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Abstract

Background: Serum proteins carry out several functions in the circulation, including transfer, immunological
functions, messenger functions, coagulation, and regulation of homeostasis. To investigate changes in serum
proteins that occur during development, the serum proteomes of embryonic 15.5 (E15.5) fetuses and newborn rats
were compared using LC-MS/MS.

Results: A total of 958 proteins were identified in the serum of rats at both developmental stages. The serum
proteome pattern of newborn rats was compared to E15.5 fetuses by relative quantitation. The expression patterns
of hemoglobin subunits were different at the two stages, with most of the subunits having decreased expression in
newborn rats compared to E15.5 fetuses. In addition, 8 of 12 apolipoproteins were significantly decreased and 10 of
11 identified complement molecules were increased, with 4 exhibiting a significant increase. Moreover, 11 of 14 of
the significantly increased enzyme regulators were inhibitors. The serum proteome patterns of different littermates
from both developmental stages were also compared. We found that the levels of many highly abundant serum
proteins varied between littermates, and the variations were larger than the variations of the technical control.

Conclusions: The serum proteomes of newborn rats and E15.5 fetuses were compared. The expression patterns of
hemoglobin subunits were different at the two developmental stages, with most of the subunits having decreased

proteome development.

expression. The majority of apolipoproteins had significantly decreased expression, while almost all identified
complement proteins had increased expression. The levels of several highly abundant serum proteins also varied
among littermates at these two developmental stages. This is the first study using LC-MS/MS to investigate serum
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Background

Plasma, which is the soluble component of blood, is the
most complex human-derived proteome [1]. As blood
flows through tissues and organs of the human body, al-
most every cell in the body can communicate with
plasma directly or indirectly and release a portion of
their content into plasma through active secretion or
leakage [2,3]. Serum consists of blood plasma without
fibrinogens and includes all proteins not used for blood
coagulation. Therefore, plasma and serum contain ex-
tremely informative proteomes that may contain unique
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information from different tissues and organs in the
body. Plasma had been used to monitor the health status
of patients by clinicians for many years [4], and it is
thought that one plasma/serum proteome corresponds
to a unique description of a patient experiencing a spe-
cific disease or physiological state.

Embryonic development is a complicated biological
process whereby many rapid changes occur. Morpho-
logical changes that occur in the embryo have been well-
documented in both rat and mouse animal models [5,6].
During the course of embryonic development, each
organ of the body performs diverse biological processes
and coordinates to form an extremely intricate life
process. The composition of the serum proteome can
change during embryonic development. Therefore, de-
lineation of the molecular events involved in different
stages of the serum proteome would not only advance
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our knowledge about the development of serum, but
also of the entire body. Comparing the plasma proteome
during the development process may help us identify
markers that can be used to determine the different
stages of body development [7].

Before the era of proteomics, changes in the protein
composition during plasma and serum development
were studied using paper electrophoresis or immune-
electrophoresis in rat [8-11], mouse [12], chick [13-16],
sheep [17], goat [18], pig [15], and human [19,20]. Using
these methods, the patterns of highly abundant plasma
and serum proteins, including albumin, globulin, trans-
ferrin, and alpha-fetoprotein (AFP), were described. One
study investigated a total of 16 proteins using serum or
cultured tissues obtained from human embryos and
fetuses, and some proteins were found to be related to
organ development [21]. Patterns of plasma and serum
proteins in human fetuses and infants have been studied
by high-resolution two-dimensional electrophoresis, and
many proteins were identified, including AFP, which was
found to progressively decrease during development
[22]. However, to date, no methods based on liquid
chromatography coupled with tandem mass spectro-
metry (LC-MS/MS) have been used to qualify and quan-
tify proteins in serum at different development stages.

Individual variations exist ubiquitously throughout the
world, including variations in body development. There-
fore, it is important to delineate normal protein varia-
tions among individuals. The diversity of 25 proteins in
human plasma was previously investigated using affinity-
based mass spectrometry approaches [23]. Limited stu-
dies have also been performed in animal models.

This study investigated changes in serum functions
during fetal development by comparing serum pro-
teomes of embryonic day 15.5 (E15.5) fetuses and new-
born rats. The quantitative characteristics of the serum
proteomes were examined. Individual variations among
littermates were also investigated at the proteome level.
This study is the first to analyze serum changes between
E15.5 fetuses and newborn rats using proteomic metho-
dologies. In addition, the results may provide clues for
understanding serum protein functions in future studies.

Results and discussions

Comparison of protein patterns in serum from E15.5
fetuses and newborn rats

SDS-PAGE analysis of serum proteins from E15.5 fetuses
and newborn rats

The protein patterns of serum samples from E15.5
fetuses and newborn rats were first analyzed by SDS-
PAGE. As shown in Figure 1, the protein patterns
among different individuals were similar, while the pat-
terns between the two development stages were differ-
ent, even on SDS-PAGE.
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Figure 1 Comparison of the protein pattern between E15.5
fetuses and newborn rats using 1D SDS-PAGE. Twenty
micrograms serum proteins from each individual E15.5 fetus or
newborn rat were separated on a 1D SDS gel. The gel was stained
with Coomassie Brilliant Blue. Lanes 2-4 indicate different individual
newborn rats and lanes 5-7 indicate different individual fetuses.

