false negative [8] and positive rates [7,9,10]. In the pre-
sent paper, we used three computational approaches to
predict porcine PPIs and validated our predictions.
These methods are based on the Interolog [11], domain-
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motif interactions from structural topology (D-MIST)
[12] and motif-motif interactions from structural topol-
ogy (M-MIST). We also described in detail the methods
for PPI network visualization and analysis [13]. Acces-
sion to PPI information will greatly aid biological
research and potentially make discovery of novel drug
targets much easier [13].
The Interolog approach, a method presented several

years ago, focuses on the building of PPI maps. The
main idea behind this method is the transfer of known
interactions from model organisms to other species
based on the predicted orthology of the respective pro-
teins [14]. Thus, if the interolog of a protein interaction
exists in many other organisms, this protein interaction
will score highly [7].
D-MIST is based on a two-step approach. First, poten-

tial domain-binding motifs are extracted from structural
data. These motifs are then converted to sequence pro-
files in the form of position-specific scoring matrices
(PSSMs) [12]. If one protein has a domain and another
has corresponding motif information, the two proteins
are considered to interact with each other.
M-MIST method is based on motif-motif contacts

derived from PPIs from the Biomolecular Interaction
Network Database (BIND) [15]. If a motif group pair is
found in the observed PPIs, other protein pair matches
with the motif group pair, then these two proteins can
be thought to have interaction.
There are many well-known databases about human

PPIs, such as DIP [16], HPRD [17] and MINT [18],
which include 3,376, 39,194, and 22,677 human PPIs,
respectively. However, no data of pig are available from
them. IntAct [19], BIND [15], Biogrid [20], MIPS [21],
STRING [14], and other databases also include informa-
tion of human PPIs, but seldom of pig. Thus, the nature
of the mediation of swine PPIs by molecular mechan-
isms, the heart of almost every biological process,
remains unclear.
The existing methods that can be used to predict PPIs

include Interolog [11], D-MIST, subcellular localization
[22], Bayesian networks [23], phylogenetic profiles
[24,25], network integration, literature mining method,
preferential attachment rule[26], duplication and diver-
gence rule [26] and others. While all of these
approaches can be used for interaction prediction, their
aims are different. Interolog is the primary method
widely used and proved reliable for predicting the PPIs
of model organisms [27]. In the PPI network, nodes are
generally used to represent proteins and edges are used
to represent interactions [28], if interactions exist
between proteins. In this work, we generated porcine
PPI maps, which can provide new insights into the pro-
tein function research.

2 Results
We predicted a total of 567,441 porcine PPIs using 3
methods and constructed 4 PPI networks: Interolog, D-
MIST, M-MIST, and a combination of the 3 networks.
Table 1 presented the three approaches used for the
analysis of porcine PPI data. The PPIs under the three
methods could lead to many local perturbations in the
network, and the global properties of the four networks
are not likely to change significantly (Table 2). The
overlap of the interactions among the three methods
was shown in Figure 1.
The degree of a node corresponds to the number of

interactions it has with the neighboring molecules [29].
Highly connected proteins (hubs) with central roles in
the network architecture are more essential in the PPI
network than proteins with only a small number of
interactions [30]. In the current research, using k to
represent degree, and nk to represent the number of
nodes of the degree k (Additional file 1), we analyzed
the degrees of the nodes (Additional file 2), and found
that the degree distributions (Figure 2a) in the fourth
network obeyed the power-law. The probability P(k) of
nodes was P(k)≈k-1.004, R2 = 0.559. This finding sug-
gested that the network contained a small number of
highly connected proteins and that a large number of
proteins possessed only a few connections. In biological
networks, this phenomenon is the so-called scale-free
property. The scale-free nature of a protein interaction
network indicates that a limited number of proteins
have a large number of interactions [31]. Highly con-
nected proteins are more important for fitness than
less-connected proteins because randomly removing
these proteins would likely result in fitness defect. The
network is highly tolerant of the random removal of a
protein, but vulnerable to the targeted removal of hub
proteins, whose removal drastically changes the network
topology [30]. The scale-free property also indicates
resistance to random node failure [32]. The betweenness
centrality (Figure 2b) [33]Cb(n) of a node n was calcu-
lated by Cb(n) = ∑s≠n≠t (sst (n)/sst), where s and t were
nodes in the network different from n, sst denoted the
number of the shortest paths from s to t, and sst (n)
was the number of the shortest paths from s to t that n
laid on. The betweenness value for each node n was
normalized by dividing by the number of node pairs

