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Abstract

Background: The goal of personalized medicine is to provide patients optimal drug screening and treatment
based on individual genomic or proteomic profiles. Reverse-Phase Protein Array (RPPA) technology offers
proteomic information of cancer patients which may be directly related to drug sensitivity. For cancer patients with
different drug sensitivity, the proteomic profiling reveals important pathophysiologic information which can be
used to predict chemotherapy responses.

Results: The goal of this paper is to present a framework for personalized medicine using both RPPA and drug
sensitivity (drug resistance or intolerance). In the proposed personalized medicine system, the prediction of drug
sensitivity is obtained by a proposed augmented naive Bayesian classifier (ANBC) whose edges between attributes
are augmented in the network structure of naive Bayesian classifier. For discriminative structure learning of ANBC,
local classification rate (LCR) is used to score augmented edges, and greedy search algorithm is used to find the
discriminative structure that maximizes classification rate (CR). Once a classifier is trained by RPPA and drug
sensitivity using cancer patient samples, the classifier is able to predict the drug sensitivity given RPPA information
from a patient.

Conclusion: In this paper we proposed a framework for personalized medicine where a patient is profiled by RPPA
and drug sensitivity is predicted by ANBC and LCR. Experimental results with lung cancer data demonstrate that
RPPA can be used to profile patients for drug sensitivity prediction by Bayesian network classifier, and the
proposed ANBC for personalized cancer medicine achieves better prediction accuracy than naive Bayes classifier in
small sample size data on average and outperforms other the state-of-the-art classifier methods in terms of
classification accuracy.

Background
In this paper, we present a framework for personalized
cancer medicine with RPPA and drug sensitivity. The
goal of personalized medicine is to provide optimal drug
treatment based on individual’s drug sensitivity level,
which will save unnecessary cost and treatment. To
achieve this, it is assumed that drug sensitivity can be
predicted by using quantitative patterns of protein

expression which represents molecular characteristics of
individual patients [1,2]. More precisely, as medicinal
effect is closely relevant to cancer signaling transduction
pathways, proteomic profiling can provide important
pathophysiologic cues regarding responses to che-
motherapies [3,4].
Figure 1 shows the process flow of the proposed fra-

mework for personalized cancer medicine. In step (1), a
classifier is trained using RPPA and drug sensitivity
data. A single classifier is generated per each drug
which means the number of classifiers is same as the
number of drugs. In step (2), RPPA of a patient’s sample
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is provided as a test data, then in step (3), the classifier
predicts High or Low as a drug sensitivity of the given
test sample (Different discrete levels of sensitivity are
available such as High/Neutral/Low). Based on the result
of the prediction, the classifier can recommend a set of
drugs that is more likely to have Low sensitivity.
The prerequisite work of the proposed personalized

medicine is the proteomic profiling of patients who have
Different drug sensitivity level. The proteomic profiling
is implemented by measuring the expression level of
selected proteins which could be related to signaling
pathways of the target cancer. To quantitatively measure
the systemic responses of proteins in pathways, RPPA is
used in conjunction with the quantum dots (Qdot)
nano-technology. RPPA originally introduced in [5] is
designed for quantitatively profiling protein expression
levels in a large number of biological samples [6]. In
RPPA, sample lysates are immobilized in series of dilu-
tions to generate dilution curves for quantitative mea-
surements being able to use only small amount
(nanoliter) of sample while other protein arrays immobi-
lize antibodies. After primary and secondary antibodies
are probed, signal is detected by Qdot assays. Qdot is a
nano-metal fluorophore with more bright and linear sig-
nal, and also Qdot prevents photo-bleaching effect that
often occurs in organic fluorophores [7,8]. In addition,
RPPA offers more accurate pathophysiologic informa-
tion in a signaling pathway with posttranslational modi-
fications (e.g. phosphorylation) not obtainable by gene
microarray and protein-protein interactions.
For the classification in personalized medicine system,

we employ a probabilistic approach, Bayesian Network
Classifier where the class label (drug sensitivity) is pre-
dicted with its probability so that we can select only
drugs that are predicted to have high probability of low
sensitivity rather than any drugs that are predicted to
have low sensitivity without considering the probability.
Naive Bayes Classifiers (NBC) [9] (Figure 2(A)) competi-
tively works with state-of-the art classifiers in many
complex real-world applications. Basically NBC assumes