Changes in the serum proteomes of E15.5 fetuses and
newborn rats based on LC-MS/MS analysis

Three individual samples each from E15.5 fetuses and
newborn rats were identified using one dimensional
(ID) LC-MS/MS. In total, 958 proteins were identified
in all six MS runs (Additional file 1: Table S1). Using a
two-tailed t-test for the samples from E15.5 fetuses and
newborn rats, 47 proteins were found to be significantly
increased and 57 were significantly decreased in
newborn rats compared to E15.5 fetuses (p < 0.05)
(Additional file 1: Table S1). In our study, individual
samples, rather than mixture of the samples, were used
to compare relative quantitation between newborn rats
and E15.5 fetuses. Therefore, the changes in the pro-
teomes between E15.5 fetuses and newborn rats were
more likely caused by the true differences of the two
stages during development because both individual and
technical variations were considered.

It is better to analyze more samples. Since this is the
first study that attempted to identify as many differen-
tially expressed proteins as possible between E15.5 rat
fetuses and newborns, profiling-based proteomic tech-
nology were used to identify the serum proteomes of the
two stages. This technology is powerful for identifying
large numbers of proteins in one experiment; however, it
has very low efficiency with a limited sample throughput
because of the time involved and high cost. Although
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the sample throughput of target proteomics has been
improving, it requires knowledge from comprehensive
profiling results. It can only quantify a certain number
of proteins in one experiment and cannot identify as
many differential proteins as we accomplished in profi-
ling analysis. This study provided the foundation of a
new research area and provided information for inter-
ested laboratories. Additional experiments were planned
to confirm the findings.

Almost all proteins previously identified in the litera-
ture using electrophoresis, radio-electrophoresis, or two-
dimensional (2D) electrophoresis in fetal plasma or
serum from rat [11], chicken [13], pig [24-27], and
human [22] were included in the 958 proteins identified
in this study, with the exception of antithrombin III [22],
which was not identified in our analysis. This
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discrepancy might be due to blood coagulation during
sample processing. The changes observed for almost all
of the proteins were consistent with published results in
rat [11], chicken [13], pig [24-27], and human [22], such
as Albumin, AFP, Complement 3, plasminogen, Alpha-2-
Macroglobulin, Transferrin, and Alpha-1-acid Glycopro-
tein (Table 1). Apolipoproteins and hemopexin were
found to be decreased in our analysis, which was oppo-
site to that found in a study of the late gestation of the
human fetus [21]. The reason for this discrepancy is cur-
rently not clear.

To confirm the differential proteins detected by mass
spectrometry, Complement 3, Hemoglobin E1, and Apoli-
poprotein B were chosen for western blot analysis. As
shown in Figure 2, the densitometries of the bands be-
tween two stages of development were calculated for

Table 1 Results from our study compared to results obtained prior to the modern era of proteomics

Protein name Our result Published result Species and reference
Serum albumin 1 1 Rat [11], Pig [24], Chicken [13],
Human [22], Porcine [27]

Isoform 1 of Serotransferrin 1 1 Rat [11] Human [21,22], Pig [25]

A Porcine [27]

! Pig [24]
Complement C3 il il Human [21]

l Pig [24]
Alpha-2-macroglobulin i T Human [21]
Plasminogen 1 T Human [21,22]

l Pig [24]
Isoform 1 of Haptoglobin i # Human [21]
Alpha-2-HS-glycoprotein il i Human [22]
Transthyretin i T Human [22]
Fetuin-B 1 il Porcine [27],

tor] Pig [24]
Retinol-binding protein 4 i i Human [22]
Ceruloplasmin i # Human [21]
Fibrinogen-like 2 1 # Human [21]
Alpha-1-acid glycoprotein i T Pig [24], Porcine [27]
Apolipoprotein H 1 1 Pig [24]
Angiotensinogen 1 ! Pig [24]
Hemopexin | 1 Human [21]
Apolipoprotein A-l l T Human [22]
Apolipoprotein E | T Human [22]
Apolipoprotein A-IV ! 1 Human [22]
Gamma-A of Fibrinogen gamma chain l # Human [21]
Isoform 1 of Alpha-fetoprotein ! l Human [22], Pig [24,25],

A Porcine [27]

Note: Proteins changed from E15.5 fetuses to newborn rats and proteins changed with development in literature were noted using an increasing arrow (1) /
decreasing arrow (). Proteins without information on expression changes are indicated with “#". Protein expression that increased during the early stage of

development and decreases in the late stage of development is indicated with “A".
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Figure 2 Validations of C3, HBE1, and Apolipoprotein B by Western blot. Western blot was performed to validate the changes in C3, HBE1,
and Apolipoprotein B in five E15.5 fetus serum samples and five newborn rat serum samples. Thirty micrograms proteins of each specimen were
loaded per lane. Lanes 1-5 indicate different E15.5 fetuses and lanes 6-10 indicate different newborn rats.
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different individuals, respectively (Figure 2 and Additional
file 2: Table S2). Importantly the trends of changes were
consistent with the trends found based on mass spectro-
metry data for all the different individuals.

