Guo et al. Proteome Science 2012, 10:57
http://www.proteomesci.com/content/10/1/57

PROTEOME
SCIENCE

PS

RESEARCH Open Access

Proteomic identification of MYC2-dependent
jasmonate-regulated proteins in

Arabidopsis thaliana

Jing Guo'?", Qiuying Pang'*', Lihua Wang', Ping Yu', Nan Li" and Xiufeng Yan'"

Abstract

Background: MYC2, a basic helix-loop-helix (bHLH) domain-containing transcription factor, participates in
the jasmonate (JA) signaling pathway and is involved in the modulation of diverse JA functions. However,
a comprehensive list of MYC2-dependent JA-responsive proteins has yet to be defined.

Results: In this paper, we report the comparative proteomics of wild-type (WT) plants and jin7-9, a MYC2 mutant
plant, in response to methyl jasmonate (MeJA) treatment. Proteins from mock/MeJA-treated jin1-9 and WT samples
were extracted and separated by two-dimensional gel electrophoresis. Twenty-seven JA-mediated proteins
demonstrated differential expression modulated by MYC2. We observed that MYC2 negatively regulates the
accumulation of JA-dependent indolic glucosinolate-related proteins and exhibits opposite effects on the
biosynthetic enzymes involved aliphatic glucosinolate pathways. In addition, proteins involved in the tricarboxylic
acid cycle and a majority of the MeJA-inducible proteins that are involved in multiple protective systems against
oxidative stress were reduced in jin1-9/myc2 sample compared to the WT sample. These results support a positive
role for MYC2 in regulating JA-mediated carbohydrate metabolism and oxidative stress tolerance.

Conclusions: We have identified MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana by
performing two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis. The observed pattern of
protein expression suggests that MYC2 has opposite effects on the biosynthetic enzymes of indolic and aliphatic
glucosinolate pathways and positively regulates JA-mediated carbohydrate metabolism and oxidative stress
tolerance-related proteins. Furthermore, it is very interesting to note that MYC2 plays opposite roles in the
modulation of a subset of JA-regulated photosynthetic proteins during short-term and long-term JA signaling.
This study will enhance our understanding of the function of MYC2 in JA signaling in Arabidopsis thaliana.
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Introduction

Jasmonates (JAs), including jasmonate and methyl jas-
monate (MeJA), are a group of plant growth regulators
and signaling molecules derived from linolenic acid.
They are well known because they have pivotal roles in
many aspects of plant development such as root growth,
senescence, fertility, production of secondary metabolites
and responses to abiotic and biotic stresses [1-5].
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To date, various genes involved in the JA signaling
pathway have been identified. The CORONATINE-
INSENSITIVE]L (COII) gene, which is a JA receptor,
encodes an F-box protein [6,7]. COI1 combines with
Skp1-like 1, Skpl-like 2, cullin 1, and ring-box protein 1
to form an E3 ubiquitin ligase known as the SCF-°"
complex [8-10], which promotes the ubiquitination and
degradation of the repressors of the JA signaling path-
way. The JA ZIM-domain (JAZ) proteins (JAZ1 to
JAZ12) that share a conserved ZIM and Jas motif are
targets of the SCF“™ complex; therefore, they act as
negative regulators of the JA-responsive genes [11-16].
Recently, it was demonstrated that a co-receptor complex
consisting of COI1, JAZ, and inositol pentakisphosphate
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strongly binds to (+)-7-iso-JA-Ile and therefore functions
as the jasmonate receptor [17]. In addition, three closely
related basic helix-loop-helix (bHLH) domain-containing
transcription factors (TFs), MYC2, MYC3, and MYC4,
interact with JAZs to mediate JA responses [18-20].

MYC2 is the most well-known and studied MYC iso-
form and is involved in JA signaling. MYC2 is allelic to
the JAI1/JIN1 (JASMONATE-INSENSITIVEI) locus and
binds to the G-box and derived sequences in the pro-
moter regions of JA-induced genes [11,21-23]. All three
MYC proteins showed highest binding affinity to a
canonical G-box, whereas MYC2 and MYC3 were undis-
tinguishable, MYC4 showed lower affinity for the G-box
variants [19]. It has been established that MYC3 and
MYC4 act in concert with MYC2 during the activation
of JA responses, including JA-induced expression of
VSP2 [19]. In a recent study, by performing microarray
analysis on the jinl mutant, it was demonstrated that
MYC?2 regulates the expression of a considerable num-
ber of JA-responsive genes, including the genes involved
in JA-induced indolic glucosinolate and auxin biosyn-
thesis, and those related to oxidative stress tolerance,
and insect herbivory resistance [22]. However, the pro-
teins regulated by MYC2 at the protein level remain to
be elucidated.

In the present study, the effect of MeJA on the jinI-9/
myc2 and WT Arabidopsis thaliana (Arabidopsis) prote-
ome was assessed by two-dimensional gel electrophor-
esis (2-DE) and MS/MS analysis. The main objectives of
this study were to identify proteins that were differen-
tially expressed in the mock and MeJA-treated jinI-9/
myc2 and WT samples and to elucidate the role of MYC2
in JA signaling pathway. A list of MYC2-dependent JA-
responsive proteins was obtained, and this will enhance
our understanding of the function of MYC2 in JA signal-
ing in Arabidopsis.

Results and discussion

Identification of MYC2-dependent JA-regulated proteins
by 2-DE and MS/MS

To investigate the role of MYC2 in JA-regulated gene
expression at the posttranscriptional level, three-week-
old WT and jinl-9/myc2 mutant plants were treated
with 200 uM MeJA or mock solution, and a 2-DE strat-
egy was used to analyze protein expression changes in
response to short-term (6 h) and long-term (48 h) MeJA
treatment. The short-term time point was chosen based
on previously published Arabidopsis cDNA microarray
reports, which demonstrated that the expression of a
large number of genes was significantly altered by
MeJA-treatment for 6 h [22]. We hypothesized that gene
expression at the transcriptional level may not correlate
well with that observed at the protein level [24]; there-
fore, 48 h was chosen for the long-term treatment.
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Approximately 1500 protein spots were detected by
Coomassie Brilliant Blue staining, and approximately
900 protein spots matched across all the gels. Represen-
tative images of the 2D gel maps are shown in Figure 1.
Proteins were well separated in both dimensions. The
percentage volumes of protein spots in triplicate sam-
ples were subjected to statistical analysis, and the pro-
tein spots were considered to be differentially expressed
if they had a relative volume ratio above the threshold
(> 1.5 fold and p <0.05) for at least one time point after
MeJA treatment. The comparative image analysis of
MeJA-treated WT and jinl-9/myc2 mutant plants led to
the identification of 30 protein spots that had changed
significantly in abundance (p <0.05). Protein spots that
contained differentially expressed proteins were excised,
trypsin digested, and analyzed by MS analysis. These
30 protein spots were subjected to MS/MS sequencing
via MALDI-TOF mass spectrometry, and 27 unique pro-
teins were successfully identified with high confidence by
MS analysis and by performing a search against the
MASCOT database (Figure 1, Table 1, Additional file 1).
These results suggest that both MeJA treatment and the
presence of MYC2 are required for the regulation of
these 27 proteins.

To confirm whether MeJA is indispensable for the
regulation of these 27 proteins, protein profiles of WT
and jinl-9/myc2 mutant plants that were mock-treated
were compared. Our results demonstrate that, in the ab-
sence of MeJA treatment, there are no obvious differ-
ences in the expression of these 27 proteins (< 1.5 fold
or p>0.05) between the WT and jinI-9/myc2 mutant
plants (Additional file 2). These results suggest that
MeJA treatment is essential for the regulation of these
proteins. To verify whether MYC2 is required for JA-
regulated expression of these 27 proteins, the protein
profiles of mock-treated jinl-9/myc2 and MeJA-treated
jinl-9/myc2 mutant plants were analyzed, and no signifi-
cant differences (< 1.5 fold or p>0.05) were observed
(Additional file 2). Thus, MYC2 is essential for the var-
ied expression of these proteins, and JA regulates the
expression of these 27 proteins in a MYC2-dependent
manner. As shown in Table 1, after 6 h of MeJA treat-
ment, the expression of 19 proteins in jinl-9/myc2
plants changed significantly. The expression of 15 pro-
teins decreased, whereas the expression of 4 proteins
increased. The expression of 11 proteins was signifi-
cantly decreased in jinl-9/myc2 plants that were treated
with MeJA for 48 h. These results suggest that MYC2
might predominantly play a positive role in short-term
and long-term JA signaling events.