that all random variables (attributes) are conditionally
independent to each other given a class variable. This
assumption, however, is not realistic especially in biolo-
gical domain because the interactive dependencies
between cancer-related proteins in signaling pathways
may exist. To overcome this limitation of NBC, how to
involve the relationship between attributes for improv-
ing the classification performance has been the issue of
Bayesian network classifier study during the past years.
In [10], Friedman et al. proposed a Tree-Augmented
Naive Bayesian classifier (TAN) by adding edges into
the structure of NBC. Augmented edges in TAN are
restricted to tree structure and learning structure algo-
rithm is based on the conditional mutual information
between two variables given a class variable. In this
paper, we focus on augmented naive Bayes classifier
(ANBC) where each attribute can have at least class
variable as a parent and at most two parents and the
structure of augmented edges is not necessary to be
tree. To find discriminative structure, we propose a new
method based on local classification rate (LCR) to score
augmented edges and greedy search algorithm to find
the ANBC structure that has the highest classification
rate. In the experiments, the proposed ANBC for perso-
nalized medicine is compared to state-of-the-art classi-
fiers including NBC and TAN in lung cancer data.
The paper is organized as follows. In the methods sec-

tion, the basic concept of Bayesian network and Baye-
sian network classifier are reviewed, and we give a
detailed account of the proposed ANBC. In the results
section, we present the experimental result comparing
to other classification algorithms. Finally, we conclude
with summary and future work in the conclusion
section.

Method
Bayesian networks
A Bayesian network is a directed acyclic graph that
encodes a joint probability distribution over a set of ran-
dom variables X = {X1,..., Xn} (Variable, attribute, and

Figure 1 Overview of the personalized medicine. In step 1, each classifier is trained by RPPA and sensitivity of corresponding drug. In step 2
and 3, patient’s RPPA is tested in each classifier, and the sensitivity of each drug is predicted. As a final step, only the drugs predicted to have
low sensitivity are recommended to the patient.
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feature are interchangeably used). In this paper, we
assume that all variables are discrete. A Bayesian net-
work is defined by a pair B = (G, Θ). The first compo-
nent G is a network structure where each node
represents a variable in X. If there is a directed edge
from variable Xj to Xi (Xj ® Xi), Xj is a parent of Xi. For
each variable Xi, a set of parent variables is denoted by∏

Xi , and Xi takes the state xik that is the kth state of
xi1, ..., xiri where ri is the number of possible states of Xi.
The second component Θ is a set of parameters for
local conditional probability distributions representing
the probability of a state of the variable given states of
its parents. A parameter is defined as

PB(Xi = xik|�Xi = πij) = θijk (1)

where πij ∈ {πi1, . . . , πiqi} is the jth parent configura-
tion (the states of parents) of

∏
Xi and qi is the number

of possible parent configuration given
∏

Xi . The para-
meter θijk denotes the probability that the state of Xi is
xik given πij as the state of

∏
Xi . A structure of Bayesian

network defines a unique joint probability distribution
over X given by the product of local distributions as

PB(X1, . . . , Xn) =
n∏
i=1

PB(Xi|�Xi) (2)

Bayesian networks classifier
Bayesian Network Classifier (BNC) is a probabilistic
classifier based on Bayes’ theorem. A set of random vari-
ables is defined as X = {X1,..., Xn-1, C} where nth variable
is a class variable. Bayesian network classifier predicts
the label c that maximizes the posterior probability PB(C
= c|X1 = x1,..., Xn-1 = xn-1) given a Bayesian network
structure (Figure 2) and an instance {x1,..., xn-1} of
attributes.

Naive Bayes classifier
In Naive Bayes Classifier (NBC), the posterior probabil-
ity is defined as

p(C|X1, . . . , Xn−1) =
1
Z
p(C)

n−1∏
i=1

p(Xi|C) (3)

where p(C)
∏n−1

i=1 p(Xi|C) (prior×likelihood) is same as
joint probability in (2) since it is assumed that each vari-
able Xi is conditionally independent of every other vari-
able Xj for i ≠ j given class variable C as a parent of Xi

(Figure 2(A)); we can cancel the constant Z since the
evidence Z, p(X1,..., Xn-1), is independent to C in maxi-
mizing the posterior. Hence, the classifier is defined as
argmaxc∈Cp(C = c)

∏n−1
i=1 p(Xi = xi|C = c) given a test

instance {x1,..., xn-1}. In our application, discrete class
variable C = {High, Low} indicates a drug sensitivity
level, and an attribute Xi refers to a discretized protein
expression level in RPPA. So, in NBC, it is assumed that
each protein is conditionally independent to other pro-
tein and dependent to only the drug sensitivity. How-
ever, this assumption is unrealistic since the selected
proteins of RPPA could have the biological interactions
in the signaling pathway affecting the efficacy of the
drug.
To calculate the likelihood in the classifier, firstly the

maximum likelihood (ML) parameters that maximize log
likelihood (LL) can be obtained by frequency estimation
with training data in the form

θ̂ijk =
Nijk

Nij
(4)

where Nijk denotes the number of instances in training
data where Xi = xik and �Xi = πij , and Nij =

∑ri
k=1 Nijk. .