Comparison of hemoglobins
Eight hemoglobins or subunits were identified (Table 2).
Hemoglobin zeta, beta 1, gamma 1, and epsilon 1 were
significantly decreased and zero beta-1 globin was sig-
nificantly increased in serum from newborn rats com-
pared to serum from E15.5 fetuses (p < 0.05). Changes
in these protein levels correlated well with the changes
in gene expression during development in previously
studies [28]. It has been reported that the epsilon globin
gene is activated during the embryonic stage, the gamma
globin gene is activated during the fetal period, and the
beta globin gene is activated during the adult stage [28].
Changes in levels of hemoglobin subunits may be corre-
lated with the biological process that occurs during develop-
ment. It has been reported that the fetal hemoglobin subunit
gamma has a higher oxygen affinity than hemoglobin beta
[29]. This lower affinity allows the maternal hemoglobin beta

to release oxygen and readily transfer its oxygen to the fetal
hemoglobin subunit gamma, which allows newborns to
utilize oxygen more efficiently.

Comparison of apolipoproteins

Twelve apolipoproteins were identified in our screen,
but only Apo H (IPI00778633.1) exhibited a significant
increase (p < 0.05), while Apo C-II, Apo C-1V, and Apo
F had a slight increase. Other Apo proteins exhibited a
significant decrease (p < 0.05; Table 3). Importantly, this
is the first study to find changes in the apolipoprotein
expression pattern during development.

Given the effect of hormones on the expression of
Apo A-T, Apo A-1V, and Apo E [30], we hypothesized
that the developmental patterns of lipometabolism pro-
teins might be caused by late fetal stage hormone release
during the maturation of the endocrine system, inclu-
ding the pituitary, thyroid, adrenal cortex, and p cells of
the pancreas. These apolipoproteins have been reported
to be involved in the transport of lipids, act as cofactors
for enzymes of lipid metabolism, or maintain the struc-
ture of the lipoprotein particles [31]. Therefore, the

Table 2 Hemoglobin expression patterns of newborn rats compared to E15.5 fetuses

Protein name Protein ID T-value P-value Increasing (1) / Decreasing (|)
Hbb-b1 Zero beta-1 globin IP100207146 24 0.05-0.1 i
Hbb 16 kDa protein IPI00951116 1 0.2-04 i
Hemoglobin subunit alpha-1\2 1P100205036 -19 0.1-0.2 l
Hbb Hemoglobin subunit beta-2 IP100231192 =21 0.1-0.2 l
Hbz hemoglobin IP100421293 -35 <0.05 l
Hbb Hemoglobin subunit beta-1 IP100230897 —44 <0.05 l
Hbel RCG39817 IP100212478 -9.5 <0.05 l
Hbg1 RCG39434 IPI00212481 -145 <0.05 !
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Table 3 Apolipoprotein expression patterns of newborn

rats compared to E15.5 fetuses
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Protein name Protein ID T-value P-value Increasing (1) / Decreasing ()
Apolipoprotein H IPI00778633 629 <0.05 1
Isoform 1 of Apolipoprotein C-IV IP100191952 1 0.2-04 1
Similar to apolipoprotein F-like IPI00199713 1 0.2-04 1
Apolipoprotein C-ll IPI00194583 09 >0.5 1
Apolipoprotein A-l IPI00197703 -35 <0.05 !
Apolipoprotein E IPI00190701 -35 <0.05 |
Apolipoprotein M IPI00207275 -36 <0.05 !
Apolipoprotein A-IV 1P100324272 -58 <0.05 |
Cllusterin(apolipoprotein J) IP100198667 —6.7 <0.05 l
Apolipoprotein H IPI00195241 -72 <0.05 !
Apolipoprotein A-ll IP100197700 -9 <0.05 l
Apolipoprotein B-100 IPI00554264 -12.1 <0.05 |

lipometabolic functions of serum were expected undergo
substantial changes during this development period.

Comparison of complement proteins

Complement acts as a rapid and efficient immune surveil-
lance system and contributes substantially to physiologic
homeostasis by eliminating cellular debris and infectious
microbes [32]. In our study, we found that the comple-
ment system exhibited a significant change between E15.5
fetuses and newborn rats (Table 4). Ten of the eleven
complement factors identified increased, with four having
a significant increase (p < 0.05), and only one slightly
decreased. These findings were consistent with the pre-
vious study by Stabile et al., which showed that C3, C4,
and Factor H had the same change during human fetal
serum development [33]. For instance, C3, which plays a
central role in the activation of both classical and alterna-
tive complement pathways, exhibited a significant increase

of more than 10-fold in this study. It has been reported
that serum levels of complement rise in newborns between
birth to the first year of life [34,35], and therefore we
speculate that serum levels of most complement proteins
might rise between the embryonic period and infancy.
These results suggested that the complement system was
strengthened during fetal development, which would allow
the newborn rats to be more adaptive to the extrauterine
environment. These results were in agreement with those
obtained from the gene ontology (GO) annotation, in which
significantly over-represented GO biological process terms
were found for a set of significantly increased serum pro-
teins, including those involved in the acute-phase response,
acute inflammatory response, inflammatory response,
defense response, response to wounding, and regulation re-
sponse to external stimulus (Additional file 3: Figure S1).
Ingenuity Pathway Analysis (IPA) software was used to
systematically visualize the complement proteins involved