Table 1 The number of predicted protein-protein
interactions

Method Predicted PPI

Interolog 20,213

D-MIST 331,484

M-MIST 218,705
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excluding n: (N-1) (N-2)/2, where N was the total num-
ber of nodes in the connected component that n
belonged to. Thus, the betweenness centrality of each
node is a number between 0 and 1. The closeness cen-
trality (Figure 2c) [34]Cc(n) of a node n meant the reci-
procal of the average shortest path length and was
calculated by Cc(n) = 1/avg(L(n,m)), where L(n,m) was
the length of the shortest path between the nodes n and
m. The closeness centrality of each node was a number
between 0 and 1. In undirected networks, the clustering
coefficient (Figure 2d) Cn of a node n was calculated by
Cn = 2en/(kn(kn-1)), where kn is the number of neighbors
of n and en is the number of connected pairs between
all neighbors of n [35,36]. The length of the shortest
path (Figure 2e) between the nodes n and m was L (n,
m). The shortest path length distribution gave the num-
ber of node pairs (n,m) with L(n,m) = k for k = 1,2,....
The topological coefficient (Figure 2f) [37]Tn of a node
n with kn neighbors was calculated by Tn = avg (J (n,
m))/kn. J(n,m) means all nodes m that share at least one

neighbor with n. The value J (n,m) was the number of
neighbors shared between the nodes n and m, plus one
if there was a direct link between n and m. The dia-
meters of the four networks imply the small-word prop-
erty (Table 2). Other properties, such as average
clustering coefficient, network radius, shortest path,
characteristic path length, number of nodes, and num-
ber of edges, were presented in Table 2. We did not
find any significant difference in the global network
properties of the four networks.
Using the Interolog method to predict the orthologs of
human, mouse and rat with those of pig, we got 20,213
interactions out of 25,767 porcine proteins, and 70
(Additional file 3) interactions associated with Pfam
domain-interacting pairs in the iPfam database were ver-
ified by applying the Pfam domain annotation method.
In the Pfam domain annotations, by setting an e-value
cutoff at 0.01, 4,675 proteins could be assigned to Pfam
domain annotations, constructing 19,712 PPIs. For com-
parison, we randomly chose 20,213 pairs of porcine pro-
tein from all pig proteins every time using sampling
with replacement, and we preformed this process for
100 times altogether. However, in the 100 randomized
networks, an average of only 4.24 interactions was asso-
ciated with Pfam domain-interacting pairs in the iPfam
database, (p-value = 0.000) (Table 3). In GO annota-
tions, we considered that the two proteins interacting
with each other if they shared at least one GO term in
any of the three GO categories [38], and we found
52.68% of the predicted PPIs sharing GO terms. For
comparison, 10,000 randomized PPI networks were con-
structed. The results showed that the number of PPI
pairs sharing GO terms in the 10,000 randomized net-
works reached 52.68% is 0 (Additional file 4), suggesting
that the predicted PPI networks have high statistical sig-
nificance (p-value = 0.000). This method achieved an
accuracy rate of about 0.92 at a precision of about 0.93
(Table 4), emphasizing that the Interolog method was
helpful in the accurate and precise prediction of porcine
PPIs.
The D-MIST method is based on PSSMs, an interaction
predicted between proteins containing interacting
domains and proteins with one or more of the interact-
ing profiles associated with those domains [12]. Using
this method, 331,484 interactions were predicted, and
10,495 (Additional file 3) interactions associated with
Pfam domain-interacting pairs in the iPfam database
were verified using the Pfam domain annotation
method. Using a 0.01 e-value cutoff, 5,515 proteins
could be assigned Pfam domain annotations, construct-
ing 330,054 PPIs. To facilitate comparison, 331,484 pairs
of porcine protein were randomly selected from all pig
proteins every time using sampling with replacement,
and we conducted this process for a total of 100 times,