Functional classification of JA-regulated proteins
Identification of proteins that are differentially expressed
due to MeJA treatment and MYC2 expression is an
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Figure 1 2-DE gel analysis of proteins extracted from the jin1-9/myc2 mutant. Separation on the first dimension was performed using

1300 pg of total soluble proteins using the linear gradient IPG strips with pH 4-7. In the second dimension, 12.5% SDS-PAGE gels were used, and
proteins were visualized using coomassie brilliant blue. Arrows indicate 27 protein spots that changed reproducibly and significantly in MeJA-
treated jin1-9/myc2 mutant plants compared to MeJA-treated wild-type plants. A and B represent 2-DE gels from jin1-9/myc2 samples treated with
200 mM MelJA for 6 h and 48 h, respectively. 2-DE experiments were repeated 3 times with independent biological replicates.
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important step in understanding JA-regulated MYC2-
dependent signaling pathways. JA plays a critical role in
plant defense against pathogens and insects and modu-
lates the biosynthesis of secondary metabolites, the de-
velopment of the flower and fertility by regulating the
expression of related genes [25]. To further examine the
differentially expressed proteins, the identified proteins
were grouped according to functional categories based
on Gene Ontology and by using the MAPMAN soft-
ware application. As expected, the identified proteins
covered a wide range of molecular functions, including

glucosinolate metabolism (22.2%), stress and defense
(33.3%), photosynthesis (22.2%), carbohydrate metabol-
ism (7.4%), protein folding and degradation (11.1%), and
others (3.7%) (Table 1, Figure 2). The three largest
groups of proteins consisted of 21 proteins, which were
associated with photosynthesis, stress and defense, and
glucosinolate metabolism.

Glucosinolate metabolism
Glucosinolates are a group of nitrogen- and sulfur-
containing secondary metabolites that largely exist in the



Table 1 Protein identities and relative changes in their expression between MeJA-treated jin1-9/myc2 and wild-type plants after 6 h or 48 h of MeJA treatment

Spot Category and name gi Exp Thero  Score® SCf PNY MeJA-Treated MeJA-Treated Fold p-value MeJA-Treated MeJA-Treated Fold  p-value
No.? Number® pl/kDa®  pl/kDa® (%) WT 6h jin1-9 6h"  change WT 48h jin1-9 48h"  change
Vol% Vol% Vol% Vol%
(mean+SD) (mean=SD) (mean+SD) (mean+SD)
Glucosinolate
metabolism
216  glutathione gi|15224582 582/33.0 554/29.8 66 5 2 0.11+0.00 0.17+0.00 151 0.00 0.17+0.10 0.09+0.09 -1.88 037

S-transferase ERD13
(GSTF10)Ne9

327 myrosinase-binding- gi|30684083 5.14/76.0  5.12/485 131 21 6 0.05+0.01 0.04+0.00 -1.15 023 0.08+0.02 0.04+0.01 -2.10 0.02
like protein

509 sulfotransferase 18 gi[15221130 566/57.0 5.52/40.7 177 13 4 0.01+0.00 0.00+0.00 -9999 0.01 0.00+0.00 0.00+0.00 — —

523 3-isopropylmalate gi|15241338 504/580 5.75/44.2 88 2 1 0.08+0.00 0.05+0.01 -1.63 0.00 0.00+0.00 0.00+0.00 — —
dehydrogenase"?

556 amidase 1 gi|18390964 6.08/61.0 5.83/45.4 152 22 6 0.02+0.01 0.00+0.00 -9999 0.04 0.02+0.03 0.00+0.00 -9999 0.19

864  thioglucoside gi|15809938  5.24/1210 567/61.7 141 10 4 0.02+0.01 0.00+£0.00 -9999 0.02 0.00+£0.00 0.00+£0.00 — —
glucohydrolase 1
(TGGT)
Stress and defense

113 glutathione qi|8778432 566/319 6.82/50.6 150 6 2 0.12+0.03 0.07+0.02 -1.75 0.05 0.48+042 0.31+0.02 -1.56 0.00
S-transferase
DHAR17%

161  putative glyoxalase i|9828630 508/389 6.97/40.3 85 12 3 0.04+0.02 0.00+0.00 -9999 0.02 0.05+0.01 0.02+0.01 -2.22 0.01

183  glutathione gil497788 640/29.1  5.80/23.5 116 Il 2 0.03+0.01 0.00+0.00 -9999 0.00 0.08+0.00 0.01+0.00 -14.16 0.00
S-transferase
(AtGSTF3)

203 putative gi|15236635 6.01/44.0 5.90/38.1 163 12 4 0.11+0.01 0.13+0.01 1.14 0.05 0.30+0.02 0.19+0.03 -161 0.01
arginase”™®*

275  HSP20-like gij3193303 4.17/360 442/280 103 16 4 0.04+0.01 0.00+0.00 -9999 0.00 0.02+0.01 0.00+0.00 -9999 0.09
chaperones protein

338 putative plastid- gi|15233357 452/410 545/350 161 23 5 0.02+0.01 0.00+£0.00 -9999 0.00 0.13+£0.08 0.03+£0.03 -4.55 0.09
lipid-associated
protein 1

408  O-acetylserine (thiol) gi[15224351 559/46.0 8.13/420 183 29 8 0.02+0.00 0.10+0.01 4.70 0.00 0.02+0.01 0.00+0.00 -9999 012
lyase B (oasB)

437 O-acetylserine (thiol) gi|6899947 575/490 6.96/415 96 12 3 0.02+0.01 0.00+0.00 -9999 0.01 0.00+0.00 0.00+0.00 — —
lyase isoform C
(0asQ)

872 luminal binding gi|1303695 5.16/1220 5.08/73.7 165 " 6 0.04+0.01 0.03+£0.00 -1.67 0.04 0.00+0.00 0.00+0.00 — —

protein (BiP2)
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Table 1 Protein identities and relative changes in their expression between MeJA-treated jin1-9/myc2 and wild-type plants after 6 h or 48 h of MeJA treatment

(Continued)

126

170

233

247

346

865

272

766

38

178

799

30

Photosynthesis

chlorophyll
a/b-binding protein

chloroplast
NAD-MDH

coproporphyrinogen
Il oxidase

uroporphyrinogen
decarboxylase 2

ribulose bisphosphate
carboxylase

transketolase-like
protein

Carbohydrate
metabolism

3-oxoacyl-[acyl-carrier
protein] reductase
(NADH)