Table 4 Complement expression patterns of newborn rats compared to E15.5 fetuses

Protein name Protein ID T-value P-value Increasing (1) / Decreasing (|)
Complement C3 (Fragment) IPI00480639 179 <0.05 1
Complement inhibitory factor H IP100208659 37 <0.05 I
Complement component 5 IP100368550 35 <0.05 1
Complement C4 precursor IP100213036 34 <0.05 i
Complement factor B IP100382185 2.1 0.1-0.2 1
Complement C1qg subcomponent subunit C IP100215299 2 0.1-2 1
Complement factor | IP100204451 14 0.2-04 1
Complement C1qg subcomponent subunit B IP100215297 1 0.2-04 i
Complement C1qg subcomponent subunit A IP100215296 1 0.2-04 1
Complement C2 IP100194044 1 0.2-04 1
Complement component C6 IPI00331776 -06 >0.5 |
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Figure 3 Ingenuity pathway analysis (IPA) for complement proteins. A complement system pathway generated by IPA. Proteins with
increased expression are marked in red proteins with decreased expression are marked in green. The IPA legend is shown in Additional file 5.

in the signal pathway (Figure 3). The changes of different
complement proteins acting in different positions of the
signaling pathway are also shown in Figure 3.

Comparison of enzymes and enzyme regulators

In the GO annotations, 180 of all the identified proteins
were annotated as enzymes or enzyme regulator-related.
Of these, 7 enzymes and 14 enzyme regulators were sig-
nificantly increased and 11 and 8 were significantly
decreased, respectively, in newborn rats compared to
E15.5 fetuses (p < 0.05; Tables 5 and 6). Moreover, 11 of
14 proteins with increased expression and 6 of 8 pro-
teins with decreased expression were annotated as en-
zyme inhibitors. A high proportion of enzyme inhibitors
was an interesting physiological phenomenon, and pro-
tease inhibitors might protect the fetus from proteases
released from growing cells [36]. Moreover, changes in
enzyme and enzyme regulator expression may be caused
by organ maturation and the biological processes occur-
ring in organs may exhibit a large change.

Comparison of other differentially expressed proteins

Other proteins with significantly altered expression levels
with one or more known functions annotated in the UniProt
database were listed in Table 7. The proteins with unknown
function that had significantly altered expression levels be-
tween the two groups were shown in Table 8. Although the
functions of these proteins are currently unknown, they

changed quantitatively, which indicates that these proteins
might be key molecules involved in development.

Proteome variations in serum from individual littermates
in the E15.5 fetus and newborn rat groups

The variations in the serum proteome between littermates
were studied based on 1D LC-MS/MS. Three individual
serum samples each from E15.5 fetuses and newborn rats
were analyzed in duplicate. The technical variability of the
LC-MS/MS method was investigated using a triplicate
analysis of pooled samples generated by pooling six indi-
vidual serum samples from each stage. The repetitiveness
of individual serum protein identifications for E15.5
fetuses and newborn rats was also calculated for each
sample (Figure 4). There was a remarkable difference in
the repetitive rate of individual samples (E15.5 fetuses =
56.3%; newborn rats = 65.3%) compared to the pooled
samples (E15.5 fetuses = 68.4%; newborn rats = 78.7%;
data not shown). Therefore, differences in the repetitive
rates between the individual and pooled samples are most
likely due to littermate variations.

To investigate variation between littermates, the coef-
ficient of variation (CV) of spectral counts for each pro-
tein in the three individual samples and in the triplicate
analysis of pooled samples were calculated for both
E15.5 fetus and newborn rat samples, respectively. Con-
sidering that proteins with low abundance have larger
variation in MS identification, the CV ratio between in-
dividual and pooled samples was calculated only for the
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Table 5 Enzymes with significantly altered expression in newborn rats compared to E15.5 fetuses (P < 0.05)

Protein name Protein ID T-value Increasing (1) / Decreasing (|)
Carboxypeptidase N IP100192657 10.5 i
F2 Prothrombin (Fragment) IP100189981 7.2 1
Hepatocyte growth factor activator IPI00364125 5 1
Hp Isoform 1 of Haptoglobin IP100382202 49 i
Plasminogen IP100206780 49 1
Pragmin tyrosine-protein kinase SgK223 IPI00358819 4.6 1
Smarcad1 Uncharacterized protein IP100765483 33 i
L-lactate dehydrogenase A chain IPI00197711 -32 l
Cathepsin B preproprotein IP100212811 -3.7 !
Peroxiredoxin-2 IP100201561 —44 !
Coagulation factor X IP100206786 —44 l
Tubalb Uncharacterized protein IP100339167 -49 l
Proprotein convertase subtilisin\kexin type 9 IP100396889 —6.2 1
Fructose-bisphosphate aldolase A IP100195851 -8 l
pyruvate kinase-like isoform 2 IP100339197 -82 l
Tubulin beta-2B chain IP100195673 -117 l
Nucleoside diphosphate kinase B IP100194404 -129 l
Glutathione peroxidase 3 IP100476458 —-155 l