Figure 1 The number of overlapping PPIs of the three
methods. The D-MIST, M-MIST, and Interolog methods complement
each other, as they operate on fairly disjointed sets.

Table 2 Global properties of the four networks

Property Interolog D-
MIST

M-
MIST

Merged
network

Nodes 5,726 6,163 3,873 11,955

Edges 20,213 331,484 218,705 567,441

Clustering coefficient 0.105 0.267 0.123 0.223

Network diameter 13 9 9 11

Network radius 1 1 1 1

Shortest paths 94% 98% 96% 98%

Characteristic path
length

4.148 3.530 3.445 3.554
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and an average of only 66.79 interactions was associated
with Pfam domain-interacting pairs in the iPfam data-
base (p-value = 0.000) (Table 3). In GO annotations, it
showed 75.54% of the predicted PPIs sharing GO terms.
It was found that the percentage of PPI pairs sharing
GO terms in the predicted PPI network was consistently
higher than the largest percentage in the 10,000 rando-
mized networks, suggesting that the predicted PPI net-
works have high statistical significance (p-value = 0.000)
(Additional file 4). When assessing the quality of inter-
action data, accuracy and precision need to be consid-
ered[9]. This method yielded an accuracy of 0.57 and a
precision of 0.74 (Table 4).
Using more than 10,000 structural PPIs, we identified

the motifs in the binding sites and extracted them from

BIND. The interacting residues were defined as polypep-
tide segments of five residues or longer, in which the
amino acid side chains were < 4 Å from the interacting
proteins [12]. Based on this idea, 218,705 interactions
were predicted, and 863 (Additional file 3) interactions
associated with Pfam domain-interacting pairs in the
iPfam database were verified using the Pfam domain
annotation method. At a cutoff e-value of 0.01, our pre-
dictions yielded 3,384 proteins for Pfam domain annota-
tions, constructing 217,983 PPIs. We also calculated the
randomized PPIs to compare them with the prediction
using annotated proteins, and 218,705 pairs of porcine
protein were randomly extracted from all pig proteins
every time using sampling with replacement, and this
process was repeated 100 times, an average of only
44.26 interactions was associated with Pfam domain-

Table 3 The Pfam domain annotations

associated with pfam domains

method prediction random p-value

Interolog 70 4.24 0.000

D-MIST 10,495 66.79 0.000

M-MIST 863 44.26 0.000

Table 4 The accuracy and precision of the three methods

Method accuracy precision

Interolog 92.20% 92.97%

D-MIST 53.15% 73.64%

M-MIST 50.1% 75.03%

Figure 2 The properties of the merged network. (a) Degree distribution. The connectivity distribution of the proteins obeys the power-law
distribution, containing many proteins with a few interactions and a limited number of proteins with a large number of interactions. (b)
Betweenness centrality. (c) Closeness centrality. (d) Clustering coefficient. (e) Shortest path. (f) Topological coefficient.
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interacting pairs in the iPfam database (p-value = 0.000)
(Table 3). In GO annotations, we calculated 27.20% of
the predicted PPIs sharing GO terms, however, in the
10,000 randomized networks, none of them was
achieved 27.20%, indicating the predicted PPI networks
has high reliability. (p-value = 0.000) (Additional file 4).
Accuracy and precision were also tested to assess the
predictions in this method. An accuracy of about 0.50
and a precision of about 0.75 were achieved (Table 4),
indicating that the discriminative power of the method.
We merged the results of the three methods using

cytoscape, and a total of 567,441 PPIs were obtained,
and the lowest accuracy rate was greater than 50%, and
the coverage of the three results are all 100%. In Figure
2, the topological properties of the merged network
were visually presented. For the network, the average
number of neighbors was the average degree of a node
in the network. The porcine PPI data set, the confidence
score of each interaction and a list of related data were
available at (http://pppid.biositemap.com/).

