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Abstract

Background: Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions
and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight
about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during
the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/
ionization time of flight mass spectrometry has been carried out.

Results: We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm
explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and
11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold
change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36
proteins could be identified, which are classified into defense and stress response, protein synthesis and
processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism.

Conclusion: Our results showed that diverse cellular and molecular processes were affected during somatic to
embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early
stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.
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Background

Saffron (Crocus sativus L., Iridaceae) has long been cul-
tivated for the production of saffron spice, which makes
it interesting from an economic as well as a scientific
point of view. Saffron is an autumn flowering species
and an auto-triploid (2n = 3x = 24) form of a species
found in eastern Greece. An origin in Western or cen-
tral Asia (possibly Iran) is suspected [1]. In vitro culture
of saffron is a promising approach for making the com-
mercial production of crocin, safranal and picrocrocin
(the flavor and coloring characteristic of saffron) less
expensive than conventional means i.e. through manual
harvesting of styles [2]. Somatic embryogenesis (SE) has
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also been recognized as a promising approach for the
regeneration of plantlets in tissue cultures and as a
vegetative propagation system in vitro. The ability of
plant cells to produce somatic embryos in culture, made
SE not only as an interesting issue for genetic engineer-
ing and biotechnology but also as a model system for
studying zygotic embryogenesis [3,4]. Several potential
biotechnological applications e.g. artificial seeds, micro-
propagation, germplasm conservation, transgenic plants,
etc. have been reported for SE [4]. Somatic embryos
have been demonstrated to be morphologically and
developmentally similar to their zygotic counterparts
and they both proceed through a series of distinct
stages, i.e. globular, heart, torpedo, and cotyledon stages
for dicotyledons and globular, elongated, scutelar, and
coleoptilar stages for monocotyledons [4-6].

Plant growth regulators (PGRs) have a critical role in
SE induction and subsequent modulation of the proper
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morphogenesis in embryo development. Depending on
the nature of the explant, auxin and/or cytokinin may
be used to induce SE in culture [7-9]. However, decreas-
ing or removal of exogenous auxin is necessary for
embryo morphogenesis and further development [5].
During SE, differentiated somatic cells undergo a series
of morphological and biochemical changes and are com-
pletely reprogrammed to an embryonic like state which
forms the basis of cellular totipotency in plants [8].
Transition from an unstructured callus to the somatic
embryo, a highly organized structure, requires global
changes in the gene expression to support this develop-
mental switching. Thus, understanding the molecular
and biochemical pathways that initiate and direct vege-
tative to embryogenic transition is of great importance
to plant molecular biologists.

Quantitative and qualitative analysis of transcriptomic
and proteomic changes associated with SE could be con-
sidered as an important step towards the elucidation of
underlying mechanism(s) of SE. High throughput ana-
lyses of gene expression at the mRNA level have pro-
vided a wealth of information about the genes that are
involved in SE in different plant species [10-16]. Several
gene classes associated with SE including auxin-related
genes [17-19], ABA-inducible genes [20], SERK genes
[9,20], calmodulin [21], LEC genes [22,23], AP2/ERF
family [24,25], WUSCHEL [26] and AGL15 [27] have
been identified. Although mRNA expression profiling
has been proven as a powerful tool, this approach suf-
fers from some inherent limitations. There is no clear
correlation between mRNA and protein abundance, due
to the variation in mRNA stability, translatability, and
protein stability [28,29]. Furthermore, protein structure,
activity, and function can be altered and regulated by
subcellular localization, interaction by other molecules,
and posttranslational modifications that would not be
detected by mRNA analysis [30]. Consequently, there is
a growing recognition that whilst mRNA expression
profiling continues to be a valuable tool, this approach
should be complemented with profiling methods of the
final gene products or proteins themselves.

Proteomics has been defined as the systematic analysis
of proteins expressed by a genome at a definite point in
time [31]. Proteomics is a powerful approach to study
plant responses to various biotic and abiotic stresses,
and biochemical changes associated with developmental
pathways [32]. A comprehensive protein expression pro-
file can be analyzed and compared using a 2-DE based
protein separation method combined to mass spectro-
metry based protein identification system. There are
several proteomics reports dealing with SE in different
plant species e.g. Daucus carota [33], Oryza sativa L.
[34], Camellia japonica [35], Cupressus sempervirens L.
[36], Spinacia oleracea [37], Vitis vinifera [38], Medicago
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truncatula [7,39], Cyclamen persicum [40-42], Picea
glauca [43], Citrus sinensis Osbeck [44,45], and Acca
sellowiana [46]. Proteomic analyses provide new insights
into the molecular basis of SE and exploring some black
boxes of this process, pave the way for future in vitro
scale up propagation and genetic manipulation through
the development and optimization of strategies for effi-
cient somatic embryo production.

To date there has been no report on systematic analy-
sis of transcriptome and proteome in saffron. To the
best of our knowledge, this is the first report that uses
two-dimensional gel electrophoresis in combination
with tandem mass spectrometry to evaluate the proteo-
mic changes that occur during SE induction in saffron.
We aimed to identify proteins that are differentially
modulated during SE induction in saffron. Mass spectro-
metry analysis led to the identification of 36 differen-
tially accumulated proteins. The possible implications of
the differentially accumulated proteins in SE induction
were discussed.

Materials and methods

Plant materials and tissue culture

Qaen saffron (the accession that had been collected
from farms of the Qaen city in south Khorasan pro-
vince, Iran) was used as the starting plant material.
Healthy resting corms, which were growing in the
research farm of the University of Tehran (Mardabad,
Karaj, Iran), were collected in August, and washed
under running tap water for 30 min. After surface disin-
fection with detergent, they were soaked in hygiene (1%
benzalkonium chloride) for 10 min, and then were
rinsed under tap water. The corm explants were trans-
ferred to a sterile laminar airflow cabinet, incubated first
in 70% ethanol for 2 min then in 20% (v/v) commercial
bleach containing 1% sodium hypochlorite for 15 min
and rinsed three times in distilled sterile water. The
basal medium used for tissue culture was Murashige
and Skoog [47]. The culture medium was supplemented
with 30 g/l sucrose and solidified with 7 g/l agar (Bac-
toAgar, Difco Laboratories). The pH was adjusted to 5.7
with 1 M NaOH prior to autoclaving. The culture med-
ium was autoclaved at 120°C for 20 min. After cooling
the media (50°C), plant growth regulators that had been
dissolved in DMSO were added and media were distrib-
uted in culture dishes.