Table 6 Enzyme regulators with significantly altered expression in newborn rats compared to E15.5 fetuses (P < 0.05)

Protein name Protein ID T-value Increasing (1) / Decreasing (|)
Apoh Apolipoprotein H IPI00778633 62.9 1
C3 Complement C3 (Fragment) IP100480639 179 i
Serpinal Alpha-1-antiproteinase * IP100324019 16.6 1
[tih3 Uncharacterized protein * IP100326984 86 i
A2m Alpha-2-macroglobulin * IP100392886 8.2 i
Serpina3k Serine protease inhibitor A3K * IP100200593 4.9 1
Kng111 T-kininogen 2 * IPI00679245 4.8 1
Itih4 inter-alpha-inhibitor H4 heavy chain * IP100188541 4.7 i
Uncharacterized protein * IPI00958555 38 1
C4b complement C4 precursor IPI00213036 34 1
Serpina3n Serpina3n-like protein * IPI00211075 32 i
Pzp Alpha-1-macroglobulin * IP100326140 32 i
Kng1;Kng2 Isoform HMW of Kininogen-1 * IP100187799 32 il
Ahsg Alpha-2-HS-glycoprotein * IP100327469 32 i
Serpinf1 Serine (Or cysteine) peptidase inhibitor * IP100199670 -33 l
Apoe Apolipoprotein E IP100190701 -35 l
Apoal Apolipoprotein A-l * IPI00197703 -35 1
Serpinf2 Serine (Or cysteine) peptidase inhibitor * IP100199695 -38 l
Serpina6 Corticosteroid-binding globulin * IP100210824 —4.1 !
Cst3 Cystatin-C * IP100231801 -6.6 1
Apoh Apolipoprotein H IP100195241 -7.2 l
Apoa2 Apolipoprotein A-ll * IPI00197700 -9 1

Note: Terms marked with an asterisk (*) represent enzyme inhibitors.
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proteins with average spectra counts greater than six.
We even identified some proteins with medium and high
abundance that had larger CV values in the three indi-
vidual samples than in the triplicate analysis of the
pooled samples (Additional file 4: Figure S2), which indi-
cates that these proteins exhibit true biological variation
among littermates.

Some proteins with differential expression between
littermates are noteworthy, such as Apo H, Fatty Acid
Synthase, Hemoglobin subunit alpha-1\2, Peroxire-
doxin-2, and Elongation Factor 2 in E15.5 fetuses as
well as Complement 3, Inter-alpha-Trypsin Inhibitor
and Thrombospondin 1 in newborn rats. Notably,
Complement 3, Inter-alpha-Trypsin Inhibitor, Apo H,
and Peroxiredoxin-2 are important molecules for the
regulation of body homeostasis, and Complement 3 is
related to the immune system. However, other proteins
showed minimal variation, such as Kininogen 1, IgG-
2a, and Serotransferrin in E15.5 fetuses as well as
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Complement Inhibitor Factor H and IgG-2a in new-
born rats. Therefore, these results suggest that even in
littermates with a similar genetic background, some
proteins in the serum have a substantial variation
while others do not.

Conclusions

To the best of our knowledge, this is the first study to
analyze serum proteome changes during development
using LC-MS/MS. The serum proteomes of newborn
rats and E15.5 fetuses were compared. We found that
expression patterns of hemoglobin subunits were differ-
ent in newborn rats compared to E15.5 fetuses, whereby
most had decreased expression. The majority of apolipo-
proteins also significantly decreased, and almost all iden-
tified complement molecules increased. In addition the
levels of several highly abundant serum proteins varied
between littermates in these two developmental stages.

Table 7 Other proteins with known functions that had significantly altered expression in newborn rats compared to

E15.5 fetuses changed proteins (P < 0.05)

Protein name Protein ID  T-value

Increasing (1) / Decreasing (|)

Functions
(noted in uniprot database)

