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Abstract

Background: The process of protein-DNA binding has an essential role in the biological processing of genetic
information. We use relational machine learning to predict DNA-binding propensity of proteins from their structures.
Automatically discovered structural features are able to capture some characteristic spatial configurations of amino
acids in proteins.

Results: Prediction based only on structural relational features already achieves competitive results to existing
methods based on physicochemical properties on several protein datasets. Predictive performance is further
improved when structural features are combined with physicochemical features. Moreover, the structural features
provide some insights not revealed by physicochemical features. Our method is able to detect common spatial
substructures. We demonstrate this in experiments with zinc finger proteins.

Conclusions: We introduced a novel approach for DNA-binding propensity prediction using relational machine
learning which could potentially be used also for protein function prediction in general.
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Background
The process of protein-DNA interaction has been
an important subject of recent computational-biology
research, however, it has not been completely under-
stood yet. DNA-binding proteins have a vital role in the
biological processing of genetic information like DNA
transcription, replication, maintenance and the regulation
of gene expression. Several computational approaches
have recently been proposed for the prediction of DNA-
binding function from protein structure. In this paper
we are interested in prediction of DNA-binding propen-
sity of proteins using their structural information and
physicochemical properties. This approach is in con-
trast with some of the most recent methods which are
based on similarity of proteins, for example structural
alignment or threading-based methods [1-3] or methods
exploiting information about evolutionary conservation of
amino acids in proteins [4]. In general, methods exploit-
ing evolutionary information can be more accurate than
the approaches aiming to infer binding propensity purely
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from physicochemical or structural protein properties.
On the other hand, the main advantage of the approaches
not using evolutionary information is that they do not rely
on the existence of homologous proteins and also they
may provide interpretable patterns describing the binding
principles.
In one of the pioneering works on the prediction of

DNA-binding propensity, Stawiski et al. [5] investigated
the structural and sequence properties of large, positively
charged electrostatic patches on DNA-binding protein
surfaces. They used a neural network with 12 features
such as molecular weight per residue, patch size, percent
α-helix in patch, average surface area per residue, num-
ber of residues with hydrogen-bonding capacity, percent
of patch and cleft overlap, number of lysine and polar
isosteres in Lysoff patches, and percent of conserved posi-
tive and aromatic residues in the patch. Ahmad and Sarai
[6] trained a neural network based on the net charge, the
electric dipole and quadrupole moments of the protein.
The combination of charge and dipolemoment performed
best, while information about the quadrupole moment
improved the accuracy only slightly. They found out that
DNA-binding proteins have significantly higher net pos-
itive charges and electric moments than other proteins.
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Bhardwaj et al. [7] examined the sizes of positively charged
patches on the surface of DNA-binding proteins. They
trained a support vector machine classifier using the pro-
tein’s overall charge and its overall and surface amino acid
composition. Szilágyi and Skolnick [8] created a logistic
regression classifier based on the amino acid composi-
tion, the asymmetry of the spatial distribution of specific
residues and the dipole moment of the protein. Patel et
al. [9] used an artificial neural network to discriminate
DNA-binding proteins from non-DNA binding proteins
using amino-acid sequential information. For each amino
acid sequence they created a set of 62 sequence features.
Nimrod et al. [4] presented a random forest classifier for
identifying DNA-binding proteins among proteins with
known 3D structures. First, their method detects clusters
of evolutionarily conserved regions on the surface of pro-
teins using the PatchFinder algorithm. Next, a classifier
is trained using features like the electrostatic potential,
cluster-based amino acid conservation patterns, the sec-
ondary structure content of the patches and features of the
whole protein, including all the features used by Szilágyi
and Skolnick [8].
In the present work, we use an automatic feature con-

struction method based on relational machine learning to
discover structural patterns capturing spatial configura-
tion of amino acids in proteins. Numbers of occurrences
of each discovered pattern in a protein become attributes
of the protein, which are then used by a machine learning
algorithm to predict the DNA-binding propensity of the
protein. We combine two categories of features to predict
the DNA-binding propensity of proteins. The first cat-
egory contains physicochemical features which enabled
Szilágyi and Skolnick’s method [8] to achieve state-of-the-
art predictive accuracies. The second category contains
structural features representing the discovered spatial pat-
terns in protein structures. Using predictive classifiers
based on these features we obtain accuracies competitive
with existing physicochemical based methods on several
datasets of proteins. Moreover, our method is able to
detect conserved spatial substructures, which we demon-
strate in experiments with zinc finger proteins.
Nassif et al. [10] previously used a relational learning

based approach in a similar context, in particular to clas-
sify hexose-binding proteins. The main differences of our
approach from the method of Nassif et al. [10] are as
follows. First, the fast relational learning algorithm [11]
that we use enables us to produce features by inspect-
ing much larger structures (up to tens of thousands of
entries in a learning example) than those considered in the
work of Nassif et al. [10] using the standard learning sys-
tem Aleph. Second, our structural features acquire values
equal to the number of occurrences of the corresponding
spatial pattern, whereas Nassif et al. [10] only distin-
guished the presence of a pattern in a learning example

from its absence. Our preliminary results [12] indicated
that occurrence-counting indeed substantially lifts pre-
dictive accuracy. Lastly, the approach of Nassif et al. [10]
resulted in classifiers that are more easily interpretable
than state-of-the-art classifiers and comparable in pre-
dictive accuracy. Here we maintain the interpretability
advantage and achieve accuracies competitive to the state-
of-the-art predictive accuracies both by a purely structural
approach (without the physicochemical features) and also
through the combination of structural and physicochemi-
cal features.

