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Abstract

Background: The thymus is an immune organ essential for life and plays a crucial role in the development of T
cells. It undergoes a fetal to adult developmental maturation process occurring in mouse during the postnatal
months. The molecular modifications underlying these ontogenic changes are essentially unknown. Here we used a
differential proteomic-based technique (2D-Difference Gel Electrophoresis) coupled with matrix-assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to search for key proteins in the postnatal
development of the thymus. Eight different BALB/c mice were used in the study: four mice aged of 1 day
(neonatal) and four mice aged of 60 days (adult). Protein samples derived from thymus were labeled and run in
2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis). One whole-thymus tissue from each mouse was
run on gels and each gel containing a pooled sample of the eight mice was run in parallel. The pooled sample was
set as the internal pool, containing equal amount of each protein extract used in the experiment. Gels were
matched and compared with Difference In-gel Analysis software. Differential spots were picked, in-gel digested and
peptide mass fingerprints were obtained.

Results: Among the differentially regulated proteins in neonatal thymus group, 111 proteins were identified by
mass spectrometry, of which 95 proteins were up-regulated and 16 proteins were down-regulated. The identified
proteins belong to several functional categories, including cell proliferation, cycle and apoptosis, transcription
regulation, signal transduction, nucleotide processing, proteolysis and translation, protein folding, metabolism,
oxidoreduction, cytoskeleton, immune response, and embryonic development. The major interaction networks
comprised of cellular function and maintenance, cellular assembly and organization, and metabolism were also
identified by STRING analysis.

Conclusions: The demonstrated molecular changes are relevant for understanding thymus development as well as
neonatal immune function, and they provide the diagnostic disease markers. Further studies will be required to
describe in detail the role of the identified proteins in thymus maturation and in the specific functions of

neonatal thymus.
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Introduction

The thymus is essentially an epithelial organ, containing
many developing lymphocytes and playing a crucial role
in the development of T cells. Histologically, the thymus
can be broadly divided into two subcompartments, the
cortex and the medulla, each of which contains distinct
populations of thymic epithelial cells (TECs) and mesen-
chymal cells, endothelial cells and dendritic cells [1]. The
microenvironment of the thymus can produce a diverse
repertoire of peripheral T cells, and the correct patterning
and organization of thymus stromal components are cru-
cial for thymus function. Defects in thymus function can
result in serious health consequences, including immuno-
deficiency or autoimmunity.

Thymus undergoes major homeostatic postnatal func-
tional modifications and the underlying molecular
mechanisms are essentially unknown. In recent vyears,
much progress has been made in identifying the transcrip-
tion factors and signaling pathways that play a role in thy-
mus organogenesis and T cell development [2]. Although
much of these molecular insights involved in development
and immune reactions come from gene expression data
analyzed by microarray technologies, they are unable to
provide information concerning translational regulation of
expression or post-translational modification [3].

Proteomic analysis of global changes in protein expressed
in neonatal and adult murine organs provides a useful
method for detecting proteins that play a role in the devel-
oping processes [4-6]. It is proposed that during the devel-
opment of the thymus, various signals are present in
neonatal thymus which differ from the adult thymus. The
homeostasis of neonatal thymus microenvironment is crit-
ical for the metabolism and immune response [7]. System-
atic analysis of thymus protein expression profiles including
information about protein signatures, localization and
their quantitative changes are thus useful to thymus devel-
opment and maturation.

Recently the two-dimensional difference gel electro-
phoresis (2-D DIGE) technique with fluorescent dyes has
allowed quantitative analysis of separated proteins with
high sensitivity [8]. In this study, we performed a com-
parative proteomic analysis of differentially expressed pro-
teins in the thymus of mice aged 1 day (neonates) and 60
days (adults), and the function analysis and the crosstalk
of the proteins would be provided, aiming to search for
key proteins in the postnatal development of the thymus.