IP100679202 57.1
IPI00193933 229
IP100365976 6.2

Isoform 1 of Serotransferrin
Zdhhc5 Uncharacterized protein
CD320 antigen-like

IP100207668 55
IP100781081 39
IP100205974 37
IP100194097 32

Afamin
hypothetical protein
Myoblast determination protein 1

Gc Vitamin D-binding protein

Heat shock protein HSP 90-beta IPI00471584  —34

Fga protein IP100202651 -34

Ywhaz 14-3-3 protein zeta\delta 1P100324893 -4

IP100189819  —43
IP100366944  -53
IP100188921 =59
IP100188909 -6

IPI00231550 6.7

actin

Collagen alpha-1(lll) chain
Collagen alpha-2(l) chain

Collal Rat alpha-1 type | collagen

Scn5a 228 kDa protein
Platelet factor 4 IPI00206634  -76

heat shock cognate 71 kDa protein-like  IPI00207355  —7.7

Cadherin-5 IPI00768626 -9.8
Isoform Gamma-A of Fibrinogen IP100190759 -10
growth factor-binding protein 4 IP100206239  -119

i iron binding transport
1 contains 1 DHHC-type zinc finger
1 augmenting the proliferation of PC

precursors generated by IL-10
vitamin E binding protein
binding various heavy metals

myogenic factor

- > - —

carrying the vitamin D sterols,
preventing polymerization of actin

l molecular chaperone in cell cycle
control and signal transduction

l yielding monomers, acting as a cofactor
in platelet aggregation

l adapter protein in the regulation of
signaling pathways

involved in cell motility
soft connective tissues along with type | collagen
member of group | collagen

member of group | collagen

— = —

mediating the voltage-dependent sodium ion
permeability

l chemotactic for neutrophils and monocytes,
Inhibits endothelial cell proliferation

l cooperation with other chaperones
l calcium dependent cell adhesion proteins

! yielding monomers, acting as a cofactor in
platelet aggregation

l alter the interaction of IGFs with their cell surface
receptors
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Table 8 Proteins with unknown functions that had significantly altered expression in newborn rats compared to E15.5

fetuses changed proteins (P < 0.05)

Protein name

Protein ID  T-value Increasing (1) / Decreasing (|) Functions

Megf11 Protein IPI00765428
Igk protein-like isoform 2 IPI00568389
Hrc 87 kDa protein IPI00331867
Vtn Aa1018 IPI00210120
LRRGT0O0161 IPI00655254
Thbs4 106 kDa protein IPI00197194
rCG47051-like IP100958198
Lrp1 prolow-density lipoprotein receptor-related protein 1 IPI00369995
ltgb3 Integrin beta IPI00198695
- 8 kDa protein IPI00782171
Ppp1r12b Uncharacterized protein IP100371976
Ig lambda-2 chain C region IP100370486
mCG147639-like IPI00557598
Cd97 90 kDa protein IPI00365168
Cfp Properdin factor IPI00365896
Ltbp4 Uncharacterized protein IP100204867
Uncharacterized protein IP100950846
Eeflb2 IPI00372520
Lumican 1P100206403
Uncharacterized protein IP100948226
A030009H04Rik IP100201907
Collagen IP100189470
RpsS5 protein IPI00886474
histone cluster 1 IPI00188688
Uncharacterized protein IP100952007
Fibrillin-2 IP100204009
Fbin1 protein IP100557007
Postn Uncharacterized protein IPI00190088
Cadherin 11 IP100211883
Uncharacterized protein IP100778692
Tf 107 kDa protein IP100196656
Talin-1 IPI00362014

(Gene Ontology)
86 1
72 1
5.7 i histidine-rich calcium
binding protein
52 il polysaccharide binding,
scavenger receptor activity
46 il ferric iron binding
44 i structural molecule activity
4 1
4 1 protease binding
39 i peptide binding, receptor
activity
35 1
35 1
35 1 antigen binding
34 1
3 i G-protein coupled receptor
activity, calcium ion binding
29 1
29 1 calcium ion binding
-28 l nucleic acid binding,
nucleotide binding
-34 l translation elongation
factor activity
-38 !
-39 l
—4.1 l zinc ion binding
—45 !
—45 ! ribonucleoprotein
-5 l DNA binding
-56 !
—57 ! extracellular matrix structural
constituent;calcium ion binding)
—6.6 l calcium ion binding
68 !
-9.7 l calcium ion binding
—159 !
—26.6 | GTP bindingferric iron binding,
ubiquitin protein ligase binding
-306 1 actin binding

Note: Proteins were annotated in the UniProt database as uncharacterized proteins.

Materials and methods

Sample preparation

This study was approved by the Institute of Basic Me-
dical Sciences Animal Ethics Committee at the Peking
Union Medical College (Animal Welfare Assurance

Number: # A5518-01). Rats were caged and handled
under ethical conditions, according to international rules
of animal care specified in the International Animal
Welfare Recommendations. Sprague—Dawley rats weigh-
ing 250 g were purchased from the Huafukang
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Figure 4 Repetitiveness of individual specimens. A and B
indicate the repetitiveness of proteins identified in three E15.5
fetuses (A) and three newborn rats (B), respectively. Each circle in A
and B represents an individual sample. The numbers represent the
number of shared proteins in the respective overlapping areas. The
repetitiveness of the individual specimens was evaluated based on
the repetitive rate of protein identification (E15.5 fetuses, Repetitive
Rate = 56.3%; newborn rats, Repetitive Rate = 65.3%).