Materials andmethods
Data
DNA-binding proteins are proteins that are composed
of DNA-binding domains. A DNA-binding domain is an
independently folded protein domain that contains at
least one motif that recognizes double- or single-stranded
DNA. We worked with the following datasets in our
experiments:

• PD138 - dataset of 138 DNA-binding protein
structures in complex with DNA,

• UD54 - dataset of 54 DNA-binding protein structures
in unbound conformation,

• BD54 - dataset of 54 DNA-binding protein structures
in DNA-bound conformation corresponding to the
set UD54

• APO104 - dataset of 104 DNA-binding protein
structures in unbound conformation,

• ZF - dataset of 33 Zinc Finger protein structures in
complex with DNA,

• NB110 - dataset of 110 non-DNA-binding protein
structures,

• NB843 - dataset of 843 non-DNA-binding protein
structures.

Dataset PD138 was created using the Nucleic Acid
Database (NDB) by Szilágyi and Skolnick [8] - it con-
tains a set of DNA-binding proteins in complex with DNA
strands with a maximum pairwise sequence identity of
35% between any two sequences.
Both the protein and the DNA can alter their conforma-

tion during the process of binding. This conformational
change can involve small changes in side-chain location,
and also local refolding, in case of the proteins. Predicting
DNA-binding propensity from a structural model of a pro-
tein makes sense if the available structure is not a protein-
DNA complex, i.e. it does not contain a bound nucleic
acid molecule. In order to find out how the results would
change according to the conformation before and after
binding, we used two other datasets (UD54, BD54). BD54
contains bound conformations of DNA-binding proteins,
i.e. DNA-protein complexes. UD54 contains the same
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sequences in their unbound, free conformation. These
datasets were also obtained from Szilágyi and Skolnick [8].
Another set of DNA-binding protein structures

(APO104) determined in the absence of DNA was
obtained from Gao et al. [2].
Thirty-three examples of Cys2His2 ZF-DNA complexes

were sourced from Siggers et al. [13]. Their structural
description was obtained from the Protein Data Bank.
Rost and Sander constructed a dataset (RS126) for sec-

ondary structure prediction. Ahmad & Sarai [6] removed
the proteins related to DNA binding from it, thus getting a
final dataset of non-DNA-binding proteins. As our nega-
tive dataset (NB110) we used this set of non-DNA-binding
proteins.
We also used an extended dataset (NB843) by Nimrod

et al. [4]. This dataset contains additional 733 structures
of non-DNA-binding proteins. The additional structures
were gathered using the PISCES server. Entries in this
list include crystal structures with a resolution better
than 3.0Å. The sequence identity between each pair of
sequences is smaller than 25%.
From the structural description of each protein we

extracted the list of all contained residues with informa-
tion on their type and the list of pairwise spatial distances
among all residues. As for the physicochemical features,
we followed Szilágyi and Skolnick’s work [8] and extracted
features indicating the respective proportions of the Arg,
Lys, Asp, Ala and Gly residues, the spatial asymmetry
of Arg, Gly, Asn and Ser, and the dipole moment of the
protein.

Method
Our method exploits techniques of relational machine
learning [14] in conjunction with state-of-the-art
attribute-value learning algorithms [15]. Very briefly, our
method can be viewed as proceeding in three steps. It
starts with PDB files, which is a widely used format for
proteins. Then it creates a relational representation of the
proteins (step 1). After that it tries to extract meaningful
relational patterns from the relational structures describ-
ing proteins and uses them to create an approximate
attribute-value representation of the proteins (step 2)
which is then used for learning attribute-value classifiers
(step 3).
Although the field of attribute-value machine learning

is more mature than the field of relational machine learn-
ing, attribute-value learning algorithms, such as decision
trees or support vector machines, suffer from the limi-
tation that they can deal only with data which is in the
form of data tuples (such as real-valued or boolean vec-
tors) of fixed length. Attribute-value learning algorithms
face problems when dealing with data in a more struc-
tured form, for example spatial structures of proteins. On
the other hand, relational learning algorithms can directly

learn from data expressed as relational structures such
as graphs or the logic-based form which we adopt and
explain below. Spatial structures of proteins, which is what
we are interested in, can be represented very naturally
within the relational-learning framework.
Propositionalization [16] is a general strategy which

combines advantages of attribute-value learning algo-
rithms (usually higher accuracy) and relational learn-
ing algorithms (ability to handle structured examples).
In propositionalization, one tries to convert a relational
learning problem to an attribute-value learning problem
by transforming the original relational representation to
an (approximate) attribute-value representation, i.e. to
representation where learning examples are represented
as vectors of fixed size, and then to train an attribute-
value classifier for such data. Thus, roughly speaking,
propositionalization corresponds to steps 2 and 3 of our
method.
The representation of examples that we use is rooted