Results

Identification of differentially expressed proteins in
murine thymus using 2-DE

Neonatal (labeled with Cy3 or Cy5) and adult (labeled
with Cy3 or Cy5) spots were normalized to an internal
standard (labeled with Cy2) containing equal amount of
each protein extract used in the experiment. Differences
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in the two stages of thymus development are reflected in
the proteomic profiles of the thymus by DIGE technology.
A representative gel image is demonstrated from each
group (Figure 1). Protein spots on the gel were clear and
the majority of spots located at the region of pH 4-8 and
relative molecular weight of 20-100 kDa. DeCyder 2-D
difference analysis software was used to analyze and
match 2-D images of the two groups. Overall, the average
number of protein spots was 2274, and approximately
1406 proteins were matched between the two groups.
Among them, we detected 317 spots with an increased
level in the neonatal thymus and 194 spots with a higher
representation in the adult thymus. 111 proteins of inter-
est with the difference over 1.5-fold were identified by
MALDI-TOF MS (Additional file 1: Table S1) and partial
lists of them are indicated (Table 1).

Ontogenic classification

The identified proteins with significant differential dis-
plays between the neonatal and the adult thymus
group were clustered into categories according to
their biological function and subcellular localization
(Figure 2). Functional classification of identified pro-
teins were grouped into 11 categories, including cell
proliferation, cycle and apoptosis (8%), transcription
regulation (4%), signal transduction (6%), nucleotide pro-
cessing (13%), proteolysis and translation (4%), protein
folding (12%), metabolism (10%), oxidoreduction (12%),
cytoskeleton (15%), immune response (8%), and embry-
onic development (8%). According to the subcellular
location, these proteins were classified into eight categor-
ies, including membrane (12%), endoplasmic reticulum
(8%), mitochondrion (24%), nucleus (10%), cytoplasm
(38%), extracellular matrix and secreted (4%), peroxi-
some (2%) and undefined (2%).

Protein data mining

The web-tool STRING is a database and web resource
integrating information from numerous sources, includ-
ing both physical and functional interactions [9]. Nodes
represent the proteins and lines with different colors be-
tween nodes indicate different protein-protein inter-
action modes. Each interaction between nodes is
supported from literatures. In this study, STRING iden-
tified the major networks comprised of cellular function
and maintenance, cellular assembly, organization and
metabolism, and it also showed the major interactions
between the proteins which were differentially expressed
(Figure 3).

Validation of the differential protein displays by real time
PCR and Western blotting

In order to confirm the changes described, experiments
were next performed to validate the proteins differently
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Figure 1 Example of 2-D DIGE spectra in neonatal thymus and adult thymus. The neonatal thymus sample was labeled with Cy3 Dye
(green spots) and the adult sample with Cy5 Dye (red spots). In all gels, internal standard was labeled with Cy2 Dye.

display between the neonatal thymus and the adult. We
selected 12 proteins differentially regulated at the two
stages and quantified their mRNA expression by quanti-
tative RT-PCR. As shown in Table 2, quantitative RT-
PCR identified similar levels of mRNA regulation
for these genes, indicating transcriptionally regulated
expression of these proteins. We also analyzed samples
by Western blotting using specific antibodies, which
were directed against ACTN4, CH60, ACTB and COF1.
The results obtained from Western blot were compatible
with the intensities of the corresponding spots observed
in 2-D gels (Figure 4). The results suggest that a prote-
omic differential display model is applicable to
comparing.

Discussion

Proteomics studies, including 2-DE, MS, and bioinfor-
matics tools, facilitate the direct understanding of the
mechanism of the physiological or pathological
process. A major critical issue of 2-DE involves repro-
ducibility problems, owing to gel-to-gel and operator-
to-operator variations [10,11]. To eliminate these
technical limitations, investigators propose a complete

workflow for DIGE image analysis and comparison in
which cut-off values are carefully determined before
extracting spots of interest according to the experi-
mental conditions and reproducibility of the images
analyzed. A detailed statistical analysis is also proposed
on the identified spots using standard statistical tests
[4,12].