3 Discussions
In the current work, we conducted a comprehensive
prediction of porcine PPI inferred from three methods.
We studied PPI networks, including Interolog, D-MIST,
M-MIST, and a combination of the three. All the four
networks were significantly more accurate than we
expected. However, the results obtained using the three
methods did not match well and showed only small
overlaps. The production of this result may be due to
that the three methods have different emphasis: Intero-
log is focus on similarity between sequences; D-MIST
emphasizes similarity between domains and similarity
between motifs; M-MIST underlines similarity between
motifs. The number of overlapping PPIs between D-
MIST and M-MIST was 1,902, that between D-MIST
and Interolog was 359, and that between M-MIST and
Interolog was 51. After verification, each method has
certain accuracy. Therefore, the three methods comple-
ment each other, and thus provide preliminary reference
for related analysis. This finding showed the complexity
and diversity of the PPIs, and that the methods have
inherently low reproducibility and may not affect some
of the interactions. Therefore, for large-scale PPIs stu-
dies, combination of these different methods could yield
more abundant and accurate results.
Comprehensive analysis of the porcine proteome pre-

sents an extraordinary challenge. A powerful first step
towards addressing this challenge is to develop pro-
teome-scale interaction maps and a framework upon
which a complete understanding of biological processes
can be obtained. The three methods achieved accuracies
of about 0.92, 0.53, and 0.50 and precisions of about
0.93, 0.74, and 0.75, respectively. The Interolog method

had the highest accuracy, whereas the two other meth-
ods had similar accuracies, exhibiting the reliability of
the M-MIST method.
Even the most reliable techniques could produce a

large number of false-positives, so the three
approaches we used would inevitably produce a con-
siderable number of false-positives. These methods suf-
fer from information shortage on time and space. Each
of the three methods for identifying porcine PPIs has
its own weak points. The Interolog method has high
accuracy, but it is only applicable to human, mouse
and rat. Higher accuracy rates may be achieved by
increasing the number of species used in the method.
In D-MIST method, the number of species (204) is
sufficient. However, in spite of the presence of PSSM,
the analysis only relates to domains with five or more
putative interactors. Therefore, domains not frequently
found in the set of protein interactions are excluded
[12]. In M-MIST method, the difficulties encountered
are overcome by establishing interaction maps using
about 730 species and viruses. As long as there is at
least one MOTIF interactor, it could be retained and
used to establish the interaction maps. The disadvan-
tage of this method is that a large number of resulting
species are not carefully selected. Thus, the accuracy
of this method is similar to that of the D-MIST
method and does not increase.
We used the iPfam database and GO annotations to

assess the reliability of the predicted PPIs. The results
showed that 70, 10,495, and 863 interactions were
related to Pfam domain-interacting pairs in the iPfam
database, whereas an average of only 4.24, 66.79, and
44.26 randomized interactions were related to Pfam
domain-interacting pairs in the iPfam database. And
on GO annotations, it showed that 52.68%, 75.54%,
27.20% of the predicted PPIs sharing GO terms in the
three methods respectively, and that the percentage of
PPI pairs sharing GO terms in the predicted PPI net-
work was far higher than the percentage in the 10,000
randomized networks, suggesting that the predicted
PPI networks have high statistical significance (Addi-
tional file 4).
Most of the porcine protein data have not been certifi-

cated experimentally, which may be one of the reasons
for the low accuracy of our predictions. And the pre-
dicted network is expected to become more reliable
with the increasing quantities of porcine proteins.
One of the main applications of the PPI network is