in the field of inductive logic programming [14] which
is a sub-field of relational learning. However, for brevity,
we mostly avoid the whole logical machinery usually used
in inductive logic programming and we speak instead
(rather informally) about relational structures instead of
first-order formulas and logical interpretations. A lit-
eral is an expression of the form literalName(A1, . . . ,Ak)
where A1, . . . ,Ak are variables or constants. We use the
convention from logic programming that variables start
with an upper-case letter. For example residue(A, his) or
distance(A,B, 10.0Å) are literals and A, B are variables
whereas his and 10Å are constants. An example is sim-
ply a set of literals none of which contains a variable. For
instance

e1 = residue(a, glu), residue(b, cys), distance(a, b, 4.0Å),
distance(b, a, 4.0Å)

is an example describing a dipeptide.
Besides examples, we also need patterns. A pattern

is a set of literals which, unlike examples, may contain
variables. An example of a pattern is

p1 = residue(A,X), distance(A,B, 10.0Å), residue(B, glu)

A pattern p is said to covera an example e when we are
able to find a substitution θ to variables of p such that
pθ ⊆ e. For example the pattern p1 covers the exam-
ple e1 because p1θ ⊆ e for substitution θ = {A/b,B/a}.
We are not interested only whether a pattern p covers
a given example e but also how many covering substitu-
tions there are, i.e. how many substitutions θ such that
pθ ⊆ e there are. We call the number of covering sub-
stitutions of a pattern p its value. Although counting the
number of covering substitutions is not very common in
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ordinary propositionalization approaches, it makes per-
fect sense for the problem of predicting DNA-binding
propensity of proteins, since ability to bind DNA is often
connected with count or proportion of atom-groups with
certain properties (e.g. charged residues [17]).
In the experiments we used a representation of proteins

that consisted of literals representing types of the residues
and literals representing pair-wise distances between the
residues up to 10Å. These distances were computed from
alpha-carbon coordinates obtained from PDBb. We also
restricted the shapes of possible patterns by insisting that
the patterns have to be tree-like. Despite these simpli-
fications, some of the examples contained, in the end,
tens of thousands literals which would be very chal-
lenging for common relational learning systems such as
Alephc, not to mention that these systems do not allow
computing numbers of covering substitutions. Therefore
we customized the pattern search algorithm [11] which
is more appropriate for problems of this size due to
its pruning mechanisms and strong structural language
bias (it constructs only tree-like patterns). This pattern
search algorithm prunes pattern space using two mea-
sures: redundancy (described by Kuželka et al. [11]) and
minimum frequency which is a minimum number of
examples that must be covered by a pattern. An exam-
ple of a tree-like pattern is res(A,arg), res(B,arg), res(C,lys),
dist(A,B,10.0), dist(A,C,10.0). This pattern assumes the
presence of two Arginines – A and B – and one Lysine
– C. The distance between the Arginines is 10Å, the dis-
tance between the Arginine A and the Lysine C is also
10Å. A pattern like this can be used as a feature, count-
ing the number of occurrences of this particular spatial
configuration of amino acids in proteins.
The generated patterns were used for classification

using six state-of-the-art attribute-value learning algo-
rithms listed in Table 1. We used implementation of these
learning algorithms present in the WEKA [18] open-
source machine learning software. We also combined the

Table 1 Learning algorithms

Classifier Category References

Linear support vector
machine

kernel [19]

Support vector machines
with RBF kernel

kernel [19]

Simple logistic regression regression/ensemble [20]

L2-regularized logistic
regression

regression [21]

Ada-boost (with decision
stamps)

ensemble [22]

Random forest ensemble [23]

State-of-the-art attribute-value learning algorithms used for classification.

patterns constructed automatically by the relational pat-
tern search algorithm with numerical features devised by
Szilágyi and Skolnick [8].
Parameters of the classifiers were tuned using internal

cross-validation. When performing cross-validation, the
set of patterns was created separately for each train-test
split corresponding to iterations of cross-validation proce-
dure. The number of trees for random forest and the num-
ber of iterations for Ada-boost was selected from the set
{10, 20, 50, 100, 200, 500, 1000}. The complexity parame-
ter c for linear support vector machine and for support
vector machine with RBF kernel was selected from the set
{1, 10, 102, 103, 104, 105, 106}. The regularization parame-
ter of L2-regularized logistic regression was selected from
the set {10−3, 10−2, 10−1, 1, 10, 102, 103}. The minimum
frequency of features on one of the classes was 0.7.
We used a different methodology for experiments with

datasets PD138/NB843, because the size of the dataset
required a sampling-based approach to feature construc-
tion rather than exhaustive search. Therefore, we followed
an approach in which patterns were constructed on sev-
eral randomly selected subsets of data and then evaluated
on the complete dataset. The number of random samples
was set to 10, the number of proteins in the samples from
each class was set to 20. The minimum frequency for each
sample was set to 1.