A rectangular section from the central meristematic
region of the corms was used as the starting explant.
Twenty five explants (five in each plate) were placed on
solidified culture medium supplemented with 1 mg/l
2,4-D and 4 mg/l Kin. The dishes were incubated at 25
+ 3°C temperature regime in the dark. At the same
time, some explants from different corms were pooled
in three replicates frozen in liquid nitrogen and stored
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at -80°C for further analysis. After 5 to 6 weeks in this
culture condition, they started developing embryogenic
calli (nodular calli, NC). Nodular calli were calli that
contained globular stage embryos. After four subcultures
(four weeks interval), the cultures were analyzed and all
calli were screened visually based on their morphology.
During these time intervals, some calli remained amor-
phous and did not develop any embryo like structures
(non-embryogenic calli, NEC). The percentage of total
calli and nodular calli induction frequencies were calcu-
lated based on Pearson % test. Both embryogenic (NC)
and non-embryogenic calli (NEC) were harvested in
three replicates frozen in liquid nitrogen, and stored at
-80°C until use.

Protein extraction

Protein extraction was performed as described by Hurk-
man and Tanaka [48] with some modifications. Briefly,
plant material was ground in liquid nitrogen using mor-
tar and pestle. The resulting powder was transferred to
a 10 ml tube. Then 2.5 ml extraction buffer (0.1 M
Tris-HCI, pH 8.8; 10 mM EDTA; 0.4% 2-mercaptoetha-
nol and 0.9 M sucrose) was added to each tube, after
brief vortexing, 2.5 ml Tris pH 8.8 buffered phenol
(Sigma, St. Louis, MO, USA) was added. After vortexing
for 30 min at 4°C, centrifugation was carried out in
5000 x g at 4°C for 10 min. The upper phenol phase
was carefully decanted and transferred to a new clean
tube. These steps were repeated for the remaining aqu-
eous phase by adding 2.5 ml Tris buffered phenol. Pro-
teins in the collected phenol phase were precipitated by
adding five volumes of pre-chilled 0.1 M ammonium
acetate in 100% methanol and incubation at -20°C. The
precipitate was collected by centrifugation for 20 min,
20000 x g at 4°C. Finally, the pellet was washed 2 times
with 0.1 M ammonium acetate in methanol, 2 times
with ice-cold 80% acetone and finally 1 time with cold
70% ethanol. After a brief air-drying, the protein pellet
was re-suspended in lysis buffer (8 M Urea, 2 M
Thiourea, 4% CHAPS, 50 mM DTT, 35 mM Tris and
2% pharmalyte (pH 3-10). Total protein concentration
was quantified by Bradford assay [49] using IgG as the
standard.

Two-dimensional gel electrophoresis (2-DE)

Total protein extract (160 pg) was loaded onto 18 cm
IPG gel strips (pH 4-7, Bio-Rad, Hercules, CA, USA)
during strip rehydration overnight. IEF was then per-
formed for a total of 52 kVh at 20°C using Multiphore
IT system (Amersham Pharmacia Biotech, Uppsala, Swe-
den). The IPG strips were equilibrated according to the
manufacturer’s instruction in a solution containing (50
mM Tris-HCI buffer, pH 8.8, 6 M w/v urea, 30% v/v
glycerol, 2% w/v SDS, 1% w/v DTT, 0.002% of
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bromophenol blue). The second dimension was per-
formed on 11.5% SDS-polyacrylamide gel using a Pro-
tean Dodeca Cell (Bio-Rad, Hercules, CA, USA) at 50 V
for 30 min and then at 200 V for about 7 h at 4°C. In
analytical phase, gels were stained using silver nitrate
according to Blum et al. [50], and in preparative phase
gels were stained by coomassie brilliant blue (CBB)
G250 [51]. Each treatment was run in three biological
replicates.

Image acquisition and data analysis

Gel images were acquired using a GS800 calibrated den-
sitometer (Bio-Rad, Hercules, CA, USA) at a resolution
of 700 dpi. The scanned gels were saved as TIFF images
for subsequent analysis. Image treatment, spot detection,
and quantification were carried out using Melanie 6.02
software (GeneBio, Geneva, Switzerland). The spot
detection parameters were set by checking different pro-
tein spots in certain regions of the gels, followed by
visual inspection for deletion or addition of spot artifacts
and undetected spots, respectively. The processed gels
were automatically matched to attribute a common spot
identity for the same spot derived from different gels
and visually inspected for improper spot matches. The
volume of each spot from three replicate gels was nor-
malized against total spot volume, and the resulting per-
cent volumes (%Vol) were subjected to Student’s t-test
(p < 0.05) for statistical analysis.

Spot excision and in-gel trypsin digestion

The spots displaying more than 1.5-fold change in abun-
dance were selected for further characterization using
MS. Spots were manually excised from preparative CBB
stained gels and were analyzed using MALDI-TOF/TOF
mass spectrometry at the Proteomics Laboratory, Uni-
versity of York, UK. Protein spots were washed three
times with ultrapure water and then destained twice
with 50% (v:v) aqueous acetonitrile containing 25 mM
ammonium bicarbonate, followed by one wash with
acetonitrile. After washing, gel pieces were left to dry in
a vacuum concentrator for 20 min. Sequencing-grade,
modified porcine trypsin (Promega) was dissolved in 50
mM acetic acid supplied by the manufacturer, then
diluted 5-folds by adding 25 mM ammonium bicarbo-
nate to a final trypsin concentration of 0.01 pg/pl. Gel
pieces were rehydrated by adding 10 pl of trypsin solu-
tion, and after 30 min, enough 25 mM ammonium
bicarbonate solution was added to cover the gel pieces.
Digestion reaction was incubated overnight at 37°C.