Biotechnical Company (Beijing, China). The day at
which spermatozoa were present in the vaginal smear
was recorded as half a day of gestation. Blood of E15.5
fetuses was obtained from the umbilical cord, and blood
of newborn rats was obtained from the jugular vein, as
previously described [9]. To avoid potential contami-
nation, the umbilical cord was first washed with 0.9%
NaCl solution for E15.5 fetuses, and the first drop of
blood was discarded for newborn rats. In all cases, the
blood was allowed to clot for approximately 4 h in sili-
cone centrifuge tubes at 4°C. The clotted material was
removed by centrifugation at 1000 g for 15 min. The
resulting serum was then centrifuged at 12000 g for 15
min at 4°C to remove any remaining cell debris. The
serum supernatant was collected and frozen at —-80°C
[37]. An additional two pooled samples were prepared
by mixing an equal amount of protein from 6 different
E15.5 fetuses and newborn rats, respectively.

One-dimensional SDS-PAGE analysis

The extracted proteins (20 pg) was dissolved by mixing
the samples with loading buffer, boiled for 5 min, and
loaded onto a 10% SDS-PAGE. After separation, the pro-
teins were stained with Coomassie Brilliant Blue.

Mass spectrometry (MS) analysis

In our study, triplicate analyses of LC-MS/MS were per-
formed on the pooled specimens for E15.5 fetuses and
newborn rats, respectively. Single or replicate analyses of
LC-MS/MS were performed on individual specimens.
Proteins were reduced, alkylated, and trypsin digested as
previously described [38]. The tryptic peptides were
desalted by solid-phase extraction (Oasis column;
Waters, Inc, Milford, Massachusetts, USA) and dried by
vacuum evaporation. The dried peptides were re-
dissolved in an aqueous solution containing 0.1% formic
acid [39]. For LC-MS/MS analyses, the peptides were se-
quentially loaded onto a trap column (Michrom peptide
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Captrap, MW 0.5-50 kD, 0.5 x 2 mm; Michrom Biore-
sources, Inc, FOB Auburn, CA, USA) at a flow rate of
20 pL/min with mobile phase (0.1% formic acid, 99.9%
water). The trap column effluent was then transferred to
a reversed-phase microcapillary column (0.1 x 150 mm,
packed with Magic C18, 5 um, 200 A; Michrom Biore-
sources, Inc, FOB Auburn, CA, USA) in an Eksigent sys-
tem (AB, Inc, Framingham, Massachusetts, USA).
Separation of the peptides was performed at a flow rate
of 500 nL /min and coupled to an online analysis by tan-
dem MS using LTQ Orbitrap Velos (Thermo Fisher
Scientific, San Jose, USA). The elution gradient for the
reverse column was changed from 95% mobile phase
(0.1% formic acid, 99.9% water) to 40% mobile phase
(0.1% formic acid, 99.9% acetonitrile). The elution time
was 150 min, except for the analysis of individual va-
riation, where it was 100 min. The MS was programmed
to acquire data in a data-dependent mode [40]. For the
pooled and individual samples used for individual va-
riation analysis, all survey scans were acquired in the
Orbitrap mass analyzer and the lock mass option was
enabled for the 445.120025 ion [41]. The MS survey
scan was obtained for the m/z range 300-2000 amu with
a resolution of 30000, followed by data-dependent
MS/MS scans (isolation width of 3 m/z, dynamic exclu-
sion for 0.5 min), and the twenty most intense ions were
fragmented by higher energy collision dissociation
(HCD) in the collision cell (normalized collision energy
of 40%; the activation time was set to 0.1 s) and detected
in the Orbitrap analyzer at 7500 resolution. For the six
individual specimens used for quantification analysis,
MS survey scans were acquired in the Orbitrap analyzer
at 60000 resolution and MS/MS were analyzed in LTQ
analyzer. The twenty most intense ions were fragmented
in the ion trap by collision-induced dissociation with a
normalized collision energy of 35%, activation q value
0.25, and activation time of 10 ms.

Protein identification

Peptide identification was performed using the
SEQUEST algorithm-based Bioworks 3.3.1 (Thermo
Scientific, Inc, San Jose, USA) to search the rat IPI 3.82
protein sequence database. The search parameters were
set as follows: precursor mass tolerance, 5 ppm; frag-
ment mass tolerance, 0.5 amu in LTQ detector and 10
mmu in Orbitrap detector; tryptic cleavages at only a ly-
sine or arginine with up to two missed cleavage sites
allowed; and a static modification of +57.02150 amu on
cysteine. The search results were further processed by
the Trans-Proteomic Pipeline (TPP) software (Developed
by the Institute for Systems Biology (ISB) in the Seattle
Proteome Center.) and the SEQUEST results were vali-
dated by PeptideProphet [42], which also calculates the
probability of peptide identification. ProteinProphet [43]
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was then applied to assign each peptide to a protein and
calculate the probability of protein identification. The
probability of protein identification was calculated based
on the peptide probability and the SEQUEST Xcorr
score [43]. Only protein identifications with a probability
> 0.95 were considered for further analysis, as this cutoff
resulted in a calculated FDR lower than 1%.