Results and discussion
We experimented with several datasets to evaluate the
predictive accuracy and also the interpretability of our
approach. We compared classifiers based on structural
patterns discovered by our method (SF) with classifiers
based on 10 physicochemical features (PF) identified as
most predictive by Szilágyi and Skolnick’s method [8]. We
also trained classifiers based on both structural features
and physicochemical features (PSF). For each experiment
we estimated predictive accuracy and the area under the
ROC curve (AUC) by 10-fold cross-validation. Lastly,
we inspected the most informative structural patterns in
order to evaluate interpretability of these patterns. We
assessed the informativeness by the χ2 criterion [24].
We performed five sets of experiments with datasets of

DNA-binding proteins - PD138, UD54, BD54, APO104
and ZF - each one as a set of positive examples and dataset
of non-DNA-binding proteins NB110 - as a set of nega-
tive examples. We obtained about 1400 structural patterns
for datasets PD138/NB110, approximately 1500 structural
patterns for datasets UD54/NB110, about 2400 structural
patterns for datasets BD54/NB110, about 2800 structural
patterns for datasets APO104/NB110 and approximately
6000 structural patterns for datasets ZF/NB110. Accu-
racies and areas under the ROC curve (AUC) obtained
on the respective datasets by stratified 10-fold cross
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validation using physicochemical features (PF), structural
pattern features (SF) and combination of both of them
(PSF) are shown in Table 2. The results for the method
based on physicochemical features (PF) differs slightly
from the results reported by Szilágyi and Skolnick [8],
because we used 10-fold cross-validation whereas Szilágyi
and Skolnick used leave-one-out cross-validation.
We computed average rankings (over several machine

learning algorithms) for accuracies and AUCs. The
average ranking (over several machine learning algo-
rithms) of classifiers based on structural features (SF)
was best on datasets UD54/NB110, APO104/NB110 (tie
with PSF) and ZF/NB110 for accuracies and on datasets
UD54/NB110 and ZF/NB110 in terms of AUC. The
average ranking of classifiers based on combination of
structural and physicochemical features (PSF) was high-
est on datasets PD138/NB110, APO104/NB110 (tie with
SF) and BD54/NB110 for accuracies and on datasets
PD138/NB110, APO104/NB110 and ZF/NB110 (tie with
SF) in terms of AUC. Classifiers based on physicochemi-
cal features (PF) obtained highest ranking only for AUCs
on dataset BD54/NB110.
We made an additional experiment with datasets

PD138/NB843 in order to be able to compare our method
with the method of Nimrod et al. [4]. In this experi-
ment we used only the random forest classifier which was
also used by Nimrod et al. On this dataset Nimrod et
al. obtained AUC 0.9. We obtained AUC 0.84 with the
method of Szilágyi and Skolnick, 0.82 with the method
based on structural features and 0.82 with the method
based on the combination of structural and physicochem-
ical features. It is important to note that unlike themethod
of Nimrod et al. our method does not rely on information
about evolutionary conservation.
In order to find out whether our method did not just

capture the consensus patterns of particular protein folds,
we performed an experiment in which we made use of the
division of DNA-binding proteins (of the dataset PD138)
into seven protein groups. Ourmethodwas always applied
on sets of proteins consisting of all but one protein group,
then the obtained classifiers were tested on this excluded
group. The resulting accuracies of linear SVM classifier on
the excluded groups were reasonably high with the excep-
tion of the enzyme group. The enzyme group turned out
to be more difficult for DNA-binding prediction also in
previous works [5,8].
The performed experiments allow us to evaluate usabil-

ity of the relational learning approach for prediction of
DNA-binding propensity as well as its usability for dis-
covery of interesting spatial patterns in proteins. Results
of our experiments suggest that the method is suitable for
both of the tasks. Here, we also discuss the factors influ-
encing predictive performance and biological relevancy of
discovered structural patterns.

DNA-binding proteins in general
We made several sets of experiments for DNA-binding
proteins in general (datasets PD138, UD54, BD54,
APO104). The method based on purely structural fea-
tures (SF) and the method based on the combination of
structural and physicochemical features (PSF) achieved
higher predictive accuracies than themethod based purely
on physicochemical features (PF) - features introduced
by Szilágyi and Skolnick [8]. The only exception was in
case of the dataset BD54/NB110, where the method based
on purely physicochemical features performed better than
the method based on purely structural features. The
results were not as definite in the case of AUC as in the
case of predictive accuracy. The method based on struc-
tural features turned out to be better than the method
based on physicochemical features on two datasets. Inter-
estingly, these two datasets contain DNA-binding proteins
in their unbound conformations. The method based on
the combination of structural and physicochemical fea-
tures was better than the method based on purely physic-
ochemical features on three datasets.
It may seem counter-intuitive that in some of the exper-

iments, physicochemical features (PF) or structural fea-
tures (SF) outperformed the combined feature set (PSF).
However, this is a rather natural manifestation of the over-
fitting effect; expansion of the feature set may indeed be
detrimental especially with small data sets [15].
It is interesting to compare the results for the datasets