the prediction of protein functions. In the current
research, protein functions were inferred based on their
connections in the network [39]. The functional annota-
tion of the protein means that if one protein function is
determined, the proteins linked to this protein may have
similar functions. From Figure 3, we can see that
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A1Y2K1 is involved in the control of cell growth, brain
development and mature brain function, plays an impor-
tant role in the regulation of intracellular calcium levels.
A1Y2K1 also plays important roles in the regulation of
axon growth, axon guidance, and neurite extension
(http://www.uniprot.org/uniprot/A1Y2K1) [40]. In rats,
this protein also has these functions. However, in
human and mouse, in addition to these functions,
A1Y2K1, together with isoform 2, shows a greater ability
to mobilize cytoplasmic calcium compared with isoform
1. This protein is involved in 417 interactions, so the
417 interacting proteins may also have similar functions.
Using this method, we could infer that A1Y2K1 may be
the non-receptor type of tyrosine kinase involved in
interleukin-3 and interleukin-23 signal transduction.
A1Y2K1 may play a role in leptin signaling and body
weight control, because O19064, interacted with
A1Y2K1, has these functions. From the annotation of
the other proteins, the same conclusions could be
drawn.

4 Conclusions
Some protein interactions in the cell are transient, and
unstable; thus, experiment-based research can hardly
capture these interactions. Bioinformatics-based analysis
compensates for this shortcoming, with results revealing
that the predicted PPI networks are considerably reli-
able. The current research is an important pioneering
work on protein function research.

5 Methods
5.1 Data resources for PPIs
About 25,767 pig and 105,828 human protein sequences
were obtained from the Uniprot (release 2011_05-May
3, 2011) database (http://www.uniprot.org/) [40] and
saved in FASTA format. Also, 76,095 mouse and 40,218
rat protein sequences were downloaded from Uniprot
(release 2011_10-Oct 19, 2011) database. We then
downloaded human protein sequences and human PPIs
from the HPRD (release 9) database (http://www.hprd.
org/download) [17]; these were saved under the file-
names HPRD_Release9_041310.tar.gz and
HPRD_FLAT_FILES_041310.tar.gz, respectively. In total,
30,046 protein sequences and 39,240 interactions were
obtained. BIOGRID-ALL-3.1.81.tab2.zip, BIOGRID-
IDENTIFIERS-3.1.81.tab.zip were downloaded from Bio-
grid (http://thebiogrid.org/download.php) [20], which
reported a large number of interactions, and we
extracted mouse and rat PPIs from them. BIND is one
of the most comprehensive interaction databases at pre-
sent. Up to 136,512 interactions and all of the domains
were downloaded from the BIND database, including
730 species and viruses. Porcine domains were also
downloaded. Moreover, we downloaded Pfam_ls.gz from
the Pfam [41] (ftp://ftp.sanger.ac.uk/pub/databases/
Pfam/releases/Pfam22.0/) database. Through this file
and Hmmer-2.3.2, we generated Pfam domain annota-
tions for proteins in our predicted PPIs. Finally, Pfam
domain-interacting pairs [38] in the iPfam [42] database
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Figure 3 Part of the hub nodes of the merged network. The nodes represented by circles and V are proteins and the V nodes represent the
three hub nodes A1Y2K1, O19064, and Q19S50. If the three hub nodes are removed, the network will be damaged.
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were obtained from ftp://ftp.sanger.ac.uk/pub/databases/
Pfam/releases/Pfam21.0/database_files/.

5.2 Equipments and softwares
The equipments included computers and servers, which
were mainly used to run the prediction and verification
program. The softwares employed were BLAST, Cytos-
cape_v2.8.1, Hmmer-2.3.2 and SPSS (version 17.0).
BLAST was used for the Interologs, the visualization
tool for the biological networks was Cytoscape [43].
Hmmer-2.3.2 enabled us to create Pfam domain annota-
tions [38] for the input proteins and SPSS was used as a
statistical and mapping tool.