2-oxoglutarate
dehydrogenase,
E3 subunit

Protein synthesis,
folding and
destination

40S ribosomal
protein S12-1

ATP-dependent Clp
protease proteolytic
subunit 2

TCP-1/cpné0
chaperonin family
protein

other

SRPBCC ligand-
binding domain-
containing protein

0i[13265501
4i[3256066
4i[240254000
gi15226690
qi[1944432

gil7329685

4i[15229203

gi4210334

gi[15218373

gi|18420643

gi[15231255

gi|15236566

547/239

6.18/39.8

5.51/50.0

6.72/54.0

5.93/81.0

5.56/120.0

6.40/36.1

6.40/95.0

5.05/20.0

6.40/29.1

5.19/101.0

641/18.1

6.52/26.1

8.48/42.6

6.24/44.1

8.29/43.7

6.12/48.0

5.80/81.9

6.12/28.2

6.96/54.0

5.38/15.7

6.71/264

5.60/63.7

591/17.6

178

295

155

517

167

13

61

137

73

92

308

35

32

34

22

27

0.12+0.01

0.17£0.11

0.07+0.00

0.07+0.00

1.04+0.68

0.08+0.00

0.03+0.01

0.02+0.00

0.08+0.01

0.02+0.01

0.01+0.01

0.12+0.08

0.19+0.01

0.03+0.03

0.07+0.00

0.07+0.00

0.13+0.09

0.15+0.02

0.00+0.00

0.00£0.00

0.02+0.00

0.00+0.00

0.00+0.00

0.11£0.06

1.60

-5.88

-8.33

1.84

-9999

-9999

-3.76

-9999

-9999

0.00

0.10

0.14

0.10

0.08

0.01

0.00

0.00

0.00

0.01

0.02

0.07+0.00

0.13+0.01

0.10+0.01

0.03+0.01

1.00+0.26

0.00£0.00

0.03+0.00

0.00£0.00

0.08+0.01

0.00+0.00

0.00+0.00

0.34+0.03

0.06+0.00

0.09+0.02

0.06+0.00

0.00+0.00

0.00+0.00

0.00+0.00

0.03+0.00

0.00+0.00

0.03+0.01

0.00+0.00

0.00+0.00

0.00+0.00

-9999

-9999

-2.37

-9999

0.13

003

0.01

0.01

0.00

0.05

0.01

0.00

2 Assigned spot number as indicated in Figure 1. ° Database accession numbers according to NCBInr. © Experimental mass (kDa) and pl of identified proteins. ¢ Theoretical mass (kDa) and pl of identified proteins.®
Mascot score reported after searching against the NCBInr database. f Sequence coverage. 9 Number of peptides sequenced. " Spot abundance change is expressed as the ratio of intensities (vol.%) of up-regulated

(positive value) or down-regulated (negative value) proteins between MeJA-treated jin1-9 and WT. @ Negatively regulated by MYC2. " Positively regulated by MYC2. “P Up-regulated by MeJA. Paired Student's t-test
was used to define the significant changes ( p <0.05). -9999 indicates the protein spots were not detectable in jin1-9 after MeJA treatment, short string indicates the protein spots were not detectable in WT and jin1-9

after MeJA treatment. Three treatments were performed.
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Brassicaceae plants, including Brassica crops and the
reference plant, Arabidopsis [26,27]. Glucosinolates are
biosynthesized from amino acids and are classified as ali-
phatic, aromatic, and indolic glucosinolates depending
on the origin of the amino acid. The biosynthesis of glu-
cosinolates occurs in three stages, including side-chain
elongation of the amino acids, formation of the core
structure, and secondary modifications [28], and it is
regulated by the JA signaling pathway [29-31].

An increase in glutathione S-transferase ERDI13
(GSTF10, spot 216), a protein involved in indolic gluco-
sinolate biosynthesis, was detected in jinl-9/myc2 com-
pared to WT plants after 6 h of MeJA treatment
(Table 1). GSTF10 belongs to the phi class of GSTs and
catalyze the biosynthesis of the glucosinolate core struc-
ture by adding cysteine during CYP83-catalyzed aldox-
ime oxidation to form s-alkyl-thiohydroximate in indolic
glucosinolate biosysthesis [32,33]. In a previous study,
microarray analysis was used to demonstrate that MYC2
negatively regulates JA-dependent indolic glucosinolate
biosynthesis [22]. In addition, previous studies showed
that GSTFI0 was induced by JA/MeJA, and at the
mRNA level, the induction was stronger with MeJA in
jinl-9/myc2 compared to WT plants [22,34]. Consistent
with these observations, our results indicate that GSTF10
is negatively regulated by MYC2 in response to MeJA
treatment. Within the indolic glucosinolate biosynthetic
pathway, the indole-3-acetaldoxime pathway overlaps with
the TAA biosynthetic pathway in indolic glucosinolate-
producing plant species [35]. It has been reported that
MeJA increases IAA levels [22,36]. Our result provide
additional proof to support the observation that amidase 1
(AMI1, spot 556), a specific indole-3-acetamide amidohy-
drolase that catalyzes the synthesis of indole-3-acetic acid
from indole-3-acetamide [37], is induced in response to

MeJA treatment, and the expression of AMI1 is decreased
in jin1-9/myc2 plants compared to WT plants after treat-
ment with MeJA for 6 h. This result indicates that MYC2
is involved in MeJA-induced IAA biosynthesis and might
coordinate MeJA-induced IAA and indolic glucosinolate
biosynthetic pathways.

As to the proteins involved in aliphatic glucosinolate
biosynthesis, we observed that, following MeJA treat-
ment for 6 h, sulfotransferase 18 (SOT18, spot 509) and
3-isopropylmalate dehydrogenase (IPMDHI, spot 523)
were expressed at reduced levels in jinl-9/myc2 plants
compared to WT plants (Table 1). Sulfotransferases
catalyze the sulfation of desulfoglucosinolates, the final
step in the biosynthesis of the glucosinolate core struc-
ture [38]. In Arabidopsis, three sulfotransferases catalyze
a broad range of sulfation reactions for desulfoglucosi-
nolates; however, in a competitive situation, SOT18
(AtST5b) preferentially catalyzes the formation of long-
chain desulfoglucosinolates derived from methionine
[38]. AtST5b has been shown to be induced by JA/MeJA
[34], and we speculate that JA signaling might regulate
aliphatic glucosinolate biosynthesis through AtST5b in a
MYC2-dependent manner. IPMDH is involved in leucine
biosynthesis and catalyzes NAD"-dependent oxidation
and decarboxylation of 3-isopropylmalate to produce 4-
methyl-2-oxovalerate [39]. The Arabidopsis genome
encodes three IPMDHs (AtIPMDHI1, AtIPMDH2, and
AtIPMDH3), and among these, AtIPMDH1 plays a key
role in methionine chain-elongation for the synthesis of
aliphatic glucosinolates [40]. Consistent with the up-
regulation response of the AtIPMDHI after MeJA treat-
ment at the transcriptional level [40], our results suggest
that AtIPMDHLI is positively regulated by MYC2 in the
JA signaling pathway. In contrast to the negative role of
MYC2 in JA-dependent indolic glucosinolate biosynthesis
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[22], it appears that MYC2 exhibits opposite effects on
the biosynthetic enzymes of indolic and aliphatic glucosi-
nolate pathways, as suggested by the expression of
GSTF10, IPMDH]1, and ST5b in this study. These results
might be due to the homeostatic control of glucosinolate
synthesis and crosstalk between indolic and aliphatic glu-
cosinolate biosynthesis [28,41].

The degradation products of glucosinolates play im-
portant roles in mediating the interactions of plants with
their biotic and abiotic environment (e.g., defense against
insects, phytopathogens and sulphur/nitrogen metabol-
ism), which are mediated by myrosinases (}-thioglucoside
glucohydrolase, TGG). Myrosinases are part of a complex
enzyme system that includes myrosinase-binding proteins
(MBPs) and myrosinase-associated proteins [42,43]. There
are multiple isoenzymes of myrosinase in plants [43], and
their expression was demonstrated in restricted tissues
[42,44]. Capella et al. reported that COII controls MBP
expression in flowers and dramatically affects myrosinase
expression and activity in Arabidopsis [45]. Myrosinase is
a COIl-dependent JA-regulated protein, which was
demonstrated by 2-DE DIGE analysis [46]. In this study, a
decrease in thioglucoside glucohydrolase 1 (TGG1, spot
864) and myrosinase-binding-like protein (spot 327) was
observed in jinl-9/myc2 plants compared to WT plants
in response to MeJA treatment for 6 h and 48 h, respect-
ively (Table 1). These results suggest that MYC2 is a
positive regulator of the JA-induced expression of these
two proteins. Some myrosinases exhibit pronounced sub-
strate specificity towards glucosinolates (eg. crambe myr-
osinase from Crambe abyssinica is highly specific for
epi-progoitrin), and the substrate specificity could be
affected by associated factors, including the myrosinase
binding protein and myrosinase-associated proteins
[43,47]. It is possible that the two proteins (spots 864
and 327) are part of the myrosinase system, which tar-
gets the functional glucosinolates involved in the MYC2-
dependent MeJA-induced defense reaction.