UD54 and BD54. Dataset UD54 contains DNA-binding
proteins in unbound conformation, dataset BD54 contains
the same DNA-binding proteins, but in bound conforma-
tion with DNA.Whereas the highest predictive accuracies
and best AUCs were obtained by the method based on
structural features on dataset UD54, this method per-
formed worst on dataset BD54. Interestingly, the number
of frequent structural patterns was significantly higher
for dataset BD54 (approximately 2400 structural patterns)
than for the dataset UD54 (approximately 1500 struc-
tural patterns). This suggests that conformational changes
after DNA-binding give rise to greater variability of spa-
tial arrangements of some amino acid groups. Moreover,
conformational changes may be responsible for increase
of spatial asymmetry of some amino acids or protein’s
dipole moment. This can explain the better performance
of the method based on physicochemical features on the
dataset BD54 (recall that these features were selected by
experimenting on DNA-binding proteins in bound con-
formation with DNA by Szilágyi and Skolnick [8]). Also
note that prediction of DNA-binding propensity from
unbound conformations is more important for practical
applications.
We examined the best discovered patterns in detail. For

each split of the dataset PD138 induced by 10-fold cross-
validation we selected the ten most informative structural
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Table 2 Results

Accuracy AUC

PD138 vs. NB110 PF SF PSF PF SF PSF

Simple logistic regression 83.4 (1) 82.2 (2) 80.7 (3) 0.91 (2) 0.90 (3) 0.94 (1)

L2-regularized log. regression 81.4 (3) 83.5 (2) 85.5 (1) 0.92 (1) 0.91 (2) 0.91 (2)

SVM with radial basis kernel 81.8 (2) 79.9 (3) 85.1 (1) 0.92 (2) 0.90 (3) 0.93 (1)

Linear SVM 81.4 (3) 83.6 (2) 83.9 (1) 0.92 (2) 0.89 (3) 0.93 (1)

Ada-boost w. decision stamps 80.6 (2) 78.6 (3) 81.4 (1) 0.90 (1) 0.90 (1) 0.90 (1)

Random forest 81.8 (3) 83.5 (1) 82.3 (2) 0.90 (3) 0.91 (2) 0.93 (1)

Average ranking 2.33 2.17 1.5 1.83 2.33 1.17

UD54 vs. NB110 PF SF PSF PF SF PSF

Simple logistic regression 81.0 (3) 86.0 (1) 82.8 (2) 0.91 (1) 0.89 (2) 0.89 (2)

L2-regularized log. regression 82.2 (3) 82.4 (2) 84.1 (1) 0.89 (3) 0.91 (1) 0.90 (2)

SVM with radial basis kernel 81.0 (2) 84.0 (1) 80.4 (3) 0.92 (1) 0.88 (3) 0.91 (2)

Linear SVM 81.7 (2) 82.4 (1) 82.4 (1) 0.90 (2) 0.91 (1) 0.87 (3)

Ada-boost w. decision stamps 76.2 (3) 78.0 (2) 79.3 (1) 0.88 (3) 0.89 (2) 0.90 (1)

Random forest 78.6 (3) 79.3 (1) 79.2 (2) 0.88 (3) 0.89 (2) 0.90 (1)

Average ranking 2.67 1.34 1.67 2.17 1.67 2

BD54 vs. NB110 PF SF PSF PF SF PSF

Simple logistic regression 80 (3) 80.5 (2) 81.8 (1) 0.91 (1) 0.85 (2) 0.91 (1)

L2-regularized log. regres 83.1 (1) 81.9 (2) 81.7 (3) 0.92 (1) 0.88 (3) 0.91 (2)

SVM with radial basis kernel 82.5 (2) 82.5 (2) 83.6 (1) 0.91 (1) 0.90 (2) 0.90 (2)

Linear SVM 81.4 (3) 82.3 (2) 82.9 (1) 0.93 (2) 0.90 (3) 0.94 (1)

Ada-boost w. decision stamps 84.2 (1) 73.8 (3) 79.8 (2) 0.91 (1) 0.88 (2) 0.88 (2)

Random forest 82.4 (1) 75.0 (3) 79.4 (2) 0.89 (2) 0.89 (2) 0.91 (1)

Average ranking 1.83 2.33 1.67 1.33 2.33 1.5

APO104 vs. NB110 PF SF PSF PF SF PSF

Simple logistic regression 80.7 (3) 85.0 (1) 80.8 (2) 0.89 (3) 0.92 (1) 0.91 (2)

L2-regularized log. regression 82.6 (3) 84.5 (1) 83.1 (2) 0.90 (2) 0.91 (1) 0.91 (1)

SVM with radial basis kernel 79.4 (3) 83.2 (2) 84.1 (1) 0.88 (3) 0.90 (2) 0.91 (1)

Linear SVM 79.4 (3) 84.5 (1) 84.1 (2) 0.89 (2) 0.89 (2) 0.92 (1)

Ada-boost w. decision stamps 77.6 (3) 78.1 (2) 79.1 (1) 0.87 (2) 0.87 (2) 0.89 (1)

Random forest 81.7 (1) 78.5 (3) 79.4 (2) 0.88 (2) 0.87 (3) 0.89 (1)

Average ranking 2.67 1.67 1.67 2.33 1.83 1.17

ZF vs. NB110 PF SF PSF PF SF PSF

Simple logistic regression 95.1 (3) 98.7 (1) 97.2 (2) 0.99 (2) 1.0 (1) 1.0 (1)

L2-regularized log. regres 95.9 (3) 99.3 (2) 100 (1) 0.99 (2) 1.0 (1) 1.0 (1)