MALDI-TOF/TOF MS analysis and database searching

One ul aliquot of each peptide mixture was applied
directly to the ground steel MALDI target plate, then an
equal volume of a freshly-prepared 5 mg/ml solution of
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4-hydroxy-o.-cyano-cinnamic acid (Sigma) in 50% aqu-
eous (v:v) acetonitrile containing 0.1%, trifluoroacetic
acid (v:v) was added. Positive-ion MALDI mass spectra
were obtained using a Bruker ultraflex III in reflectron
mode, equipped with a Nd:YAG smart beam laser. MS
spectra were acquired over a mass range of m/z 800-
4000. Final mass spectra were externally calibrated
against an adjacent spot containing six peptides (des-
Argl-Bradykinin, 904.681; Angiotensin I, 1296.685;
Glu'-Fibrinopeptide B, 1750.677; ACTH (1-17 clip),
2093.086; ACTH (18-39 clip), 2465.198; ACTH (7-38
clip), 3657.929.). Monoisotopic masses were obtained
using a SNAP averaging algorithm (C 4.9384, N 1.3577,
O 14773, S 0.0417, H 7.7583) and a S/N threshold of 2.
Ten of the strongest peaks of interest, with an S/N
greater than 30, were selected for MS/MS fragmentation
for each spot. Fragmentation was performed in LIFT
mode without the introduction of a collision gas. The
default calibration was used for MS/MS spectra, which
were baseline-subtracted and smoothed (Savitsky-
Golay, width 0.15 m/z, cycles 4); monoisotopic peak
detection used a SNAP averagine algorithm (C 4.9384,
N 1.3577, O 1.4773, S 0.0417, H 7.7583) with a mini-
mum S/N of 6. Bruker flex Analysis software was used
to perform the spectral processing and peak list genera-
tion for both the MS and MS/MS spectra. The mass
spectral and tandem mass spectral data were submitted
to database searching using a locally-running copy of
the MASCOT program (Matrix Science Ltd., version
2.1), through the Bruker BioTools interface (version
3.2). Search criteria were as follows: database, NCBInr;
taxonomy, Viridiplantae (green plants); enzyme, trypsin;
fixed modifications, carbamidomethyl (C); variable mod-
ifications, oxidation (M); peptide tolerance, 100 ppm;
MS/MS tolerance, 0.5 Da; instrument, MALDI-TOF/
TOF (NCBInr 20090906 (9655479 sequences;
3300246437 residues)). The threshold for positive identi-
fication was a MOWSE score of > 71(p < 0.05).

Statistical analysis

Differences in the percentages of callus formation were
statistically compared by cross tabulation and calcula-
tion of Pearson y” using SPSS software version 14.0
(SPSS, Chicago, IL, USA). A two-tailed Student’s t-test
in Excel medium (Microsoft Office Excel) was employed
to compare relative protein abundance in proteomic
analysis.

Results and discussion

Tissue culture and somatic embryogenesis

Since saffron is a sterile plant (triploid), clonal propaga-
tion through SE is considered as an alternative approach
to the conventional harvesting of styles for the commer-
cial production of saffron metabolites, which have broad

Page 4 of 15

pharmaceutical and coloring properties. Hence, develop-
ing efficient protocols for saffron SE would open new
avenues to the pharmaceutical industry. The first report
of saffron tissue culture dates back to work carried out
by Ding and colleagues [52]. They used corm as the early
explant and successfully regenerated intact plantlets in a
culture media supplemented with IAA and 2,4-D as
PGRs. Here SE was induced from meristematic section of
the corm explants cultured on Murashige and Skoog
medium containing 2,4-D and kinetin. To assess callu-
genesis, total and nodular callus induction frequencies
were calculated which were 62 and 18%, respectively,
after 16 weeks in culture. NC appeared nodular and
translucent in color with smooth surface and no hair like
structures, while non-embryogenic calli (NEC) were
spongy and amorphous. The process of tissue culture
and morphology of NC and NEC are shown in Figure 1.

Protein extraction and 2-DE analysis

To study proteins modulated during somatic to embryo-
genic transition, corm-derived explants along with non-
embryogenic calli (NEC), which did not have the
embryo like structures, and nodular calli (NC), which
contained globular stage embryos, were used for protein
extraction and proteomic analysis (Figure 1). Protein
extraction and solubilization are critical steps for suc-
cessful gel-based proteomic analysis. Due to the high
phenolic content of callus material protein extraction
presents a major challenge. We tried two different pro-
tein extraction methods (TCA acetone precipitation
[53], and phenol extraction [48]) and found that in
agreement with previous results [54] phenol extraction
method gives highly resolved gels with more detectable
spots. Total soluble proteins were extracted from corm
explants, NEC and NC and were resolved by 2-DE. Fig-
ure 2 displays representative gel images of 2-DE pro-
teome pattern of corm explants, NEC and NC.

Image analysis revealed that the proteome profile of
the corm explant was significantly different compared to
its derived NEC and NC (Figure 2). Roughly, 600, 850,
and 800 reproducible spots could be detected in the
corm, NEC, and NC 2D gels, respectively. There were
many high abundant protein spots in the corm explants
gels in the range of 14-20, 30, and 43 kDa that were
either entirely absent or had low abundance in its resul-
tant NC and NEC (Figure 2). When proteomes of NC
and NEC were compared the majority of the protein
spots had similar abundance and only 9 percent showed
differences, indicating that the majority of the proteins
were not changed in NC compared with NEC calli.
Sixty-five spots were statistically significant (p < 0.05)
and showed more than 1.5-fold change in abundance
(Figure 3). As it is shown in the graph (Figure 3), spots
with increasing trend in abundance are dominant.



Sharifi et al. Proteome Science 2012, 10:3
http://www.proteomesci.com/content/10/1/3

Page 5 of 15

(Corm explants)

a globular stage embryo.