Expression changes in five genes that encode the identi-
fied glucosinolate metabolism-related proteins were ana-
lyzed by performing qRT-PCR analysis. Our results
demonstrated that the expression of these five genes was
similar and consistent at the mRNA and protein level
after 6 h of MeJA treatment (Figure 3). However, the
expression of these genes at the transcriptional level was
different from that observed at the protein level after 48 h
of MeJA treatment (Figure 3). This negative protein-
mRNA correlation was observed in many other studies
[48-50] and indicates that mRNA stability, mRNA spli-
cing, translation, and post-translational events including
protein stability and modification are pivotal events in the
regulatory mechanisms in biological systems. Thus, prote-
omic analysis is a direct and efficient approach for study-
ing regulatory mechanisms in biological systems.
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Stress and defense

JA activates plant defense mechanisms in response to
biotic and abiotic stresses [51]. It has been reported that
jinl/myc2 plants display increased resistance to fungal
and bacterial pathogens [23,52-54]. In the event of biotic
stresses, such as herbivory insect feeding, the JA signal-
ing pathway generally accelerates glucosinolate metabol-
ism or the degradation of essential amino acids in the
herbivore midgut by activating specific amino acid
enzymes [55]. Interestingly, we found that despite the
accumulation of the different indolic glucosinolate
metabolism-related proteins discussed above, the expres-
sion of a putative arginase (spot 203, Table 1), the ortho-
log of the Solanum lycopersicum arginase, which reduces
larval weight gain by catabolizing the essential amino
acid arginine in the phytophagous insect midgut [55],
was reduced in the MeJA-treated jinl-9/myc2 mutant,
which is consistent with the results obtained from
transcriptomic analysis [22]. The varied expression of
arginase and indolic glucosinolate metabolism-related
proteins indicates that MYC2 function is required for
JA-mediated insect resistance in Arabidopsis.

JA signaling is important for oxidative stress tolerance.
Alteration in the expression of five proteins in response
to oxidative stressors was detected, including two cyst-
eine synthases (oasB, spot 408 and oasC, spot 437),
two glutathione S-transferases (DHARI, spot 113 and
AtGSTES3, spot 183) and a putative glyoxalase (spot 161)
(Table 1). Many abiotic stresses such as drought, heat
or salt will cause reactive oxygen species (ROS) produc-
tion and oxidative damage. In higher plants, glutathione
(GSH) plays a considerable role in oxidative stress resist-
ance because it can donate reducing equivalents for
scavenging the ROS [56]. Biosynthesis of cysteine is
regarded as the rate-limiting step in the production of
GSH in plants and is implicated in scavenging ROS
and in promoting resistance to abiotic stresses [57,58].
The protein level of cysteine synthetase was induced
by MeJA, which produced an increase in the total cyst-
eine content [59,60]. OasB and oasC have been identi-
fied as enzymatically true O-acetylserine (thiol) lyases,
which catalyze the second step of cysteine biosynthesis
[57,61-63]. When jinl-9/myc2 mutants or WT plants
were treated with MeJA for 6 h, the expression of oasB
increased, whereas the expression of oasC decreased
(Table 1). This indicates that oasB and oasC play diverse
roles in instantly responding to oxidative stress in the JA
signaling pathway. In addition to cysteine biosynthesis,
plants have glyoxalase systems that include glyoxalase I
and glyoxalase II, which provide protection against oxi-
dative damage [64], and a peroxisomal membrane-
associated ascorbate-dependent electron transfer system,
which consists of monodehydroascorbate reductases
(MDAR and DHAR) to protect against oxidative stress.
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Treatment with JA increases the de novo synthesis of
ascorbate and DHAR and ascorbate peroxidase activity
[3,22,59,65]. We observed that the induction of putative
glyoxalase and DHAR1 by MeJA was reduced in jinI-9/
myc2 plants compared to WT plants, and the induc-
tion of DHARI is consistent with the results obtained
from transcriptomic analysis and with the change in
dehydroascorbate reductase in the MeJA-treated coil-I
mutant [22,46]. These results suggest that JA-induced
dehydroascorbate reductase expression is COI-MYC2-
dependent. In addition, glutathione S-transferase (AtGSTF3,
spot 183), a member of the phi class of GST, which pro-
tects plants against oxidative stress [66], is expressed at
much lower levels in jinl-9/myc2 plants compared to
WT plants following 6 h and 48 h of MeJA treatment
(Table 1). Overall, the expression of majority of the
MeJA-induced proteins associated with multiple protect-
ive systems against oxidative stress (spots 113, 161, 183,
437) was reduced in jinlI-9/myc2 plants compared to
WT plants (Table 1). These results support the positive
role of MYC2 in regulating JA-mediated oxidative stress
tolerance [22].

Three other proteins were detected in response to
stress. A HSP20-like chaperone protein (spot 275)
and a fibrillin precursor protein (putative plastid-lipid-
associated protein 1, spot 338) were decreased in jinl-9/
myc2 plants compared to WT plants after MeJA treat-
ment (Table 1). HSP20 has a protective role against a var-
iety of stressful conditions, including high temperature,
high salt, cold, oxidative stress, water stress and toxic
metals [67-73]. Fibrillin accumulation enhances the toler-
ance of photosystem II toward light stress-triggered
photoinhibition in Arabidopsis [74]. Our results demon-
strated that HSP20 and the fibrillin precursor protein are
positively regulated by MYC2 in the JA signaling pathway
and therefore might be associated with MYC2-dependent
JA-mediated abiotic stress tolerance. In addition, the
expression of a luminal binding protein (BiP2, spot 872)

was decreased in jinl-9/myc2 plants compared to WT
plants after MeJA treatment (Table 1). The expression
of BiP responds to multiple abiotic and biotic stressful
conditions, such as fungus infestation, insect attack, nutri-
ent deficiency, drought tolerance, cold stress and MeJA
treatment [59,75-77]. The decreased induction of BiP2
in MeJA-treated jinlI-9/myc2 plants indicates that the
plants might induce BiP to counteract abiotic and biotic
stress in a MYC2-dependent manner in the JA signal-
ing pathway.

Photosynthesis-related proteins

We identified six photosynthesis-related proteins, includ-
ing two whose expression was increased and four whose
expression was decreased (Table 1). With regards to pro-
teins involved in chlorophyll biosynthesis, there was a
decrease in the induction of coproporphyrinogen III oxi-
dase (spot 233) and uroporphyrinogen decarboxylase 2
(spot 247) after 48 h of MeJA treatment in jinl-9/myc2
plants compared to WT plants. Regarding light reaction-
related proteins, the expression of a chlorophyll a/b-
binding protein (spot 126) was increased in jinl-9/myc2
plants after 6 h of MeJA treatment. In addition, the ex-
pression of ribulose bisphosphate carboxylase (Rubisco,
spot 346), a Calvin cycle-related protein, was decreased
in jinl-9/myc2 plants after 48 h of MeJA treatment,
whereas transketolase-like protein (spot 865) was
increased in jinl-9/myc2 plants after 6 h of MeJA treat-
ment (Table 1). JA has an inhibitory effect on photosynthesis
[78] because it represses the expression of photosynthesis-
related genes [79,80]. Chlorophyll biosynthesis-related
proteins, chlorophyll a/b-binding proteins, and Rubisco
proteins were down-regulated by MeJA treatment [59],
and treatment with exogenous JA or MeJA caused a
decrease in the rate of photosynthetic CO, fixation,
Rubisco activity, and chlorophyll content [80,81]. Rubisco
is the major enzyme that limits photosynthetic CO,
assimilation and photorespiration [82], while transketolase
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plays a key role in limiting the maximum rate of photo-
synthesis in the presence of saturating light and CO, [83].
The increase in the level of chlorophyll a/b-binding pro-
tein and transketolase-like protein after 6 h of MeJA
treatment in jinl-9/myc2 plants compared to WT indi-
cates that there is likely a temporary increase in the
photosynthetic rate in MeJA-treated jinI-9/myc2 plants.
However, the decreased induction of Rubisco, copropor-
phyrinogen III oxidase, and uroporphyrinogen decarb-
oxylase 2 expression in jinl-9/myc2 plants compared to
WT plants suggests that the photosynthetic rate might be
decreased in long-term MeJA-treated jinI-9/myc2 plants.
Thus, MYC2 could be mediating diverse roles during dif-
ferent stages of the JA signaling pathway. It has been
reported that JA-regulated posttranscriptional expression
of Rubisco and transketolase requires the inhibitory effect
of COIl [46]. Considering the diverse roles of MYC2
observed in our study, we speculate that JA probably inhi-
bits photosynthesis via the COI1-MYC2 pathway.