Comparative proteomic analysis of proteins in mam-
malian organ at one point of time may accelerate pre-
and clinical development of more specific diagnostic and
prognostic disease markers and new, more selective
therapeutic interventions [3-5,13]. Our study compared
proteins in thymus from mice aged 1 day (neonates)
with mice aged 60 days (adults) to gain insights into the
proteins involved in the postnatal development of the
thymus and the immune system. We found that there
were many differences in the proteins expressed in adult
and neonatal thymus, with approximately 511 differen-
tially expressed proteins by more than 1.5-fold. Among
them, 111 proteins were identified by MALDI-TOF MS.
These proteins participate in the cell proliferation, cycle
and apoptosis, transcription regulation, signal transduc-
tion, nucleotide processing, proteolysis and translation,
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Table 1 Partial lists of differentially regulated proteins in neonatal thymus group identified by MS”

Accession No. Protein name Gene pl/MW Mass Protein covered (%)  Mascot t-test Fold
name matched score value change
TENA_MOUSE Tenascin Tnc 4.77/237 11/22 8 70 0.00019 2031
ACTN4_MOUSE Actinin-4 Actn4 5.25/105 16/42 21 93 0.000054 1.741
TRAP1_MOUSE Heat shock protein 75 kDa Trap1 6.25/81 22/35 35 212 0.0000037 1.541
GRP75_MOUSE Stress-70 protein Hspa9 591/74 19/29 29 166 0.0000022 1651
CH60_MOUSE 60 kDa heat shock protein Hspd1 591/61 13/25 32 129 0.00012 1.901
ATPB_MOUSE ATP synthase subunit beta Atp5b 5.19/56 21/24 58 253 0.0000023 2451
SEPT7_MOUSE Septin-7 Sept7 8.73/51 4/16 12 103 0.000071 2721
ACTB_MOUSE Beta-actin Actb 5.29/42 15/45 42 109 0.000075 2201
STML2_MOUSE Stomatin-like protein 2 Stom|2 8.95/38 14/24 45 165 0.00000052 2.701
PSME1_MOUSE Proteasome activator Psmel 5.73/29 13/28 45 123 0.000015 3.57]
complex subunit 1
COF1_MOUSE Cofilin-1 Cfln 8.22/19 7/9 34 96 0.00000032 9.36]
COTL1_MOUSE Coactosin-like protein Coth 528/16 14/29 76 213 0.0000072 228]

“CyDye images were analyzed by BVA and spots that showed statistically significant differences (p<0.05) in intensity between the neonatal and the adult thymus
groups are listed. pl: calculated isoelectric point; MW: nominal molecular weight;1: up-regulated; |: down-regulated.

protein folding, metabolism, oxidoreduction, cytoskel-
eton, immune response, and embryonic development.
According to our data, the proteins involved in
structuring actin cytoskeleton have emerged from this
study. Actb (Beta-actin), Actn4 (Actinin-4) and Sept7
(Septin-7) were found more expressed in the neonatal
thymus compared to adult; Cfl1 (Cofilin-1) and Cotll
(Coactosin-like protein) were found less expressed in the
neonatal thymus. These proteins play a role in regulating
the actin cytoskeleton, including filament polymerization
and depolymerization. Increasing knowledge shows that
the dynamic actin cytoskeleton, consisting of actin iso-
forms and their binding proteins, is essential for all

developmental processes and the viability of the adult
organism [14]. These functions are attributed to the abil-
ity of actin to form filaments that can rapidly assemble
and disassemble according to the needs of the cell [15].
Actb is a highly conserved actin isoform ubiquitously
expressed in vertebrates and mice hypomorphic for Actb
die of uncharacterized defects during development
[16,17]. Actn4 is an actin-binding protein and has been
reported to crosslink actin, regulate actin cytoskeleton
and enhance cell mobility [18]. Sept7, another cytoskel-
etal component, can assemble on the T-cell cortex and
be enriched in filaments for efficient motion of motile T
cells [19]. It is demonstrated that actin cytoskeleton and
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Figure 2 Classification of proteins by gene ontology according to their biological function (A) and subcellular localization (B).
Assignments were made on the basis of information provided from the Swiss-Prot database.
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Figure 3 The simulated functional network of proteins that were differentially displayed in the STRING database. (A) Related networks
and interactions between the identified proteins were shown. (B) Tight interactions centered on cytoskeletal proteins and chaperones.