Figure 1 Somatic embryogenesis in saffron. Rectangular sections of the meristematic tissue of corm collected in August were used as the
initial explants. SE was induced in MS medium containing auxin (2,4-D) and cytokinin (Kin). Corm explants produced both embryogenic (Nodular
callus, NC) and non-embryogenic (NEC) calli. NC were nodular and translucent in color, while NEC were amorphous and spongy. The

characteristic feature of the globular embryos was that they easily dissociated from mother calli upon touch. White arrow shows the location of

(Nodular callus, NC)

(Non-embryogenic callus, NEC)

Among the identified proteins, twenty appeared to be
increased or decreased in abundance in NEC and NC in
relation to the original corm explants. Sixteen protein
spots (676, 1729, 1147, 1443, 1868, 1644, 584, 621, 1622,
1656, 1750, 1752, 1950, 2150, 2192, and 1596) appeared
to be absent in the corm explants derived gels. More
than 94% of the identified proteins showed an increase
in abundance in NC and NEC compared with their ori-
ginal corm explants. Table 1 shows the list of the identi-
fied proteins with their respective spot ID, theoretical
and experimental isoelectric point (p/) and molecular
weight (MW), protein identity and accession number,
MS score, percent of sequence coverage, PMF/MS-MS
and abundance ratio. The position of the identified pro-
tein spots are shown in gel image Figure 4. In most
cases, the theoretical MWs agreed well with experimen-
tal values except for spot 1868 that had lower experi-
mental MW, which may be due to the possible protein
degradation. Clear correlation was not seen between
theoretical and experimental pIs, because experimental
pls were directly estimated from gel images that are
subjected to perturbation due to inconsistency in pH
gradient across gel strips and variation in the protein
migration during the first dimension. Interestingly, for
spots 1729, 584, 1656, 1752, and 1756 theoretical pIls

were largely deviated from that of corresponding experi-
mental ones. The observed deviations may also be due
to either the possible posttranslational modifications or
the fact that the identified proteins belonged to the spe-
cies other than C. sativus. The determination of p/
directly from protein migration in gels has been found
less accurate than MW [43,46].

Identification and functional classification of SE-
associated proteins

Finally, differentially modulated protein spots (with 1.5
fold change in abundance) were selected and manually
excised from 2D CBB-stained gels and were subjected to
in-gel trypsin digestion and MALDI-TOF/TOF tandem
mass spectrometry identification. Protein identification
was carried out by combined PMF and MS/MS
approach. Search was performed against non-redundant
protein database at the NCBI. Of the 50 candidate spots
analyzed by mass spectrometry only 36 proteins (72%)
were successfully identified, which showed increase or
decrease in abundance (Table 1). For the remaining
spots a low score or no hits were observed. Owing to
the lack of sequence information from C. sativus in the
databases, all identified proteins belonged to other spe-
cies mainly Arabidopsis thaliana and Ricinus communis.
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141

decreased in abundance during somatic to embryonic transition.

.

Figure 2 Comparison of 2-DE gel images derived from corm explants along with its embryogenic (NC) and non-embryogenic (NEC)
calli after SE induction in culture. The black circles show the location of the highly abundant protein spots that completely vanished or

The percentages of sequence coverage of the identified
proteins were 3-80%. Only heat shock 70 kDa interact-
ing protein (535) and mitochondrial heat shock 70 kDa
(542) increased in NC compared to NEC. Glutathione
S-transferase (1729), initiation factor elF-4 gamma
(1868), caffeoyl-CoA O-methyltransferase (1750), and
Cys/Met metabolism PLP-dependent enzyme (2192)
were specifically decreased in NC compared to NEC.

It is important to note that proteins with the same
name might be found in more than one spot. For exam-
ple, we found that, spots 467, 560 and 473 which were
identified as hsp70, spots 1188 and 1297 which were
identified as glutamine synthetase, and spots 1036 and
1042 which were identified as 26S protease regulatory
subunit 6A homolog shifted slightly in p/ and were seen
as spot train in 2D gels (Figure 4). This indicates the
presence of multiple differentially charged isoforms
which are commonly observed with abundant proteins.

Interestingly, spots 686 and 717 which were identified as
chaperonin had the same MW but very different posi-
tions horizontally, suggesting that they may be posttran-
slationally modified [55]. As a consequence, 29 distinct
protein species were identified. Identified proteins were
classified into five functional groups based on their
main biological process http://www.uniprot.org: defense
and stress response (13 spots), protein synthesis and
processing (7), carbohydrate and energy metabolism (6),
secondary metabolism (4), and nitrogen metabolism (3)
(Figure 5).

Differentially accumulated proteins in embryogenic and
non-embryogenic calli

The objective of this study was to gain insight into the
molecular and biochemical changes associated with SE
induction in saffron, which in turn can be useful for the
development of efficient SE protocols. Although, various
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Fold change in abundance (IF)

in abundance in NC compared with NEC.

Spots

Figure 3 Graph shows the frequency distribution of the relative abundance ratios (induction factors) for all matched spots between
NC and NEC gels. The highlighted regions show the statistically significant spots that showed more than 1.5 fold change (increase or decrease)

gene classes have been identified to be involved in SE
[20] but there have only been little successes in finding
early genes whose expression support SE induction [7].
Interestingly, differentially accumulated proteins of sev-
eral different functional categories were observed in this
study. The majority of the protein species identified cor-
respond to enzymes involved in oxidative stress, meta-
bolic processes, and protein synthesis and degradation,
and some of them have not been previously described in
the context of SE. It should be noted, however, that the
levels of some of these proteins, especially defense-
related proteins, might be affected by tissue culture con-
ditions in vitro [56,57]. In the present study, identifica-
tion of the candidate proteins was relied essentially on
homology search to known sequences of the other plant
species because of the poor genome and protein
sequence information that is currently available for Cro-
cus sativus.