5.3 Interolog-based prediction of the porcine PPI network
We ran local BLAST using protein sequences of human,
mouse and rat with those of pig to obtain the orthologs.
The Poisson distribution of Interolog showed that an
identity equal to 36% was the cutoff point. To further
determine the best cut-off point, we also analyzed other
cut-off points (Table 5). Table 1 showed that the accu-
racy and precision at a cut-off point of 36% were less
than those at other cut-off points. Although a 100% cut-
off point yielded the highest levels of accuracy and pre-
cision, the number of PPIs at this point was particularly
small. Finally, 70% was determined to be a relatively
good cut-off point and the average query coverage was
> 90%, and 20,213 porcine PPIs were successfully pre-
dicted, excluding self-interactions.

5.4 D-MIST-based prediction of the porcine PPI network
In D-MIST, a PSSM is necessary to predict porcine
PPIs. PSSM is a motif descriptor that attempts to cap-
ture the intrinsic variability characteristic of sequence
patterns. The PSSM principle ascertains the extent of
similarity between some sequences and collected
sequences, to construct a scoring matrix.

Score (position, aminoacids) = (q + p)/(N + B)

Where q is the observed count for the amino acids at
a given location, p is the pseudocount, N is the total
number of sequences (equal to the maximum number

of observed counts), and B is the total number of allo-
cated pseudocounts (http://www.people.vcu.edu/~elhaij/
IntroBioinf/Scenarios/Scenario5-PSSM.html).
We downloaded PSSMs from Doron Betel et al [12],

which contained information on the domain and motif
interaction, and from which 204 species were derived.
We inferred that two proteins interacted if one protein
had a domain and another had information of a corre-
sponding motif. We also removed self-interactions and
redundancies. In total, 331,484 interactions were pre-
dicted based on the PSSMs.

5.5 M-MIST-based prediction of the porcine PPI network
Reasons to use M-MIST method are that the result of M-
MIST prediction shows a similar accuracy with that of D-
MIST prediction, and more importantly, there only exists
a small overlap between results of M-MIST and D-MIST
prediction. So we used M-MIST to supplement the
results of D-MIST to make them more comprehensive.
We defined binding motifs as two or more motifs existed
in a protein binding a protein at the same time. Each
motif was a polypeptide segments of five residues or
longer, in which the amino acids side chains were < 4 Å
away from the interacting proteins [12]. Two motif resi-
dues were segregated by two non-contact residues at
most. Furthermore, the motif residues were in direct con-
tact with the interacting protein [12]. M-MIST method
was preformed as followings: first, we extracted all pro-
tein interactions from BIND, then draw all the binding
sites of the proteins and pick up motifs according to the
definition the motif. After that, we defined a motif group
as all the motifs of a protein. Then we reserved the group
in which the number of motifs was equal or more than
two. And finally we obtained interactions map between
motif groups in the light of PPIs in BIND. Now, this map
can be used to predict the protein interaction of pig. If a
porcine protein matches with one motif group, and
another protein matches with another motif group inter-
acting with the former motif group, then these two pro-
teins can be thought to have interaction, which means
two proteins were predicted to interact with each other if
they matched the interaction profiles. A total of 11,559
non-redundant PPIs were collected from 730 species and
viruses from the BIND database. We excluded self-inter-
actions and constructed interaction profiles. We
attempted to predict interactions between all porcine
proteins by searching the matching proteins.

5.6 Verification of PPIs
Validating the porcine PPI network is difficult, because
there exists rarely any swine PPIs at present. Several
methods have been proposed for the verification of PPI
data [10,44-47]. In this section, we described two effec-
tive methods.