TCR signaling complexes are tightly integrated in T cells.
Various cytoskeletal elements are crucial for the fine-
tuning of T cell signaling and the immunological synapse
(IS), while T cell activation induces the organization of
both microtubules and actin cytoskeleton [20,21]. Thus
these up-regulated cytoskeletal proteins assemble and
contribute to T-cell activation and the IS formation in
neonatal murine thymus. Additionally, we found Cfll
and Cotll were down-regulated in the neonatal mice. It
is reported that decreased Cfll expression is important
for early mouse embryo development, and Cotll is asso-
ciated with autoimmune disorders [22-24]. Both proteins
belong to the actin depolymerizaition factor family and
interact with actins and filaments to function primarily
in promoting depolymerization [24,25]. Therefore,
homeostasis of actin dynamics is important for the post-
natal development of mice thymus.

The mitochondrial protein Stoml2 (Stomatin-like pro-
tein 2) was found more expressed in neonatal mice. It
has been suggested that Stoml2 expression is dramatic-
ally up-regulated during T cell activation, and this
increases T cell function and mitochondrial biogenesis,
ultimately leading to resistance to apoptosis [26]. Inter-
estingly, it is reported that Stoml2 is also involved in the
organization of the peripheral cytoskeleton and acts as a
functional bridge between TCR signalosomes and the
cytoskeleton and cellular organelles [27].

These differentially expressed proteins involved in
cytoskeleton household in neonatal compared to adult

thymus are crucial for sustaining T cell activation and
regulating cytoskeleton rearrangements. The regulation
of cytoskeleton reorganization by T cell activation, and
conversely, the control of T cell activation by cytoskel-
eton can be areas of active investigation. The disordered
expression of these cytoskeleton proteins in neonatal
thymus may be responsible for immune system diseases.
Physiological variations occurring in the course of thy-
mus maturation is a mandatory step to delineate the
pathological mechanisms for the immune diseases which

Table 2 Differences in mRNA expression levels of the
proteins differentially expressed in neonatal versus adult
thymus

Gene name mRNA ratio (Neonate/Adult)
Tnc 142
Atp5b 163
Actn4 1.78
Actb 1.71
Hspd1 148
Hspa9 223
Trap1 1.55
Sept7 1.89
Stoml2 1.60
(@il 0.76
Coth 0.68
Psmet 0.61
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is related to cytoskeleton disruption. Accordingly, the
cytoskeleton and its proteins greatly contribute to thy-
mus maturation in neonatal mice, and cytoskeletal pro-
teins can be potential targets for immunomodulation.
Dysfunction of the cytoskeleton proteins in the develop-
ment of thymus could lead to serious health conse-
quences, including immunodeficiency or autoimmunity.
Further investigation will be needed, and gene knockout
or small molecular inhibitors that target these genes
may be useful for understanding their effects in immune
development.

Among the up-regulated proteins in neonatal mice, we
also identified some heat shock proteins (HSPs) includ-
ing Hspdl (60 kDa heat shock protein), Trapl (Heat
shock protein 75 kDa) and Hspa9 (Stress-70 protein).
These proteins represent a set of highly conserved mo-
lecular chaperones that serve by folding newly synthe-
sized proteins, disassembling unstable proteins, and
assisting in the transportation of proteins within the cell
[28]. They enable cells to survive adverse environmental
conditions, and their absence damages the embryonic
development in mice [29,30]. Christensen et al. show
that homozygosity for the null allele of Hspdl causes
early embryonic lethality, while heterozygosity for the
inactivated allele permits embryonic development and
postnatal survival [30]. It is worth noting that eukaryotic
and prokaryotic HSPs have high sequence homology and
HSPs could act as potentially dangerous autoantigens,
which adds to the evidence that neonatal mice are more
susceptible to autoimmune disease than adult mice [31].
In addition, Npm1 (Nucleophosmin) was found highly
expressed in neonatal thymus. Npml is a nuclear
chaperone involved in chromatin remodeling during em-
bryonic development and plays important roles in the
regulation of cell proliferation and anti-apoptosis
[32,33]. Loss of Npm1 impairs embryonic development

and leads to premature cellular senescence and genomic
instability [34]. Regarding these up-regulated chaperones
above identified in neonatal thymus, it indicates their
important roles during neonatal period.