SE is a complete cell reprogramming process that
would be associated with complex changes in gene
expression and proteome profile [5,57]. In agreement
with this, we found that the proteome profiles of NC
and NEC were significantly different compared to the
original corm explants, which specifies complete repro-
gramming of gene expression taking place to support
somatic to embryogenic transition. Our results indicate
that the initial stage of dedifferentiation of somatic cells
to embryo-like structure needs global change in gene
expression and protein complement. Of the fifty candi-
date proteins which were analyzed by MS, we were able
to identify only 36 proteins, due largely to the limitation
of the databases used for MS data mining. We will

discuss our proteomic results based on the functional
classification of the differentially accumulated proteins
as shown in Figure 5.

Defense and stress response proteins

In this study based on gene ontology classification, 13
proteins (36%) were categorized as defense and stress
response proteins. Gene expression analyses at both pro-
teome and transcriptome levels have led to the identifi-
cation and characterization of some stress-related genes
and proteins associated with SE. Interestingly, some
reports highlight that somatic embryogenesis itself is
induced by oxidative stresses [15,57]. However, it is
important to take into account that the higher abun-
dance of some of the proteins involved in defense and
stress responses might be evoked by the stresses asso-
ciated with tissues wounding during explant preparation
and subculture.

As stress responsive proteins, we found four heat
shock proteins 70 (HSPs70) (spots 467, 473, 542 and
560), all significantly accumulated in embryogenic (NC)
and non-embryogenic (NEC) calli. In case of spots 535
and 542, an increase in abundance was observed in NC
compared to NEC. Heat shock proteins (HSPs) are a
class of highly abundant proteins that are expressed
upon elevated temperature and many other stresses.
Similar to our results, HSPs proteins have been reported
to be highly increased during somatic embryo matura-
tion and germination of Cork oak [58] and SE of Vitis
vinifera [38], somatic and zygotic embryos of Cyclamen
persicum [41]. dnaK-type hsp70 and mitochondrial
hsp70 have been found to be highly accumulated in the
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Table 1 Differentially modulated proteins (= 1.5-fold change in abundance) in embryogenic (NC) and non-
embryogenic (NEC) calli compared with corm explants in Crocus sativus.

Spot The/Exp® Protein name/Organism Accession No© % PMF/MS-MS® Abundance ratio’
ID? Cov./Scor.?
MW(kDa) p/ NC/Corm NEC/Corm NC/NEC

467 75/80 5/4.89  Heat shock protein 70/Cucumis sativus Q39641 81/556 9/5 1.9%% 1.6% 1.1

473 75/79 5/4.85  Heat shock protein 70/Cucumis sativus Q39641 12/402 6/5 1.6% 1.6% 1.0

535 61/73 5.7/6.27 Heat shock protein 70 (HSP70)- B9RBP6 8/98 4/1 5.6%* 3.6* 1.5%
interacting protein, putative/Ricinus
communis

542 62/73  5/576 Heat shock 70 kDa protein, Q8276 18/88 10/1 5.8+ 36 164
mitochondrial/Solanum tuberosum

560 72/70 55/5.59 Heat shock 70 kDa protein/Zea mays B6U4A3 19/375 12/4 6.3** 5. 1.2

680 59/61 54/561 T-complex protein 1 epsilon subunit, 004450 8/101 4/3 54%% 74%% -14
putative/TCP-1-epsilon/Arabidopsis
thaliana

686 63/62 5.5/520 Chaperonin/Arabidopsis thaliana QILJE4 17/226 7/3 -1.5 -1.6% 1.1

727 57/61 5.5/6.24 Chaperonin/Arabidopsis thaliana Q940P8 20/272 7/4 6.9%* 53% 13

641 60/64  597/627 Chaperonin containing t-complex/ BISUJ3 18/137 9/3 6.1%* 5.1% 1.2
Ricinus communis

676 62/63 6.6/5.03 Rubisco large subunit-binding protein/ P21241 10/96 4/2 > > 13
Brassica napus

1188 47/50 6.9/5.55 Glutamine synthetase precursor/Glycine Q95AGT 16/378 7/4 5.6%* 4.6%* 1.2
max

1297 39/47 5.3/5.73  Glutamine synthetase/Raphanus sativus 024334 17/310 5/3 4.4 3.8 1.2

1729 20/34  9.7/537 Glutathione S-transferase/Gossypium A7KP0O3 6/79 11 > g -14*
barbadense

1656 20/36 9.7/5.01 Glutathione S-transferase/Gossypium A7KPO3 6/86 11 ; g -1.2
barbadense

1950  26/29 6.2/6.04 Glutathione S-transferase U20/ Q8L7C9 11/80 3/2 > g -1.3
Arabidopsis thaliana

1036 47/54 4.8/5.15  26S protease regulatory subunit 6A P54776 27/541 15/7 4.0%* 3.8* 1.0
homolog/Solanum Lycopersicum

1042 47/54 4.8/508 26S protease regulatory subunit 6A P54776 29/516 16/9 5.9%* 4.3% 14
homolog/Solanum Lycopersicum

1136 42/51 6/6.05 dTDP-glucose 4-6-dehydratase/Ricinus B9SZ78 35/381 15/4 3.0% 4.2%% -14
communis

1147 42/51 5.8/6.18 GDP-D-mannose-3',5-epimerase/ AOEJL8 15/108 6/3 > g 1.4*
Malpighia glabra

275 99/99 5.8/6.03  Aconitase/Ricinus communis BISXB6 7/85 6/2 9.1%* 8.6"* 1.0

1756 34/33 9.7/512  6-phosphogluconolactonase, putative/ BORWU6 12/86 2/1 -9.1%* -7.7%% 1.2
Ricinus communis

1443 35/43 4.9/491 Probable fructokinase-2/Arabidopsis QILNE3 22/182 7/3 > g 1.2
thaliana

1199 51/50 5.8/561 Elongation factor Tu, chloroplastic/ P17745 16/360 5/5 1.8%* 14" 13
Arabidopsis thaliana