Individual variation

Repetitiveness of samples from E15.5 fetuses and new-
born rats was calculated using the formula: repetitive
rate = the number of common identified proteins / the
average number of identified proteins x 100%. To inves-
tigate the variation between individual littermates, the
coefficient of variation (CV) was calculated using the
formula: CV = the standard deviation of the spectral
counts/ the average spectral counts x 100%. The tripli-
cate analysis of pooled specimens in the same stage
based on LC-MS/MS was used as a technical control.
Each protein’s CV ratio between individual and pooled
samples was used to reflect the variation of this protein
in individual specimens. However, the variation of low
abundant proteins was generally large due to the ran-
dom sampling nature of the mass spectrometry. There-
fore, we calculated the CV ratios of the proteins that
had average spectral counts greater than six in both the
pooled and individual samples.

Quantification

The relative protein abundance was estimated based on
spectral counts (SC) of each given protein [44]. To re-
duce the bias of the peptide amount loaded in each ex-
periment, the SC were normalized for each protein by
dividing the SC by the total SC identified in each run
[45]. A two-tailed t-test was used to analyze significant
differences in identified proteins between two different
specimens (p < 0.05) [46].

Western blots

Western blots were performed to validate the changes in
Complement 3, Hemoglobin epsilon 1, and Apolipopro-
tein B in five E15.5 fetus serum samples and five new-
born rat serum samples. From these samples, 30 pg
proteins were loaded and separated on 12% SDS-PAGE.
A mini Trans-Blot Cell system (Bio-Rad Laboratories
Co., Ltd. Shanghai, China) was used to perform the
transfer to a nitrocellulose membrane following the
manufacturer’s protocols. After blocking with 5% non-
fat milk, membranes were probed with chicken anti-
Apolipoprotein B (ab117317, Abcam Hong Kong Ltd,
HK), rabbit anti-HBE1 (12361-1-AP, Proteintech Group,
Inc, Chicago, USA), and rat anti-C3 (CL7334AP, Cedar-
lane, Canada). Secondary antibodies were purchased
from Zhongshan Goldenbrige Biotechnology Company
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(Beijing, China) and EarthOx (San Francisco, CA 94121,
USA). The protein bands were detected using the
Enlight Western Blot kit (Engreen Biosystem Co, Ltd.
Beijing, China). The densitometry of the bands was cal-
culated using Image], which is a public domain Java
image processing and analysis program inspired by NIH
Image for the Macintosh (Obtained from http://image;j.
nih.gov/ij/docs/guide). A t-test was performed to analyze
significant differences between different bands.

Enrichment analysis of gene ontology (GO) categories
The identified proteins were functionally categorized based
on universal GO annotation terms [47] using the Biological
Networks Gene Ontology (BINGO) program package [48].
For enrichment analysis, we constructed a test dataset con-
sisting of the proteins identified that had significant changes
as well as a reference set of GO annotation for all identified
serum proteins. As per instructions on the BINGO web-
page, the custom GO annotation for the reference set was
created by extracting the GO annotations available from
the EBI GOA rat 2.0 release [49], which contains annota-
tions for 27746 proteins compiled from different sources.
The analysis was performed using a “hyper-geometric test”,
and all GO terms that were significant (P < 0.001 after
correcting for multiple term testing by Benjamini and
Hochberg false discovery rate corrections) were selected
as being over-represented and under-represented.

Ingenuity pathway analysis (IPA)

IPA was used to identify gene networks according to bio-
logical functions and/or diseases in the Ingenuity Path-
ways Knowledge Base (Ingenuity Systems, Redwood City,
CA). IPI numbers of identified proteins were the screened
in the Ingenuity Pathways Analysis (IPA) Knowledge Base.

Additional files

Additional file 1: Table S1. Comparison details.
Additional file 2: Table S2. Densitometries of the bands in Figure 2.

Additional file 3: Figure S1. Biological Process overrepresented.
Significantly overrepresented GO biological process terms for the set of
significantly increased serum proteins. In total, 552 and 590 proteins were
linked to at least one annotation term within the GO molecular function
and biological process categories, respectively. The set of the significantly
increased proteins was compared to all of the identified serum proteins.
Proteins with P < 0.001 are shown. The ratio shown is the number of
significantly increased proteins and all identified proteins to each GO
term divided by the number of increased and all serum proteins linked
to at least one annotation term within the indicated GO biological
process and molecular function categories. GO, Gene Ontology; IPI,
International Protein Index.

Additional file 4: Figure S2. Variations of serum high abundant
proteins, To investigate the variation between individual littermates, the
coefficient of variation (CV) was calculated using the formula: CV = the
standard deviation of the spectral counts/ the average spectral counts x
100%. The proteins’ CV ratios between individual and pooled samples
were plotted against the average spectral counts of the proteins in the
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triplicate analysis of the pooled samples for the E15.5 fetuses (A) and
newborn rats (B) specimen respectively. Only proteins with average
spectral counts more than six both in pooled and individual samples
were analyzed.

Additional file 5: Protein identifications in MS.
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