Besides the proteins related with cytoskeleton and cha-
perones, other differentially expressed proteins were also
identified. For instance, Tnc (Tenascin) is a glycoprotein
of the extracellular matrix, which is involved in lympho-
cyte differentiation and migration. It is demonstrated
that Tnc is expressed by epithelial cells early during em-
bryonic development of the thymus [35,36]. It can sup-
port the tethering and rolling of lymphocytes, which
would be used by lymphocytes migrating through sec-
ondary lymphoid organs [37]. Newborn mice are consid-
ered lymphopenic and the number of cells in the
periphery is gradually increased by the constant output
of newly exported T cells from the thymus [38,39]. Tnc
is up-regulated in neonatal murine thymus, suggesting
its important role in lymphocytic migration.

In addition, we also identified some proteins up-
regulated in adult thymus. For example, Psmel (Prote-
asome activator complex subunit 1) is implicated in
immunoproteasome assembly and required for efficient
antigen processing. Immune proteasomes in thymus are
involved in processing of self-antigen, which are pre-
sented by MHC class I molecules for rejection of auto-
reactive thymocytes in adults [40,41]. They are present
in adult thymus and responsible for negative selection
of thymocytes through apoptosis. It is demonstrated
that dexamethasone-induced thymocyte apoptosis is
mediated by proteasomes, and lactacystin can also regu-
late apoptotic signaling as a proteasome-specific peptide
inhibitor in the process of thymocyte apoptosis [42].
These implicate that such chemicals via regulating pro-
teasome could be employed during the development,
maturation or involution of thymus.
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Bioinformatics analysis was performed to classify iden-
tified proteins in neonates based on biological function
and subcellular localization. It links the identified pro-
teins to protein folding, metabolism, oxidoreduction,
cytoskeleton, immune response, embryonic development
and so on. Some findings reported that neonates exhib-
ited aberrant immune responses when compared to
adults, resulting in increased susceptibility to infection
and autoimmune disease [31,43]. Our results indicated
the associated categories of proteins possibly involved in
immaturity of neonatal for immune development and
their potential role in neonates.

Recently the functional connectivity within a proteome
becomes more and more important. As various protein
complexes, transient interactions and functional path-
ways are all context-dependent, we further investigated
the interaction networks between these proteins by the
STRING web-tool. Although it represents the union of
all possible protein-protein links, STRING imports pro-
tein association knowledge not only from databases of
physical interactions, but also from databases of curated
biological pathway knowledge [9]. The potential gene
and protein interactions indicated in the study may en-
able prioritization of genes of interest. STRING results
shows that those cytoskeletal proteins and chaperones
are parts of the network that links the differentially
expressed proteins. Most identified proteins are con-
nected by the two kinds of proteins. Observing their
own interaction network, we also found that they clus-
tered in a tight interaction network centered on ACTB,
HSPA9 and HSPDI1. It is known that the cytoskeleton is
incomplete without its associated proteins, which in-
clude chaperones that appear to protect the cytoskeleton
in circumstances where cytoskeletal homeostasis is
affected. The interplay between the chaperone and actin
cytoskeleton also indicates that chaperones are not only
limited to solve abnormal situations, but they also have
an active participation during the normal differentiation
process of the cell and are key factors for structural and
functional rearrangements. For example, it has been
reported that Prefoldin, a hexameric chaperone which
facilitates posttranslational folding of actins and other
cytoskeletal proteins, is required for lymphocyte devel-
opment and function [44]. Deficiency in Prefoldin would
cause lymphopoiesis defects, including dramatic reduc-
tions in immature CD4" CD8" double-positive T cells in
thymus, and the phenotype was consistent with an
actin-folding defect. Therefore, chaperones interact
closely with the cytoskeleton network in the process of
thymus maturation, and the additional experiments will
be needed to identify more protein members and clarify
the interaction and function.

In conclusion, we have identified unique differentially
displayed proteins focusing on a comparison of immune
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related proteomes between neonatal thymus and adult
thymus. The demonstrated molecular changes are rele-
vant for understanding thymus development as well as
neonatal immune function. Further studies will be
required to describe in detail the role of the identified
proteins in thymus maturation and in the specific func-
tions of neonatal thymus.