1868 92/31 5.8/5.14 Initiation factor elF-4 gamma, middle; Q2HSQ9 63/72 5/0 > > -1.4%
Up-frameshift suppressor2/Medicago
truncatula

1644 32/37  569/6.56 Isoflavone reductase-like1/Zea mays P52580 7/85 21 > g -1.1

1596 33/39  576/6.04 Isoflavone reductase-like protein 5/Vitis Q3KN68 15/123 3/1 > > -1
vinifera

1622 34/38 6/6.02 Isoflavone reductase related protein/ 081355 11/147 2/2 > > 1.2
Pyrus communis

896 45/57 5.9/5.14  RNA binding protein 45/Nicotiana QOLEB4 3/88 11 4.7% 5.2% -1
plumbaginifolia

297 90/97  5.28/5.13 Cell division control protein 48 P54609 22/238 12/5 4.2% 3.7%* 1.1
homolog A/Arabidopsis thaliana

1816 22/33 59/6.72  Cysteine proteinase inhibitor 6/ Q8HOX6 25/155 5/2 29% 3.7% 1.2

Arabidopsis thaliana
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Table 1 Differentially modulated proteins (?=? 1.5-fold change in abundance) in embryogenic (NC) and non-embryo-
genic (NEC) calli compared with corm explants in Crocus sativus. (Continued)

584 84/70 94/5.1  Putative uncharacterized protein/Oryza
sativa Japonica Group

621 61/67 5.29/5.7  Phosphoglyceromutase/
Mesembryanthemum crystallinum

1750 27/34 52/55  Caffeoyl-CoA O-methyltransferase/
Solanum tuberosum

1752 42/35 9.3/6.1  Ascorbate peroxidase/Lycopersicon
esculentum

2150 88/19 4.8/48  Copper chaperone/Zea mays

2192 36/18 6.3/6.2  Cys/Met metabolism PLP-dependent

BOFCS8 6/121 4/3 14
Q42908 13/191 5/2 1.2
Q8H9B6 45/488 10/4 g -2.7%*
Q8LSK6 20/268 6/3 g 1.1
B6T1KO 3221 3/3 i’ -14
Q10KP3 13/76 6/0 g -2

enzyme family protein/Oryza sativa
(japonica cultivar-group)

a) The numbering corresponds to the match IDs in 2D gels.
b) Theoretical/Experimental MW (kDa) and pl.
¢) Accession number in Uni-Prot.

d) Percent of sequence coverage and Mascot score resulted from combined MS-MS/MS search.

e) Number of peptide identified by PMF and MS/MS.
f) Fold change in abundance levels, * (p < 0.05), ** (p < 0.01)

early stages of SE in Medicago truncatula [7] and Picea
glauca [43], respectively. Taken together, the data pre-
sented in this work suggest that the increased chaperone
proteins may play a key role in SE possibly by alleviating
stresses associated with global reprogramming during
somatic to embryogenic transition. The results are con-
sistent with other studies showed that HSPs were differ-
entially regulated during somatic embryo development
in response to hormones such as 2,4-D [59,60]. Differ-
ential regulation of HSP genes in some circumstances
may cause growth arrest in globular embryos but not
somatic embryos at other developmental stages [61-63].
Although heat shock proteins are considered as stress
responsive proteins, however, many of them are
expressed during normal cell growth and function as
chaperone aiding in protein folding and subcellular
sorting.

Among the candidate proteins, three (spots 1729,
1950, and 1656) were identified as glutathione S-trans-
ferase (GST). GST appeared to be absent in the corm-
derived gels. It showed a slight decrease in NC com-
pared with NEC, suggesting that this enzyme is an early
responsive protein to SE. Consistently, GST accumula-
tion has been reported in somatic embryos of Cyclamen
persicum [41], Vitis vinifera [38], and embryogenic cells
of Medicago truncatula [39]. GST has diverse functions
including detoxification of xenobiotics and protection
against oxidative stresses, developmental processes and
cell cycle [57,64] and may also have a possible role in
detoxifying excessive amounts of auxin [65]. Another
callus-enriched protein (spot 1752) involved in stress
response was ascorbate peroxidase (APX). Similar to our
results, differential accumulation of APX has been
reported in Vitis vinifera embryogenic and non-

embryogenic calli [38,66]. By converting H,O, to water,
APX contributes to scavenging excess H,O, during oxi-
dative stresses [67]. Reactive oxygen species (ROS) like
H,0O, cause direct damage to the cellular membranes
and oxidation of biological molecules (nucleic acids and
proteins) and finally cell death, therefore, plant cells reg-
ulate ROS levels through sophisticated mechanisms [68].
Oxidative stress imposed by increased levels of ROS has
been reported to improve SE in many plant species
[38,69,70]. Spot 2150, which was matched to copper
chaperone, significantly accumulated in developed calli.
The altered abundance of this protein has also been
reported during SE in Medicago truncatula [7]. Since
free copper is highly reactive and toxic, copper chaper-
ones are involved in intracellular trafficking and loading
of copper into copper-containing proteins [71]. Cu/Zn
superoxide dismutases are enzyme classes that depend
on copper for their catalytic activity. Accumulation of
oxidative stress related proteins may be an essential part
of stress induced SE and would likely enhance somatic
embryo development.

Protein synthesis and processing

Protein synthesis and processing is necessary for accom-
panying somatic to embryogenic transition. Synthesis of
new proteins and removal of old and unnecessary pro-
teins are a prerequisite for the establishment of a new
cell phenotype. The intracellular proteolysis is predomi-
nantly mediated by ubiquitin 26S proteasome machinery
[72]. By eliminating the abnormal proteins, ubiquitin
26S proteasome system contributes to stress responses.
The ubiquitin-proteasome pathway can be regulated at
the level of ubiquitination or at the level of proteasome
activity [73]. Consistently, we found over accumulation
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Figure 4 2-DE map of proteins extracted from NEC after SE induction in vitro. Total soluble proteins were extracted by phenol extraction
method; 160-ug protein was loaded into 18 cm IPG strips with linear pH gradient of 4-7 for isoelectric focusing (IEF). Second dimension was run
in 11.5% SDS-PAGE gels. Proteins were visualized by silver staining. Arrows show the positions of the identified proteins by MS, which showed
statistically significant change in abundance. The numbering corresponds to the match IDs as shown in table 1.