SVM with radial basis kernel 95.8 (3) 99.3 (1) 98.6 (2) 0.99 (2) 1.0 (1) 1.0 (1)

Linear SVM 81.4 (3) 99.3 (1) 97.8 (2) 1.0 (1) 1.0 (1) 1.0 (1)

Ada-boost w. decision stamps 95.9 (3) 99.3 (2) 100 (1) 0.98 (2) 1.0 (1) 1.0 (1)

Random forest 96.5 (3) 97.9 (1) 97.2 (2) 0.99 (2) 1.0 (1) 1.0 (1)

Average ranking 3 1.33 1.67 1.83 1 1

Predictive accuracies and areas under the ROC curve (AUC) on 5 classification benchmarks achieved by 6 machine learning algorithms using physicochemical features
(PF) as proposed by Szilágyi and Skolnick [8], structural features (SF) automatically constructed by our algorithm, and the combination of both feature sets (PSF).
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patterns according to the χ2 criterion. Table 3 shows the
number of occurrences of the ten best patterns. There are
four structural patterns which are present in all ten folds.
The first is res(A), residue(A,arg). This pattern counts the
number of Arginines in the protein. It is known that the
Arginine plays an important role in the DNA binding pro-
cess. For now, we are interested in structural patterns.
Since this pattern included no spatial information relat-
ing to other amino acids, we decided to analyse just the
remaining three patterns.
We inspected how structural patterns are reflected in

protein’s primary structure. First, we examined whether
amino acids matched by a pattern occur in a preferred
order in the proteins’ sequences. We calculated the dis-
tribution of permutations of the amino acids matched by
the first analysed structural pattern res(A,arg), res(B,lys),
dist(A,B,4.0). The distribution of permutations on positive
dataset was almost identical. Next, we were looking for
relative positions of these amino acids in the sequences of
DNA-binding proteins. Mostly the amino acids were situ-
ated next to each other in the proteins’ sequences for both
permutations of amino acids: [arg,lys] and [lys,arg], i.e. on
positions n and n+1. We also obtained occurrences of this
pattern, where the amino acids were on positions n and
n+3 for permutation [arg, lys].
The next analysed structural pattern was res(A,arg),

res(B,arg), res(C,lys), dist(A,B,10.0), dist(A,C,10.0). There
were no prevailing permutations for this structural pat-
tern and also no prevailing local arrangements of amino
acids in sequence. It would be hard to express this pat-
tern using only primary structure information, unlike in
the case of the previous pattern.

Table 3 Themost informative patterns for PD138

Structural Pattern N

1 res(A,arg) 10

2 res(A,arg), res(B,lys), dist(A,B,4.0) 10

3 res(A,arg), res(B,arg), res(C,lys),
dist(A,B,10.0), dist(A,C,10.0)

10

4 res(A,arg), res(B,arg), dist(A,B,6.0) 10

5 res(A,arg), res(B,lys), dist(A,B,6.0) 9

6 res(A,ile), res(B,arg), res(C,arg), dist(A,B,6.0),
dist(A,C,10.0)

7

7 res(A,leu), res(B,glu), res(C,arg), dist(A,B,10.0),
dist(A,C,6.0)

7

8 res(A,lys), res(B,arg), dist(A,B,10.0) 7

9 res(A,arg), res(B,arg), res(C,leu), dist(A,B,10.0),
dist(A,C,6.0)

7

10 res(A,arg), res(B,arg), dist(A,B,10.0) 6

The ten most informative structural patterns according to the χ2 criterion for
the dataset PD138. N is the number of folds, for which the actual pattern was
one of the ten best patterns.

The third analysed structural pattern was res(A,arg),
res(B,arg), dist(A,B,6.0). The most frequent relative posi-
tions of the amino acids were [n, n+2], [n, n+3], [n, n+4],
where the first relative positions were approximately two
times more frequent than the other two.

Zinc finger proteins
Zinc finger proteins are one of the most common DNA-
binding proteins in eukaryotic transcription factors. Sev-
eral studies [25-32] have tried to determine the DNA
recognition by these proteins. The sequence of three fin-
gers of the protein Zif268, which served as the proto-
type for understanding DNA recognition by this family
of proteins, is shown with the cysteines and histidines
involved in zinc coordination indicated in bold font in
Table 4 (reproduced fromWolfe et al. [32]). Filled squares
below the sequences indicate the position of the con-
served hydrophobic residues. Filled circles and stars indi-
cate residue positions that are involved in phosphate and
base contacts (respectively) in most of the fingers. We
evaluated relevance of the discovered structural patterns
matching them to observations in the paper of Wolfe
et al. [32].
We made predictive classification experiments on

dataset of zinc finger proteins (ZF). The best results, in
terms of accuracy and AUC, were obtained by the method
based on structural features. However, here the results
were influenced by the fact that the zinc finger proteins
were highly homologous. Therefore, we were more inter-
ested in the question whether the structural patterns were
able to discover some basic characteristic of DNA-binding
process shared by zinc finger proteins.
We inspected the best discovered patterns. We selected