Carbohydrate metabolism-related proteins

It has been reported that MeJA can induce carbohydrate
catabolism [59]. During carbohydrate metabolism, car-
bohydrates are hydrolyzed to monosaccharides, which
subsequently undergo glycolysis, the tricarboxylic acid
cycle (TCA cycle) and electron transport chain/oxidative
phosphorylation under ideal conditions. 3-Oxoacyl-
[acyl-carrier protein] reductase (NADH, spot 272) and
2-oxoglutarate dehydrogenase, E3 subunit (E3, spot 766),
which are commonly involved in the TCA cycle, are
decreased in abundance following MeJA treatment in
jinl-9/myc2 plants (Table 1). Several proteins involved
in the TCA cycle, including the E3, were increased by
MeJA treatment [59], and sucrose levels were reduced in
MeJA-treated Medicago truncatula cell culture samples
[84]. Based on these published observations and our
results, we believe that MYC2 has a positive role in
MeJA-induced carbohydrate metabolism.

Protein synthesis, folding, and degradation-related
proteins

MeJA leads to the suppression of total protein and RNA
synthesis as well as the activity of nuclear RNA poly-
merases [85]. 40S ribosomal protein S12-1 (spot 38),
TCP-1/cpn60 chaperonin family protein (spot 799) and
ATP-dependent Clp protease proteolytic subunit 2 (spot
178) were decreased in MeJA-treated jinl-9/myc2 plants
compared to WT plants (Table 1). Protein folding and
degradation play a vital role in the regulation of meta-
bolic processes and stress responses. The key rate-
limiting enzymes and misfolded/damaged proteins are
regulated by different strategies in plants. Correct fold-
ing and subsequent assembly into oligomers is required
for functional enzymes. Plants can refold the misfolded
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proteins by chaperonins, which includes the TCP-1/
cpn60 chaperonin protein family [86-88]. It was reported
that the TCP-1/cpn60 chaperonin proteins are increased
in response to oxygen radicals and bacterial infection
and are essential for the correct folding and assembly of
polypeptides into oligomeric structures [86,89]. Further,
plants can remove the excess or the misfolded/damaged
proteins by proteolysis, and most of the targeted intracel-
lular proteolysis is performed by the energy-dependent
Clp protease [90]. These results imply that MYC2
is a positive mediator of JA-regulated protein folding
and degradation.

Conclusions

In this study, we applied comparative proteomic
approaches to obtain a comprehensive proteomic de-
scription of MeJA-treated jinl-9/myc2 and WT plants.
Quantitative analysis of 1500 proteins on 2D gels
showed that 30 protein spots changed significantly, and
of these, 27 were identified by MS analysis, and their
functions were determined. The identified proteins were
involved in glucosinolate metabolism, stress and defense,
photosynthesis, carbohydrate metabolism, protein fold-
ing, and degradation, indicating that MYC2 regulates
many of the JA-dependent functions in Arabidopsis. We
observed that MYC2 exerts negative and positive effects
on indolic glucosinolate biosynthetic enzymes and the
myrosinase system, respectively. These results imply
that MYC2 is a negative regulator of the JA-dependent
accumulation of indolic glucosinolates. Interestingly,
we observed that MYC2 exerts opposite effects on the
biosynthetic enzymes of indolic and aliphatic glucosino-
late pathways, and this is likely due to the homeostatic
control of glucosinolate synthesis. This hypothesis needs
to be further studied. Most of the MeJA-inducible pro-
teins that are involved in multiple protective systems
against oxidative stress were reduced in jinl-9/myc2
plants compared to WT plants, consistent with a posi-
tive role for MYC2 in regulating JA-mediated oxidative
stress tolerance. In addition, it was interesting to note
that JA-responsive proteins that are implicated in
chlorophyll biosynthesis, light reaction, and the Calvin
cycle were increased at 6 h but decreased at 48 h post-
MeJA treatment in jinl-9/myc2 plants compared to WT
plants. These results imply that MYC2 mediates diverse
roles in the modulation of a subset of JA-regulated
photosynthesis-related proteins. Moreover, a decrease in
the expression of proteins involved in carbohydrate me-
tabolism in 6 h MeJA-treated jinI-9/myc2 plants com-
pared to WT plants suggests that MYC2 positively
regulates MeJA-induced carbohydrate metabolism. A
schematic diagram summarizing these findings is shown
in Figure 4. Arabidopsis cells perceive JA signals and
transmit them to MYC2 to regulate protein synthesis,
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folding, and degradation; therefore, MYC2 exerts a posi-
tive or negative effect on the levels of functional proteins
involved in indolic and aliphatic glucosinolate meta-
bolism, oxidative stress tolerance, photosynthesis, and
carbohydrate metabolism. This model allows us to fur-
ther understand the functions of MYC2 in coordinating
JA-mediated responses in Arabidopsis.

Materials and methods

Plant material and treatment

Seeds of Arabidopsis ecotype Columbia (Col-0) and
mutant line SALK_017005 (jinl-9) were obtained from
the Arabidopsis Biological Resource Center. The loca-
tion of the T-DNA insertion was verified using a nested
PCR approach, and homozygous plants were used in
all of the subsequent experiments. Seeds were sown in
plastic trays filled with soil and vermiculite mixture
(1:1). Seedlings were grown in a growth chamber with
an 8 h light/16 h dark cycle, 25°C/20°C day/night
temperature, 150 umol m™ s™ light intensity and a rela-
tive humidity of 60%. Two-week-old seedlings (normally
with six leaves) were then transferred to hydroponic cul-
ture. Fresh half-strength Murashige and Skoog (MS)
medium [91] was added every 3 days. Seven days after
transfer to hydroponic medium, the seedlings were trea-
ted with 200 pM MeJA by adding 4 mM stock solution
of MeJA (also containing 2% of ethanol and 0.06% of
Tween 20) or an equal volume of ethanol and Tween-20
to serve as mock controls, according to the protocol of
Shan et al. [46]. Leaf samples were directly harvested
into liquid nitrogen after 6 h and 48 h of treatment.

Protein extraction

Approximately 1 g of fresh leaves was harvested from
control and 200 pM MeJA-treated Col-0 and jinI-9/
myc2 mutants and ground into fine powder in liquid ni-
trogen. The powder was precipitated in a 10% (w/v)
TCA and acetone solution containing 0.07% (v/v) B-
mercaptoethanol at —-20°C for at least 2 h. The mixture
was centrifuged at 40,000 g at 4°C for 1 h, and the preci-
pitates were washed with cold acetone that contained
0.07% (v/v) B-mercaptoethanol, 1 mM phenylmethylsul-
fonyl fluoride (PMSF), and 2 mM EDTA. Pellets were
dried by vacuum centrifugation and dissolved in 7 M
urea, 2 M thiourea, 4% (w/v) cholamidopropyl CHAPS,
20 mM dithiothreitol (DTT), 2% (v/v) pharmalyte 4-7
(Amersham Pharmacia Biotech, Uppsala, Sweden), and
1% (v/v) proteinase inhibitor (Amersham Pharmacia Bio-
tech) at room temperature for 1 h before being centri-
fuged at 40,000 g at 4°C for 1 h. The supernatant was
collected, and the protein concentration was determined
using the 2-D Quant kit (GE Healthcare, USA) using
BSA as a standard. Samples were frozen in liquid nitro-
gen and kept at —80°C until further use.