(more than 4 to 5-fold) of a regulatory component of
26S proteasome (spots 1036 and 1042) in NC and NEC.
This implies the possible role of proteasome machinery
in callus establishment through removal of corm asso-
ciated proteins and proteins that are no longer needed.
Changes in proteasome components has also been
reported during somatic and zygotic embryogenesis in
other species [39,40,43,69,74]. Spot 1816 matched to
cysteine proteinase inhibitor 6. Protease inhibitors con-
trol protease activities and could thus regulate protein
turnover during SE. Cysteine proteases constitute a large

family of proteins that function in programmed cell
death (PCD), therefore cysteine proteinase inhibitor may
play a role in regulation of PCD during embryonic
patterning.

Spot 1199, which was matched to chloroplastic elon-
gation factor Tu, specifically accumulated in nodular
calli. This implies the possible role of this protein in
early stage of SE, and suggesting more active protein
synthesis in chloroplast at this stage of embryo develop-
ment. Spot 1868, which was identified as translation
initiation factor eIF-4 gamma, was highly accumulated
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in both developed calli compared with corm explant. A
little decrease was seen in NC compared with NEC. Sev-
eral of the differentially accumulated proteins are known
as chaperonin [75], including chaperonin containing t-
complex polypeptide 1 (spot 641), chaperonin (spots
686 and 727), t-complex protein 1 (680), and Rubisco
large subunit-binding protein (RuBP) (676). These pro-
teins help newly synthesized proteins to fold and mini-
mize protein aggregation upon stresses [76,77]. RUBP is
a 60 kDa molecular chaperone that specifically involved
in Rubisco complex assembly in chloroplast.

Carbohydrate and energy metabolism

Adaptation to environmental conditions in plant cells is
usually accompanied by changing the gene expression
and reorganizing metabolic pathways and physiological
processes [57]. In this study based on functional classifi-
cation, proteins involved in metabolic and energy pro-
cesses comprised the third class of the differentially
modulated proteins (17%). Three of the proteins of this
class constitute the enzymes involved in glycolysis (spot
621, phosphoglyceromutase), tricarboxylic acid cycle,
TCA, (spot 275, aconitase), and pentose phosphate path-
way (spot 1756, 6-phosphogluconolactonase). The
change in glycolytic and TCA cycle enzymes during
zygotic embryogenesis was reported [78], which suggest-
ing more active energy metabolism during embryogen-
esis. In this study, aconitase increased significantly (up
to 8-fold) in NEC and NC compared with their original
corm. Lyngved et al. [42] also found the accumulation
of aconitase during SE in Cyclamen persicum. Aconitase
regulates carbon flow between TCA cycle and the
sucrose synthetic pathway [79] and may also serve as a
sensor for oxidants [80]. Fructokinase-2 (spot 1443)
exclusively increased in developed calli compared with

corm explant. Differential accumulation of fructokinase
has already been reported in Valencia sweet orange SE
[44] and embryogenic calli treated with 2,4-D [45]. In
plants, fructokinases serve as a gateway for fructose
metabolism [81] and specifically catalyze phosphoryla-
tion of fructose to fructose-6-phosphate. Fructose-6-
phosphate is used as a main substrate for several meta-
bolic pathways including starch biosynthesis, glycolysis,
and oxidative pentose phosphate. Recently, it was
reported that upon GA treatment, fructokinase accumu-
lates in germinating rice seeds, which implies the possi-
ble role in dormancy breaking [82].

Spot 1756 was identified as 6-phosphogluconolacto-
nase which catalyzes the hydrolysis of 6-phosphogluco-
nolactone to the sugar acid 6-phosphogluconate as a
part of pentose phosphate pathway. It was significantly
decreased in both developed calli. dTDP-glucose 4-6-
dehydratase (spot 1136) showed a slight decrease in
abundance in NC compared with NEC. dTDP-glucose
4-6-dehydratase was first identified in Salmonella [83]
and functions in biosynthesis of cell wall polysacchar-
ides. Up regulation of its transcript has been shown in
senescent leaves of rice [84]. A deeper analysis of the
carbohydrate metabolism related proteins identified in
this study suggests that they may play a role in regulat-
ing carbon partitioning between different metabolic pro-
cesses during SE.

One of the differentially accumulated spots (spot
1147) was identified as GDP-D-mannose-3’,5’-epimerase
(GME). GME appeared to be absent in 2-DE map of the
corm explant. It showed a significant increase in
embryogenic calli compared with non-embryogenic calli.
GME catalyzes the conversion of GDP-D-mannose to
GDP-L-galactose, and therefore represents the intersec-
tion between L-ascorbate and cell wall polysaccharide



Sharifi et al. Proteome Science 2012, 10:3
http://www.proteomesci.com/content/10/1/3

biosynthesis [85]. It has been shown that GME is a key
regulator of ascorbate biosynthesis pathway and fine-
tunes the balance between ascorbate and cell wall
monosaccharide biosynthesis [85,86]. Ascorbate is one
of the major antioxidants that protects the plant cells
against reactive oxygen species (ROS) generated during
physiological processes and many biotic and abiotic
stresses [85]. Ascorbate serves as a reducing substrate
for ascorbate peroxidase (APX), which catalyzes the
conversion of H,O, to water and generates monodehy-
droascorbate (MDHA) [87]. Some MDHA radicals spon-
taneously dismutate to ascorbate and dehydroascorbate
(DHA). DHA is reduced to ascorbate in a reaction cata-
lyzed by dehydroascorbate reductase, using glutathione
as a specific electron donor [88]. Differential accumula-
tion of GME, as key regulator of ascorbate biosynthesis
pathway, and ascorbate peroxidase during early stage of
SE imply the possible role of the ascorbate metabolism
in scavenging the ROS that might be produced during
the process and likely to play an important role in early
stage of embryo development [89].