the ten most informative structural patterns according to
the χ2 criterion, following the same procedure as for the
DNA-binding proteins in general. Table 5 shows the num-
ber of occurrences of the ten best patterns. There were
three structural patterns present in all of the dataset splits.
We show them in Figures 1 and 2.
We calculated the distribution of permutations of the

amino acids matched by the first analysed structural pat-
tern res(A,cys), res(B,cys), res(C,his), res(D,his), res(E,arg),
dist(A,B,6.0), dist(A,C,8.0), dist(A,D,10.0), dist(A,E,10.0). The
most frequent permutation was [cys, cys, arg, his, his].
We looked for the relative positions of these amino
acids in zinc finger proteins’ sequences. The most fre-
quently occurring relative positions were: [n, n+5, n+17,
n+18, n+22]. We compared this result with the observa-
tion described in the paper of Wolfe et al. [32] (repro-
duced in Table 4). This discovered structural pattern
exactly matched the positions of some of the amino acids
which are supposed to be directly involved in DNA-
binding. In case of the second structural pattern res(A,cys),
res(B,his), res(C,his), res(D,arg), dist(A,B,8.0), dist(A,C,10.0),
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Table 4 Annotated sequence of three fingers of Zif268

-1 1 2 3 4 5 6 7 8 9

Finger 1 P Y A C P V E S C D R R F S R S D E L T R H I R I H T G Q K

Finger 2 P F Q C R I - - C M R N F S R S D H L T T H I R T H T G E K

Finger 3 P F A C D I - - C G R K F A R S D E R K R H T K I H L R Q K

� • � � � � � � • •
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P1 C C R H H

P2 C R H H

P3 C R H H

The sequence of the three fingers of Zif268 is shown with the cysteines and histidines involved in zinc coordination indicated in bold font. Filled squares below the sequences indicate the position of the conserved
hydrophobic residues. Filled circles and stars indicate residue positions that are involved in phosphate and base contacts (respectively) in most of the fingers.
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Table 5 Themost informative patterns for ZF

Structural pattern N

1 res(A,cys), res(B,cys), res(C,his), res(D,his),
res(E,arg), dist(A,B,6.0), dist(A,C,8.0),
dist(A,D,10.0), dist(A,E,10.0)

10

2 res(A,cys), res(B,his), res(C,his), res(D,arg),
dist(A,B,8.0), dist(A,C,10.0), dist(A,D,10.0)

10

3 res(A,his), res(B,his), res(C,cys), res(D,arg),
dist(A,B,8.0), dist(A,C,8.0), dist(A,D,4.0)

10

4 res(A,cys), res(B,his), res(C,his), res(D,phe), dist(A,B,8.0),
dist(A,C,10.0), dist(A,D,8.0)

9

5 res(A,his), res(B,cys), res(C,his), res(D,arg), dist(A,B,10.0),
dist(A,C,8.0), dist(A,D,6.0)

9

6 res(A,his), res(B,cys), res(C,his), res(D,arg), dist(A,B,10.0),
dist(A,C,8.0), dist(A,D,4.0)

8

7 res(A,cys), res(B,his), res(C,his), dist(A,B,8.0), dist(A,C,10.0) 8

8 res(A,cys), res(B,cys), res(C,his), res(D,his), res(E,phe),
dist(A,B,6.0), dist(A,C,8.0), dist(A,D,10.0), dist(A,E,8.0)

8

9 res(A,his), res(B,cys), res(C,his), res(D,phe), res(E,cys),
dist(A,B,10.0), dist(A,C,8.0), dist(A,D,10.0), dist(A,E,8.0)

5

10 res(A,his), res(B,cys), res(C,arg), res(D,his), dist(A,B,10.0),
dist(A,C,10.0), dist(A,D,8.0)

3

The ten most informative structural patterns according to the χ2 criterion for
the dataset of Zinc Finger proteins. N is the number of folds, for which the actual
pattern was one of the ten best patterns.

dist(A,D,10.0) and the third structural pattern res(A,his),
res(B,his), res(C,cys), res(D,arg), dist(A,B,8.0), dist(A,C,8.0),
dist(A,D,4.0) the most frequent permutation was [cys, arg,
his, his] and the resulting relative positions were [n, n+17,
n+18, n+22]. Table 4 indicates that these two patterns (P2
and P3) cover the first pattern (P1).
While, as already commented, the discovered patterns

matched the positions of some of the amino acids sup-
posed to be directly involved in DNA-binding, they in fact
do not capture specific properties of DNA-binding pro-
cess but rather a consensus amino acid pattern known
to be present in Cys2His2 zinc fingersd [32]. One could
be concerned whether the patterns discovered for DNA-

binding proteins in general (datasets PD138, UD54, BD54,
APO104) just captured conserved consensus patterns of
different folds as well. However, this was not the case,
because every discovered pattern was contained in at least
70% of DNA-binding proteins (recall that minimum fre-
quency 0.7 was used for feature construction). In order to
assure validity of this claim we performed an additional
experiment in which the relational learning model was
always constructed for proteins from all but one protein
group and then tested on this excluded group (see section
Evaluation of binding motif independence). Nevertheless,
these observations indicate that caution should be exer-
cised when applying our relational learning method on
datasets with highly homologous proteins, because con-
served consensus patterns not necessarily related to the
function of the proteins could be discovered instead of the
sought patterns responsible for the function.