2-DE and data analysis

Immobiline Dry Strips (pH 4—7 linear, 24 cm long) were
run at 30 V for 8 h, 50 V for 4 h, 100 V for 1 h, 300 V
for 1 h, 500 V for 1 h, 1,000 V for 1 h, and 8,000 V for
12 h using the hydration buffer (8 M urea, 2% CHAPS,
20 mM DTT) containing 0.6% v/v IPG buffer. SDS-
PAGE was performed using 12.5% polyacrylamide gels
without a stacking gel. Proteins were visualized by
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Coomassie Brilliant Blue R250 staining, and gel images
were acquired using an ImageScanner (GE Healthcare).
Image analysis was performed with ImageMaster 2D
Platinum Software Version 7.0 (Amersham Biosciences,
Piscataway, NJ). In order to obtain reliable results from
2-DE images, protein samples were always prepared in
triplicate. After automated detection and matching,
manual editing was carried out to correct the mis-
matched and unmatched spots. Spots were considered
reproducible if they appeared well-resolved in the three
biological replicates. For each spot that matched, a
measurement was carried out for each biological repli-
cate, and normalized volumes were computed using the
software’s total spot volume normalization procedure.
The normalized volume of each spot was assumed to
represent its expression abundance. The criteria used to
define significant differences when analyzing parallel
spots between groups with two-way ANOVA included
a p<0.05 and an abundance ratio of at least 1.5.

In-gel digestion and protein identification

Protein digestion was performed as described previously
[59]. For MALDI-TOF/TOF MS analysis, tryptic pep-
tides were desalted with C18 Ziptips (Millipore) and
spotted onto a MALDI plate by mixing 1:1 with the
matrix solution (10 mg/mL CHCA in 60% ACN and
0.1% TFA). MS/MS spectra were acquired using a
4700 MALDI-TOF/TOF mass spectrometer (Applied
Biosystems/MDS Sciex, USA). The peptide MS/MS
spectra were searched against NCBI non-redundant fasta
database (8,224,370 entries, downloaded on April 14,
2009) using the Mascot search engine (http://www.
matrixscience.com). Mascot was set up to search green
plants only, assume trypsin digestion and allow for one
miscleavage. The mass tolerance for both parent ion and
fragment ion mass was set to be 0.3 Da. Iodoacetamide
derivatization of Cys, deamidation of Asn and Gln, and
oxidation of Met are specified as variable modifications.
Unambiguous identification was performed based on the
number of peptides obtained, sequence coverage, MAS-
COT mowse score and the quality of MS/MS spectra.

Quantitative real-time PCR (qRT-PCR)

The total RNA and qRT-PCR experiments were per-
formed according to Guo et al. [92]. Reverse transcrip-
tion was performed using the PrimeScript RT reagent
Kit (TaKaRa, China). Triplicate quantitative assays were
performed with 1 pL of ¢cDNA (1:10 dilution) and the
SYBR Green Master mix (TaKaRa) using an ABI 7500
sequence detection system (Applied Biosystems, USA).
RNA expression was calculated based on a relative
standard curve representing 5-fold dilutions of cDNA.
The amplification of ACTIN2 was used as an internal
control and to normalize the data. The details of primers
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are listed in Additional file 3. The data analysis was per-
formed using three technical replicates from one bio-
logical sample. Similar results were obtained with two
other biological replicates.

Additional files

Additional file 1: Peptide sequences and observed m/z of the
identified proteins in MALDI-TOF/TOF mass spectrometry analysis.

Additional file 2: Protein identities and changes in their expression
in jin1-9/myc2 plants compared to wild-type plants after 6 h/48 h of
mock treatment and between untreated jin7-9/myc2 and wild-type
plant.

Additional file 3: Sequences of the primers used for quantitative
real-time PCR.

Abbreviations

2-DE: Two-dimensional gel electrophoresis; AMIT: Amidase 1;

Arabidopsis: Arabidopsis thaliana; bHLH: Basic helix-loop-helix;

COI1: CORONATINE-INSENSITIVET; DTT: Dithiothreitol; E3: 2-oxoglutarate
dehydrogenase, E3 subunit; GSH: Glutathione; GSTF10: Glutathione S-
transferase ERD13; JA: Jasmonate; JAZ: JA ZIM-domain; JIN1: JASMONATE-
INSENSITIVET; MALDI: Matrix-assisted laser desorption/ionization;

MBP: Myrosinase-binding protein; MeJA: Methyl jasmonate; MS: Murashige
and Skoog; PMSF: Phenylmethylsulfonyl fluoride; gRT-PCR: Quantitative real-
time PCR; ROS: Reactive oxygen species; Rubisco: Ribulose bisphosphate
carboxylase; TCA cycle: Tricarboxylic acid cycle; TF: Transcription factor;
TGG: Thioglucoside glucohydrolase; TOF: Time-of-flight; WT: Wild type.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JG conceived the study, prepared the samples, performed the qRT-PCR
analysis and drafted the manuscript; QP performed the experiments and
data acquisition and drafted the manuscript; LW, PY and NL assisted in
performing the experiments; XY contributed to the overall design of this
study. JG, QP and XY read and approved the final manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of
China (No. 31070351), the China Postdoctoral Science Foundation (No.
20100480963), the Postdoctoral Foundation of Heilongjiang Province of
China (No. LBH-Z10278) and the Fundamental Research Funds for the
Central Universities (No. DLO9BA25).

Author details

'College of Life and Environmental Science, Wenzhou University, Wenzhou
325035, China. “Alkali Soil Natural Environmental Science Center; Key
Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field,
Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Received: 18 June 2012 Accepted: 18 September 2012
Published: 25 September 2012

References

1. Feys BJF, Benedetti CE, Penfold CN, Turner JG: Arabidopsis mutants
selected for resistance to the phytotoxin coronatine are male sterile,
insensitive to methyl jasmonate, and resistant to a bacterial pathogen.
Plant Cell 1994, 6:751-759.

2. HeY, Fukushige H, Hildebrand DF, Gan S: Evidence supporting a role
of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 2002,
128:876-884.

3. Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N,
Suzuki H, Hirai MY, Noji M, Saito K, et al: Coordinated activation of
metabolic pathways for antioxidants and defence compounds by
jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 2005,
44:653-668.


http://www.matrixscience.com
http://www.matrixscience.com
http://www.biomedcentral.com/content/supplementary/1477-5956-10-57-S1.xls
http://www.biomedcentral.com/content/supplementary/1477-5956-10-57-S2.xls
http://www.biomedcentral.com/content/supplementary/1477-5956-10-57-S3.xls

Guo et al. Proteome Science 2012, 10:57
http://www.proteomesci.com/content/10/1/57

20.

21.

22.

23.

24.

25.

26.

Shan X, Zhang Y, Peng W, Wang Z, Xie D: Molecular mechanism for
jasmonate-induction of anthocyanin accumulation in Arabidopsis.

J Exp Bot 2009, 60:3849-3860.

Wasternack C: Jasmonates: an update on biosynthesis, signal
transduction and action in plant stress response, growth and
development. Ann Bot (Lond) 2007, 100:681-697.

Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H,

Nan F, et al: The Arabidopsis CORONATINE INSENSITIVE1 protein is a
jasmonate receptor. Plant Cell 2009, 21:2220-2236.

Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG: COIT: An Arabidopsis
gene required for jasmonate-regulated defense and fertility. Science
1998, 280:1091-1094.

Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG:
Expression profiling reveals COI1 to be a key regulator of genes involved
in wound- and methyl jasmonate-induced secondary metabolism,
defence, and hormone interactions. Plant Mol Biol 2005, 58:497-513.

Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D,
Xie D: The SCF(COI1) ubiquitin-ligase complexes are required for
jasmonate response in Arabidopsis. Plant Cell 2002, 14:1919-1935.

Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H: Identification
and characterization of COI1-dependent transcription factor genes
involved in JA-mediated response to wounding in Arabidopsis plants.
Plant Cell Rep 2008, 27:125-135.

Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcfa-Casado
G, Lopez-Vidriero |, Lozano FM, Ponce MR, et al: The JAZ family of repressors
is the missing link in jasmonate signalling. Nature 2007, 448:666-671.
Chung HS, Howe GA: A critical role for the TIFY motif in repression of
jasmonate signaling by a stabilized splice variant of the JASMONATE
ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 2009, 21:131-145.
Chung HS, Koo AJK, Gao X, Jayany S, Thines B, Jones AD, Howe GA:
Regulation and function of Arabidopsis JASMONATE ZIM-domain genes
in response to wounding and herbivory. Plant Physiol 2008, 146:952-964.
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY,
Howe GA, Browse J: JAZ repressor proteins are targets of the SCF (COI1)
complex during jasmonate signalling. Nature 2007, 448:661-665.
Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G: The tify
family previously known as ZIM. Trends Plant Sci 2007, 12:239-244.

Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE: A
downstream mediator in the growth repression limb of the jasmonate
pathway. Plant Cell 2007, 19:2470-2483.

Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y,
Hsu FF, Sharon M, Browse J, et al: Jasmonate perception by inositol-
phosphate-potentiated COI1-JAZ co-receptor. Nature 2010, 468:400-405.
Cheng Z,Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D: The bHLH transcription
factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate
jasmonate response in Arabidopsis. Mol Plant 2011, 4:279-288.
Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-
Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM,
et al: The Arabidopsis bHLH transcription factors MYC3 and MYC4 are
targets of JAZ repressors and act additively with MYC2 in the activation
of jasmonate resoponses. Plant Cell 2011, 23:701-715.

Niu Y, Figueroa P, Browse J: Characterization of JAZ-interacting bHLH
transcription factors that regulate jasmonate responses in Arabidopsis.
J Exp Bot 2011, 62:2143-2154.

Berger S, Bell E, Mullet JE: Two methyl jasmonate-insensitive mutants
show altered expression of AtVSP in response to methyl jasmonate and
wounding. Plant Physiol 1996, 111:525-531.

Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP,
Sewelam N, Schenk PM, Manners JM, et al: MYC2 differentially modulates
diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 2007,
19:2225-2245.

Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R: JASMONATE-
INSENSITIVET encodes a MYC transcription factor essential to
discriminate between different jasmonate-regulated defense responses
in Arabidopsis. Plant Cell 2004, 16:1938-1950.

Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein
and mRNA abundance in yeast. Mol Cell Biol 1999, 19:1720-1730.

Browse J: Jasmonate passes muster: a receptor and targets for the
defense hormone. Annu Rev Plant Biol 2009, 60:183-205.

Yan X, Chen S: Regulation of plant glucosinolate metabolism. Planta 2007,
226:1343-1352.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Page 12 of 13

Wittstock U, Halkier BA: Glucosinolate research in the Arabidopsis era.
Trends Plant Sci 2002, 7:263-270.

Grubb CD, Abel S: Glucosinolate metabolism and its control. Trends Plant
Sci 2006, 11:89-100.

Cipollini DF, Sipe ML: Jasmonic acid treatment and mammalian herbivory
differentially affect chemical defenses and growth of wild mustard
(Brassica kaber). Chemoecology 2001, 11:137-143.

Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA: Selective
induction of glucosinolates in oilseed rape leaves by methyl jasmonate.
Phytochemistry 1995, 38:347-350.

Kliebenstein DJ, Figuth A, Mitchell-Olds T: Genetic architecture of plastic methyl
jasmonate responses in Arabidopsis thaliana. Genetics 2002, 161:1685-1696.
Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ:
Linking metabolic QTLs with network and cis-eQTLs controlling
biosynthetic pathways. PloS Genet 2007, 3:1687-1701.

Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S,
Nakamura Y, Kitayama M, Suzuki H, et al- Elucidation of gene-to-gene and
metabolite-to-gene networks in Arabidopsis by integration of
metabolomics and transcriptomics. J Bio/ Chem 2005, 280:25590-25595.
Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD,

Cheong J-J: Microarray-based screening of jasmonate-responsive

genes in Arabidopsis thaliana. Plant Cell Rep 2007, 26:1053-1063.
Normanly J: Approaching cellular and molecular resolution of Auxin
biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010, 2:a001594.
Sun J, Xu'Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O,

et al: Arabidopsis ASAT is important for jasmonate-mediated regulation of
Auxin biosynthesis and transport during lateral root formation. Plant Cell
2009, 21:1495-1511.

Neu D, Lehmann T, Elleuche S, Pollmann S: Arabidopsis amidase 1, a
member of the amidase signature family. FEBS J 2007, 274:3440-3451.
Piotrowski M, Schemenewitz A, Lopukhina A, Miller A, Janowitz T,

Weiler EW, Oecking C: Desulfoglucosinolate sulfotransferases from
Arabidopsis thaliana catalyze the final step in the biosynthesis of the
glucosinolate core structure. J Biol Chem 2004, 279:50717-50725.
Drevland RM, Waheed A, Graham DE: Enzymology and evolution of the
pyruvate pathway to 2-oxobutyrate in Methanocaldococcus jannaschii.
J Bacteriol 2007, 189:4391-4400.

He Y, Mawhinney TP, Preuss ML, Schroeder AC, Chen B, Abraham L, Jez JM,
Chen S: A redox-active isopropylmalate dehydrogenase functions in the
biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J 2009,
60:679-690.

Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L,
Soloviev M, Szabados L, Molthoff JW, Schipper B, et al- The impact of the
absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.
PLoS One 2008, 3(4):22068.

Barth C, Jander G: Arabidopsis myrosinases TGG1 and TGG2 have
redundant function in glucosinolate breakdown and insect defense.
Plant J 2006, 46:549-562.

Bones AM, Rossiter JT: The myrosinase-glucosinolate system. - an innate
defense system in plants. Physiol Plantarum 1996, 97:194-208.

Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayashi Y, Kondo M, Takahashi T,
Ohtomo |, Nishimura M, Hara-Nishimura I: AtVAM3 is required for normal
specification of idioblasts, myrosin cells. Plant Cell Physiol 2006, 47:164-175.
Capella AN, Menossi M, Arruda P, Benedetti CE: COIT affects myrosinase
activity and controls the expression of two flower-specific myrosinase-
binding protein homologues in Arabidopsis. Planta 2001, 213:691-699.
Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D: The role of Arabidopsis
rubisco activase in jasmonate-induced leaf senescence. Plant Physiol
2011, 155:751-764.

Bernardi R, Finiguerra MG, Rossi AA, Sandro P: Isolation and biochemical
characterization of a basic myrosinase from ripe Crambe abyssinica seeds,
highly specific for epi-progoitrin. J Agric Food Chem 2003, 51:2737-2744.
Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ,
lannettoni MD, Orringer MB, Hanash SM, et al: Discordant protein and
mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002,
1:304-313.

Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN: Comparative proteomic
analysis provides new insights into chilling stress responses in rice.

Mol Cell Proteomics 2006, 5:484—-496.

Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM,

Xia GX: Proteomic identification of differentially expressed proteins



Guo et al. Proteome Science 2012, 10:57
http://www.proteomesci.com/content/10/1/57

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.).

J Proteome Res 2010, 9:1076-1087.

Wasternack C, Parthier B: Jasmonate-signalled plant gene expression.
Trends Plant Sci 1997, 2:302-307.

Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C,
Maclean DJ, Ebert PR, Kazan K: Antagonistic interaction between abscisic acid
and jasmonate-ethylene signaling pathways modulates defense gene
expression and disease resistance in Arabidopsis. Plant Cell 2004, 16:3460-3479.
Laurie-Berry N, Joardar V, Street IH, Kunkel BN: The Arabidopsis thaliana
JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic
acid-dependent defenses during infection by Pseudomonas syringae.
Mol Plant Microbe Interact 2006, 19:789-800.

Nickstadt A, Thomma BPHJ, Feussner |, Kangasjarvi J, Zeier J, Loeffler C,
Scheel D, Berger S: The jasmonate-insensitive mutant jin1 shows
increased resistance to biotrophic as well as necrotrophic pathogens.
Mol Plant Pathol 2004, 5:425-434.

Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA: Jasmonate-
inducible plant enzymes degrade essential amino acids in the herbivore
midgut. PNAS 2005, 102:19237-19242.

May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D: Glutathione
homeostasis in plants: implications for environmental sensing and plant
development. J Exp Bot 1998, 49:649-667.