Secondary metabolism

Among the 50 MS-analyzed proteins in this study, three
(Spots 1622, 1644, and 1596) were identified as isofla-
vone reductase-like (IRL) proteins (1, 5). They appeared
reproducibly in developed calli and were not detected in
corm explant gels. IRLs have been reported to be
increased differentially in embryogenic cell suspension
of cowpea [74], embryogenic cells of Medicago trunca-
tula [39], and embryogenic calli of Vitis vinifera [66].
IRL specifically catalyzes stereospecific reduction of iso-
flavones in a NADPH-dependent reaction to (3R)-isofla-
vanones [66]. In previous studies, it was shown that IRL
expression is closely correlated with glutathione avail-
ability: it is persistently induced in seedlings of maize
where glutathione content is about four-fold lower than
that of control, and vice versa. This glutathione-depen-
dent regulation indicates that maize IRL may play a cru-
cial role in establishment of a thiol-independent
response to oxidative stress under glutathione shortage
conditions [90]. Additionally, expression of the IRL gene
was demonstrated to be induced by wounding and
pathogen infection [91]. It has been reported that IRL
accumulates in GA treated germinating rice seeds and is
significantly repressed by ABA [82]. In current study,
IRLs accumulation in the initial stage of SE indicates
their critical role in SE.

One of the most interesting proteins identified in this
study was caffeoyl-CoA O-methyltransferase (CCOMT,
spot 1750). CCOMT was accumulated in developed calli
and was significantly decreased in NC compared to
NEC. CCOMT catalyzes the conversion of caffeoyl-CoA
to methylated lignin precursors in lignin biosynthesis
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pathway [92]. Down regulation of CCOMT in alfalfa led
to reduced lignin levels and accumulation of soluble caf-
feic acid B-D-glucoside [93]. The increase in CCOMT
abundance in NEC calli may indicate an increase in cell
wall lignification and subsequent inhibition of SE. In
addition to developmental lignification, lignin biosynth-
esis in tissue culture systems is stimulated by alteration
in growth regulators, water stress, and fungal elicitors
[94]. To our knowledge, differential CCOMT accumula-
tion was not reported in the context of SE. Differential
regulation of enzymes involved in secondary metabolism
suggests a specific role for secondary metabolic path-
ways during SE. However, further experiments will be
required to determine whether any of these proteins are
truly involved in SE.

Nitrogen metabolism
Spots 1297 and 1188 matched to glutamine synthetase
(GS) and glutamine synthetase precursor, respectively.
They significantly increased in developed calli. It has
been shown that glutamine has an important role in
proliferation and development of somatic embryos in
different species [95-97]. GS catalyzes the amidation
reaction of glutamate to glutamine [98]. It seems that
during SE a switch takes place in the nitrogen metabo-
lism so that glutamine synthetase/glutamate synthase
cycle is the prominent pathway in non-embryogenic
cells and germinating embryos whereas during globular
and elongated stage embryos ornithine cycle is enhanced
and predominant [96]. In an effort Higashi and collea-
gues [95] studied the expression of the three isoforms of
GS (CGS102, CGS103 and CGS201) during somatic and
zygotic embryogenesis in carrot. They found that tran-
script levels of CGS102 and CGS201 accumulate during
the early stages of SE and developing seeds, while the
CGS103 transcript only expresses in later stages of seed
development and senescent leaves and is completely
absent in somatic embryos and young leaves. In pre-
vious work by Sghaier-Hammami et al. [99], GS was
shown to be accumulated in somatic embryos compared
to zygotic embryos in date palm. Spot 2192 was identi-
fied as Cys/Met metabolism PLP-dependent enzyme
family protein. It had significantly lower abundance in
NC compered to NEC. This may indicate the possible
inhibitory role of this protein on somatic embryogenesis.
There are also candidate proteins in the list of the
identified proteins that did not reside in these five func-
tional groups, for example, spot 297, which was identi-
fied as cell division control protein 48 homolog A
(CDC48). It has been reported that cell cycle genes play
a key role in SE [100]. CDC48 is a conserved homo-
hexameric AAA-ATPase chaperone required for a vari-
ety of cellular processes. There are several reports
demonstrating that CDC48 is critical for cytokinesis, cell
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expansion, and differentiation in plants [101]. Spot 896
matched to RNA binding protein 45 (RBP45). RBP45
increased significantly in non-embryogenic and embryo-
genic calli.

Conclusions

In conclusion, this is the first proteomics analysis that
examines the proteomic changes that occur during
induction of SE in saffron. 2-DE combined to mass spec-
trometry led to the identification of several different
functional categories of proteins that might be involved
in SE. Our results showed that diverse molecular and bio-
chemical processes are affected during SE. The proteome
pattern of early explants was significantly different com-
pared to its resultant non-embryogenic (NEC) and
embryogenic calli (NC), which points out the necessity
for global reprogramming in gene expression and protein
complement before gaining the potential for SE. By
focusing on specifically accumulated proteins, we aimed
to identify proteins which their expression is necessary
for somatic to embryogenic transition. The proteome
pattern differences between NEC and NC indicate that
full reprogramming was not taken place in NEC. There
were some polypeptides in different regions of NEC gels
that were not detected or had low abundance in NC gels;
this may indicate the possible inhibitory effects of these
proteins on SE. Of the 36 candidate proteins, sixteen
were unique to developed calli. Three proteins were
appeared to be increased in NC compared to NEC, and
one protein (spot 1199) was increased only in NC. Two
proteins (spots 686 and 1756) were reproducibly
decreased in developed calli. The physiological and bio-
chemical roles of these differentially modulated proteins
are complex, and may sometimes conflict with each
other. The analysis of the differentially modulated pro-
teins in the developed calli suggests that the embryogenic
status is related to a better capability of regulating oxida-
tive stresses, both by fine-tuning of the ROS-scavenging
system (mainly through ascorbate-glutathione cycle) and
the maintaining protein structure by means of HSPs.
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