PD138/NB843 Dataset
We performed an additional experiment involving the
method of Nimrod et al. [4] on the dataset PD138/NB843.
The method of Nimrod et al. exploits also evolution-
ary information therefore it is interesting to see whether
methods relying only on physicochemical and/or struc-
tural features could come close to its predictive accuracy.
In this additional experiment, we used only random

forest classifier because this classifier was also used by
Nimrod et al. The AUC values of the approaches based
on the physicochemical features (PF), structural features
(SF), and their combination (PSF) were (respectively) 0.84,
0.82, and 0.82, whereas the method of Nimrod et al.
achieved AUC of 0.9. This indicates that there is still a
large gap between the structural and physicochemical fea-
ture based approaches on one hand, and methods relying
on evolutionary conservation information.

Evaluation of bindingmotif independence
In order to further support our claim that the patterns
discovered for DNA-binding proteins in general (datasets

Figure 1 Structural patterns for Zinc Fingers.Most informative structural patterns according to the χ2 criterion for the data set of Zinc Fingers
(edges not to scale).



Szabóová et al. Proteome Science 2012, 10:66 Page 10 of 11
http://www.proteomesci.com/content/10/1/66

Figure 2 The most informative structural pattern for Zinc Fingers. Example proteins (1A1F and 1AAY) containing one discovered pattern
shown for the Zinc-finger proteins’ dataset using the protein viewer software [33]. Residues assumed by the pattern are indicated in the following
way: CYS - pink, HIS - violet, ARG - yellow.

PD138, UD54, BD54, APO104) did not just capture the
consensus patterns of particular folds, we performed an
experiment in which the relational learning model was
always constructed for proteins from all but one protein
group and then tested on this excluded group. Proteins
of the dataset PD138 were divided into seven groups
following the work of Szilágyi and Skolnick [8]. They
were the following: helix-turn-helix, zinc-coordinating,
zipper-type, other α-helix, β-sheet, other and enzyme.
We used linear SVM based on our structural features
(SF), because SVM turned out to perform best in the
experiments described in Table 2. We show both the pre-
dictive accuracies obtained by testing the learnt classifiers
on the excluded groups and the cross-validated accura-
cies obtained by the classifiers on the remaining parts of
the dataset in Table 6. The resulting accuracies on the
excluded groups, which should correlate with the abil-
ity of our method to discover patterns characteristic for

Table 6 Evaluation of bindingmotif independence

Protein group Accuracy on Cross-validated accuracy
excluded group on training data

Helix-turn-helix 83.3 80.3

Zinc-coordinating 100 82.9

Zipper-type 88.9 83.1

Other α-helix 100 85.0

β-sheet 77.8 86.0

Other 100 82.5

Enzyme 58.1 90.4

Predictive accuracies obtained by linear SVM classifiers trained on the datasets
PD138/NB110 with protein groups excluded from PD138. The accuracy on
excluded group is the percentage of correctly classified proteins from the protein
group excluded from the training data. The cross-validated accuracy on training
data is the accuracy of the learnt model estimated by 10-fold cross-validation on
the training data.

DNA-binding proteins in general, are reasonably high
with the exception of the enzyme group. This agrees
with the results of Szilágyi and Skolnick [8] and Stawiski
et al. [5], who also noticed a drop in the ability of their
method to detect DNA-binding proteins in the enzyme
group. We can conclude that our method is indeed able to
construct classifiers which can work accurately over var-
ious (non-enzyme) groups of proteins and that its ability
to detect DNA-binding proteins is not due to discov-
ery of conserved consensus patterns of different protein
folds.

Conclusions
We applied relational machine learning techniques to pre-
dict DNA-binding propensity of proteins. We utilized our
relational learning method [11]. We have shown that our
relational learning approach is competitive to a state-
of-the-art physicochemical approach for DNA-binding
propensity prediction in terms of predictive accuracy.
Moreover, we have illustrated that our method is capable
to also provide interpretable patterns describing spatial
configurations of amino acids in protein structures. In
the future we would like to apply the method to protein
function prediction in general.

Endnotes
aThis definition is equivalent to what is known as hyper-
graph homomorphism or θ-subsumption in inductive
logic programming [14].
bhttp://www.pdb.org
cSrinivasan, A.: TheAlephManual, 4th edn. (2007), http://
www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
dWe are grateful to an anonymous reviewer of the paper
for pointing out this fact.

http://www.pdb.org
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
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4. Nimrod G, Szilágyi A, Leslie C, Ben-Tal N: Identification of DNA-binding
proteins using structural, electrostatic and evolutionary features.
J Mol Biol 2009, 387(4):1040–1053.

5. Stawiski E, Gregoret L, Mandel-Gutfreund Y: Annotating nucleic
acid-binding function based on protein structure. J Mol Biol 2003,
326:1065–1079.

6. Ahmad S, Sarai A:Moment-based prediction of DNA-binding
proteins. J Mol Biol 2004, 341:65–71.

7. Bhardwaj N, Langlois R, Zhao G, H L: Kernel-based machine learning
protocol for predicting DNA-binding proteins. Nucleic Acids Res 2005,
33(20):6486–6493.
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