Hell R, Wirtz M: Metabolism of cysteine in plants and phototrophic bacteria.
In Sulfur metabolism in phototrophic organisms. 27th edition. Edited by Hell R,
Dahl C, Knaff D, Leustek T. Dordrecht: Springer Netherlands; 2008:59-91.
Youssefian S, Nakamura M, Orudgev E, Kondo N: Increased cysteine
biosynthesis capacity of transgenic tobacco overexpressing an O-
Acetylserine(thiol) lyase modifies plant responses to oxidative stress.
Plant Physiol 2001, 126:1001-1011.

Chen Y, Pang Q, Dai S, Wang Y, Chen S, Yan X: Proteomic identification of
differentially expressed proteins in Arabidopsis in response to methyl
jasmonate. J Plant Physiol 2011, 168:995-1008.

Ali BM, Hahn EJ, Paek KY: Methyl jasmonate and salicylic acid induced
oxidative stress and accumulation of phenolics in Panax ginseng
bioreactor root suspension cultures. Molecules 2007, 12:607-621.

Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R: Analysis
of the Arabidopsis O-acetylserine(thiol) lyase gene family demonstrates
compartment-specific differences in the regulation of cysteine synthesis.
Plant Cell 2008, 20:168-185.

Wirtz M, Droux M, Hell R: O-Acetylserine (thiol) lyase: an enigmatic
enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.
J Exp Bot 2004, 55:1785-1798.

Yamaguchi Y, Nakamura T, Kusano T, Sano H: Three Arabidopsis genes
encoding proteins with differential activities for cysteine synthase and
B-cyanoalanine synthase. Plant Cell Physiol 2000, 41:465-476.

Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y: Proline and
glycinebetaine enhance antioxidant defense and methylglyoxal
detoxification systems and reduce NaCl-induced damage in cultured
tobacco cells. J Plant Physiol 2008, 165:813-824.

Wolucka BA, Goossens A, Inzé D: Methyl jasmonate stimulates the de
novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 2005,
56:2527-2538.

Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey MA, Millar A, Singh
KB: The Arabidopsis glutathione transferase gene family displays complex
stress regulation and co-silencing multiple genes results in altered
metabolic sensitivity to oxidative stress. Plant J 2009, 58:53-68.

Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylidés C:
Accumulation of small heat shock proteins, including mitochondrial
HSP22, induced by oxidative stress and adaptive response in tomato
cells. Plant J 1998, 13:519-527.

Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY: Characterization of
the genomic structures and selective expression profiles of nine class |
small heat shock protein genes clustered on two chromosomes in rice
(Oryza sativa L.). Plant Mol Biol 2004, 56:795-809.

Harrington HM, Alm DM: Interaction of heat and salt shock in cultured
tobacco cells. Plant Physiol 1988, 88:618-625.

Sabehat A, Lurie S, Weiss D: Expression of small heat-shock proteins at
low temperatures.-A possible role in protecting against chilling injuries.
Plant Physiol 1998, 117:651-658.

71,

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

90.

92.

Page 13 of 13

Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M: Heat
shock-mediated APX gene expression and protection against chilling
injury in rice seedlings. J Exp Bot 2001, 52:145-151.

Sato Y, Yokoya S: Enhanced tolerance to drought stress in transgenic rice
plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep
2008, 27:329-334.

Wollgiehn R, Neumann D: Stress response of tomato cell cultures to toxic
metals and heat shock: differences and similarities. J Plant Physiol 1995,
146:736-742.

Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E: Fibrillin
expression is regulated by abscisic acid response regulators and is involved
in abscisic acid-mediated photoprotection. PNAS 2006, 103:6061-6066.
Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC,
Fontes EPB: Enhanced accumulation of BiP in transgenic plants confers
tolerance to water stress. Plant Physiol 2001, 126:1042-1054.

Anderson JV, Li QB, Haskell DW, Guy CL: Structural organization of the
spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock
cognate gene and expression of 70-kilodalton heat-shock genes during
cold acclimation. Plant Physiol 1994, 104:1359-1370.

Kalinski A, Rowley DL, Loer DS, Foley C, Buta G, Herman EM: Binding-
protein expression is subject to temporal, developmental and stress-
induced regulation in terminally differentiated soybean organs. Planta
1995, 195:611-621.

Jung S: Effect of chlorophyll reduction in Arabidopsis thaliana by methyl
jasmonate or norflurazon on antioxidant systems. Plant Physiol Bioch
2004, 42:225-231.

Bunker TW, Koetje DS, Stephenson LC, Creelman RA, Mullet JE, Grimes HD:
Sink limitation induces the expression of multiple soybean vegetative
lipoxygenase mRNAs while the endogenous jasmonic acid level remains
low. Plant Cell 1995, 7:1319-1331.

Weidhase RA, Kramell HM, Lehmann J, Liebisch HW, Lerbs W, Parthier B:
Methyljasmonate-induced changes in the polypeptide pattern of
senescing barley leaf segments. Plant Sci 1987, 51:177-186.

Popova LP, Tsonev TD, Vaklinova SG: Changes in some photosynthetic
and photorespiratory properties in barley leaves after treatment with
jasmonic acid. J Plant Physiol 1988, 132:257-261.

Raines CA: Transgenic approaches to manipulate the environmental
responses of the C3 carbon fixation cycle. Plant Cell Environ 2006, 29:331-339.
Henkes U, Sonnewald R, Badur R, Flachmann R, Stitt M: A small decrease of
plastid transketolase activity in antisense tobacco transformants has
dramatic effects on photosynthesis and phenylpropanoid metabolism.
Plant Cell 2001, 13:535-551.

Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P,

Dixon RA, Sumner LW: Metabolic profiling of Medicago truncatula cell
cultures reveals the effects of biotic and abiotic elicitors on metabolism.
J Exp Bot 2005, 56:323-336.

Ananieva Kl, Ananiev ED: Effect of methyl ester of jasmonaic acid and
benzylaminopurine on growth and protein profile of excised cotyledons
of Cucurbita pepo (Zucchini). Biol Plantarum 1999, 42:549-557.

Prasad TK, Stewart CR: cDNA clones encoding Arabidopsis thaliana and
Zea mays mitochondrial chaperonin HSP60 and gene expression during
seed germination and heat shock. Plant Mol Biol 1992, 18:873-885.
Gatenby AA: Protein folding and chaperonins. Plant Mol Biol 1992, 19:677-687.
Fink AL: Chaperone-mediated protein folding. Physiol Rev 1999,
79:425-449.

Gor D, Mayfield JE: Cloning and nucleotide sequence of the Brucella
abortus groe operon. Biochim Biophys Acta 1992, 1130:120-122.
Porankiewicz J, Wang J, Clarke AK: New insights into the ATP-dependent
Clp protease: Escherichia coli and beyond. Mol Microbiol 1999, 32:449-458.
Murashige T, Skoog F: A revised medium for rapid growth and bioassays
with tobacco tissue cultures. Physiol Plantarum 1962, 15:473-497.

Guo J, Wang F, Song J, Sun W, Zhang XS: The expression of Orysa,
CycB1,1 is essential for endosperm formation and causes embryo
enlargement in rice. Planta 2010, 231:293-303.

doi:10.1186/1477-5956-10-57

Cite this article as: Guo et al.: Proteomic identification of MYC2-
dependent jasmonate-regulated proteins in Arabidopsis thaliana.
Proteome Science 2012 10:57.




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Introduction
	Results and discussion
	Identification of MYC2-dependent JA-regulated proteins by 2-DE and MS/MS
	Functional classification of JA-regulated proteins
	Glucosinolate metabolism
	Stress and defense
	Photosynthesis-related proteins
	Carbohydrate metabolism-related proteins
	Protein synthesis, folding, and degradation-related proteins

	Conclusions
	Materials and methods
	Plant material and treatment
	Protein extraction
	2-DE and data analysis
	In-gel digestion and protein identification
	Quantitative real-time PCR (qRT-PCR)

	Additional files
	Abbreviations
	Competing interests
	Authors´ contributions
	Acknowledgements
	Author details
	References