Materials and methods

Animals

Eight different BALB/c mice were used in the study: four
mice aged of 1 day and four mice aged of 60 days. They
were kept under 12:12 h cycle of light with ad libitum
access to food and drink. Mice were killed in accordance
with Institutional Animal Care and Use Committee of
China Medical University guidelines and thymuses were
quickly dissected and frozen under liquid nitrogen. One
whole-thymus tissue from each mouse was run on gels
and each gel containing a pooled sample of the eight
mice was run in parallel. The pooled sample was set as
the internal pool, containing equal amount of each pro-
tein extract used in the experiment.

Sample preparation and labelling

For protein solubilization, 1 mg lyophilized thymus was
suspended in 400 pl rehydration buffer, i.e., 8 M urea,
2 M thiourea, 40 mM Tris, 4% CHAPS, 65 mM DTT,
2% IPG buffer and 1% protease inhibitor cocktail. The
protein extracts were prepared for 2-DE by using 2-D
clean-up kit (GE Healthcare) following manufacturer
instructions. Precipitated proteins were resuspended in
rehydration buffer and finally quantified using 2-D
Quant Kit (GE Healthcare). The pH was adjusted to 8.5
by 100 mM NaOH and 50 pg of protein in either group
was labeled with 400 pmol of either Cy3 or Cy5 dyes
(GE Healthcare). A 50 pg protein mix, containing equal
amount of each protein extract was labeled with 400
pmol of Cy2 dye as the internal standard sample. La-
beled samples were immediately subjected to IPG strips
(24 cm, pH 3-10, NL) and 900 pg of total protein was
mixed in the rehydration buffer for preparative isoelec-
tric focusing (IEF).

2-DE

IEF was performed using a step-wise voltage ramp by
IPGphor Illsystem (GE Healthcare): 30 V for 12 h,
300 V for 3 h, linear ramping from 300 V to 1,000 V for
6h and from 1,000 V to 8,000 V for 3 h, and finally 8,000
V for 7 h. Once IEF was completed, the strips were equi-
librated in equilibration buffer (75 mM Tris—HCI, pH
8.8, 6 M urea, 30% glycerol, 2% SDS and 1% DTT) for
15 min, followed by the same buffer containing 2.5%
iodoacetamide instead of DTT for another 15 min.
The second dimension was performed using 12.5%
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SDS-PAGE gel (260x200x1 mm®) at 1 W constant
power per gel by Ettan DALTsix (GE Healthcare).

Image analysis

The gel was placed in the Typhoon 9400 Multi Scan-
ner (GE Healthcare). Cy2, Cy3 and Cy5 fluorescence-
labeled images were scanned at 488/520, 532/580 and
633/670 nm wavelength pairs, respectively. Quantita-
tive differential expression analysis was performed by
DeCyder 6.5 sftware (GE Healthcare). Scanned images
of fluorescenty labeled proteins were sequentially ana-
lyzed by differential in-gel analysis (DIA-module) dur-
ing which the Cy5:Cy2 and Cy3:Cy2 normalization of
protein spot was performed. The Log abundance ratios
of each protein spot were then compared between neo-
natal and adult thymus from all gels by Biological Vari-
ation Analysis (BVA-module). Due to an intrinsic
variability associated to the mouse peculiarities, we chose
a stringent criterion: (i) a change of expression of at least
1.5-fold, (ii) z-test value (p<0.05), and (iii) the identification
of the spots in the four experimental replicates.

Mass spectrometry identification and

bioinformatics analysis

The differentially expressed protein spots were cut to re-
duction, alkylation, digestion, extraction, spot targeting
and desalting. The sample plate was placed into
MALDI-TOF mass spectrometer (Bruker Daltonics) for
mass spectrometry (MS) analysis to obtain peptide mass
fingerprinting (PMF). MS spectra were analyzed using
the software flexAnalysis version 3.0 (Bruker Daltonics).
Protein identification of peptide fragments was per-
formed using MASCOT software  (http://www.
matrixscience.com) against Swiss-Prot database (Swiss
Institute of Bioinformatics). Carbamidomethylation for
cysteine, oxidation for methionine and other variants
were also taken into consideration. Probability based on
Mowse score >58 suggests a significant match and ac-
curate identification of the protein.