Table 5 PPIs prediction using Interolog method

Interolog Predicted PPI Accuracy Precision

36% 21,192 69.48% 80.27%

70% 20,213 92.20% 92.97%

75% 18,859 93.29% 93.83%

80% 17,166 94.77% 95.07%

85% 14,542 96.20% 96.33%

90% 11,352 97.49% 97.52%

95% 6,496 98.03% 98.04%

100% 569 98.62% 98.62%
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Through Hmmer-2.3.2 and Pfam database (Pfam_ls,
release 22.0), we constructed Pfam domain annotations
for proteins in the predicted PPI networks. The default
settings were used to conduct Pfam searching. We
retained proteins with e-values less than or equal to
0.01. As a result, many proteins were annotated by the
Pfam domain in our predicted PPI network. The num-
ber of Pfam domain-annotated protein interactions, as
well as PPIs related to the Pfam domain-interacting
pairs in the iPfam database (release 21.0) was counted
(Table 3). To facilitate comparison, we generated ran-
dom networks from the 25,767 sequences in the Uniprot
database every time using sampling with replacement
and the random process was repeated 100 times, then
we got the distribution of the number of randomized
PPIs related to the Pfam domain-interacting pairs in 100
randomized networks. Furthermore this distribution was
used to determine statistical significance of our results.
Finally, we evaluated the reliability of our predicted net-
works by comparing the number of PPIs related to the
Pfam domain-interacting pairs between the predicted
and randomized networks.
Using the Gene Ontology Annotation is another

method to verify predicted swine PPIs. The recently
released GO annotations of pig were downloaded from
http://www.ebi.ac.uk/QuickGO/[48]. The GO terms
were organized according to three independent hierar-
chies: Biological Process, Molecular Function, and Cellu-
lar Component [49]. Since a pair of interacting proteins
generally have related but not identical functions, they
should have some but not all of their GO annotations in
common. Therefore, we considered that the two pro-
teins interacting with each other if they shared at least
one GO term in any of the three GO categories, and we
calculated the percentage of the predicted PPIs sharing
GO terms [38]. For comparison, we randomly chose
10,000 pairs of porcine protein from all pig proteins
every time using sampling with replacement, and we
preformed this for 10,000 times altogether. To evaluate
the network, we compared the proportion of the protein
pairs sharing at least one GO term in any of the three
GO categories in the predicted and 10,000 randomized
networks. Then, we evaluated the reliability by compar-
ing the percentage of PPI pairs sharing GO terms in the
predicted PPI network and 10,000 randomized networks.
Accuracy and precision were the statistical measures

of the tests. Based on the evaluation, a positive and a
negative set were selected, and then used to assess the
results mentioned above. 2,732 pairs of chimpanzee PPI
data with high confidence were selected from STRING
database, all these 2,732 pairs should be the result of
experimental verification and that their “combined
score” > 950 which were used as a gold standard posi-
tive set (GSPs) [14]. A golden standard negative set

(GSNs) of 3,000 protein pairs was defined, in which pro-
teins were randomly selected from Uniprot. We used
PPIs reconstructed from the GSPs and GSNs by the
three methods to analyze the accuracy and precision of
the predicted results. We supposed that a positive pre-
diction was right if it was included in our golden stan-
dard positive (GSP) set and that a negative prediction
was right if it was included in our golden standard nega-
tive (GSN) set because we cannot always guarantee that
a prediction was right [7]. Accuracy was calculated by
TP+TN/(TP+TN+FN+FP), and was a part of correct
predictions. True positive (TP) was defined as the num-
ber of correctly predicted PPIs, while false positive (FP)
was defined as the number of non-PPIs predicted as
PPIs. True negative (TN) was defined as the number of
correctly predicted non-PPIs, and false negative (FN)
was defined as the number of PPIs predicted as non-
PPIs. For PPIs, precision, the percentage of the PPIs cor-
rectly predicted among all the predictions, was calcu-
lated by TP/(TP+FP). For non-PPIs, precision was
calculated by TN/(TN+FN). Therefore, the precision of
the tests was obtained from the average of two precision
values (for PPIs and non-PPIs).

Additional material

Additional file 1: Statistical analysis of the degrees of nodes.

Additional file 2: The degrees of nodes.

Additional file 3: The overlap between the predicted interactions
and domain family pairs from iPfam.

Additional file 4: The distribution of the 10,000 randomized
networks sharing GO terms.
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