Interaction network

Functional partnerships between proteins are the funda-
mental of cell working. A proteome-scale interaction
network of the differentially expressed proteins that
identified in the present search was derived from the
STRING database (http://string-db.org) [9].

Quantitative real-time RT-PCR

Isolation of total RNA was carried out with the TRIzol
(Invitrogen) according to the manufacturer’s protocol.
One microgram of total RNA was reverse transcribed to
c¢DNA in a total volume of 20 ul system using a RT reac-
tion kit (Promega). Real-time PCR was performed using
the Express SYBR greener qPCR supermix Universal Kit
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(Invitrogen) on a Rotor-gene 6000 system (QIAGEN).
The 25-ul PCR mixture contained 2 pl reverse-
transcribed product 12.5 pl SYBR Green supermix,
8.5 pl RNase-free water, 1 pl forward, and 1 pl reverse
primers (Table 3). The reaction was incubated in a
72-well optical plate by 45 amplification cycles of 94°C
for 5 s, 58°C for 20 s, and 72°C 30 s. Each sample was
analyzed in triplicate and repeated three times. Gene ex-
pression levels were calculated relative to the housekeep-
ing gene Gapdh.

Western blot

To determine the expression of protein, tissue extracts
were prepared from 1x10° cells in lysis buffer (20 mM
Tris pH7.4, 250 mM sodium chloride, 0.1%TritonX-100,
2 mM EDTA, 10 pg/ml leupeptin, 10 pg/ml aprotinin,
0.5 mM phenylmethylsulfonyl fluoride, 4 mM sodium
orthovanadate and 1 mM DTT), and 60pg of the protein
was resolved on 12% SDS-polyacrylamide gels. After
electrophoresis, the proteins were eletrotransferred to
nitrocellulose filters, the membrane (Amersham) was
blocked with 5% nonfat dry milk in TBS-T (20 mM
Tris, pH 7.6, 137 mM NaCl, 0.05% Tween-20) for 3 h
at room temperature, and the proteins were probed
with specific antibodies—ACTN4, CH60, ACTB and
COF1 (Cell Signaling) and detected by chemiluminescence

Table 3 Primers used for RT-PCR

Gene name Primer sequence (5'-3') Amplicon size (bp)
Tnc fwd: AGCCACCCGCTACTACAT 193
rev: CTGCACCTGAACGACAAA
Atp5b fwd: AGATTCTGGTGACTGGGATA 132
rev: TGGCGACATTGTTGATTAG
Actn4 fwd: GTTTGCCTAAGCCAGAGC 154
rev: ATCATTCCCAGGGTCATC
Actb fwd: ATCGTGCGTGACATCAAA 178
rev: AGAAGGAAGGCTGGAAAA
Hspd1 fwd: GGGGAAGTCCCAAAGTAA 174
rev: CCTTGGCAATAGATCGTG
Hspa9 fwd: CAAAGGTCCTGGAGAATG 150
rev: CAATAAGACGCTTAGTAGCA
Trap1 fwd: AGACGGACGCACCACTCA 158
rev: CAGCCACTTGGGCAGGAT
Sept7 fwd: GTGAATCTGGACTGGGAAAG 158
rev: CAGCAGCAACTGAACACCAC
Stoml2 fwd: GGGCTCTGACTCAACATAAT 17
rev: GATTGGAGGGCAGTAGCA
cfh fwd: TGCCGCTATGCACTCTAT 199
rev: GGTCCTTGACCTCCTCGT
Cotl1 fwd: AAGTTTGCCCTCATCACA 199
rev: ACTGAGCGTCGTAGTTGG
Psme1 fwd: AGGAGGAGCGGAAGAAGC 184
rev: AACCAGGTAGTGACCAGATTGA
Gapdh fwd: CCTTCCGTGTTCCTACCC 163

rev: AAGTCGCAGGAGACAACC
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(Amersham). To assaure equal loading, gels were stripped
and reprobed with antibodies against GAPDH (Shanghai
Kangchen).

Additional file

Additional file 1: Table S1. Lists of differentially regulated proteins in
neonatal thymus group identified by MS".
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