After the parameters are estimated, then these para-
meters � = {θijk}i∈{1,...,n},j∈{1,...,qi},k∈{1,...,ri} are used to

Figure 2 An example of the Bayesian network structure for NBC and augmented NBC (ANBC). (A) In NBC, all the attributes are
conditionally independent given the class variable. (B) In ANBC, each attribute have at most one other attribute as an additional parent but
augmented edges of ANBC are not necessary to constitute the tree structure which means that any attribute can have only class variable as a
single parent.
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compute the likelihood p(Xi|C) of the classifier given a
test instance and a class label. In addition, the logarithm
of likelihood (∑logp(Xi| C)) is practically taken to avoid
numerical underflow in the implementation instead of
products of all likelihoods, ∏p(Xi|C).
Augmented naive Bayes classifier
To solve the limitation of NBC, Friedman et al. [10]
introduced TAN classifier where edges are added in the
structure of NBC. These additional edges are called aug-
mented edge. The idea is that if a strong dependency
between X1 and X2 exists, the directed edge is added
between X1 and X2 (Figure 2(B)). The maximum num-
ber of edges added to relax the independent assumption
between variables is n - 1, but the augmented edges of
TAN are limited to construct tree-like Bayesian net-
work. Instead, We are focusing on augmented naive
Bayes classifier (ANBC) where an attribute Xi have at
least the class variable as a parent and at most two par-
ents, the class variable and another attribute Xj, and the
class variable has no parent. More precisely, the aug-
mented edges of TAN are restricted to tree structure
but the augmented edges of ANBC are not necessary to
be tree structure (i.e. Some node may not have an aug-
mented edge in ANBC). Once the structure is con-
structed and the parameters are estimated with training
data, we can classify an instance into a class label that
maximizes the posterior given by

p(C)
m∏
i=1

p
(
Xi|�\C

Xi
, C

)
(5)

where �
\C
Xi

denotes the parent set of variable Xi

except the class variable C.
Discriminative structure learning
We focus on discriminative structure learning for ANBC
since it is shown that a good discriminative structure is
sufficient to generate good discriminative classifier in
the comparative research [11]. Indeed, BNC with discri-
minative structures and generative parameters outper-
forms BNC with not only discriminative structures and
discriminative parameters but also generative structures
and either discriminative or generative parameters in
their experimental results. In [11,12], the classification
rate (CR) is used to score how a given structure is dis-
criminative. The CR is defined as

CR =
1
|S|

|S|∑
m=1

I
(
BNC

(
xm1 , . . . , xmn−1

)
, cm

)
, (6)

where |S| is the number of instances in training data
S. BNC(x1,..., xn-1) is an Bayesian network classifier, arg-
maxcÎCp(C|X1,...,Xn-1), given a Bayesian network struc-
ture. I(ĉm, cm) is an indicator function for ĉm = cm

where ĉm is the class label predicted by
BNC(xm1 , . . . , xmn−1)and cm is the correct class label (the

state of the class variable C of the mth instance). To esti-
mate CR of a given structure, BNC is trained and tested
on the training data S by using leave-one-out. In [11],
they use the greedy method, hill climbing search, to find
the structure that has local optimum CR in updating
(adding or deleting augmented edge) the structure itera-
tively. However, CR based scoring and searching
approach is computationally expensive than other
method due to the exponential searching space ((n-1)n-
2) as training and testing of updated structure is
repeated in every iterations. In order to improve CR
based approach, we propose a new algorithm in which
the basic idea is to reduce the search space by excluding
unnecessary edges. Each edge between attributes is eval-
uated by a modified CR. We call the proposed score
function Local Classification Rate (LCR) as the score
measures how each augmented edge is likely to contri-
bute the increase of classification rate when only the
edge is added in NBC. LCR is defined as

LCRij =
1
|S|

|S|∑
m=1

I
(
ANBCij

(
xm1 , . . . , xmn−1

)
, cm

)−I
(
NBC

(
xm1 , . . . , xmn−1

)
, cm

)
, (7)

where ANBCij is a ANBC where the single directed
edge from j to i (Eij) is augmented in the structure of
NBC. More precisely, ANBCij(xm1 , . . . , xmn−1) is defined
as argmaxcÎC p(Xi = xi|Xj = xj, C = c)∏h, h ≠ i p(Xh = xh|
C = c). As the second term is CR of NBC, it is constant
with respect to i and j. LCRij >0 indicates that the edge
Eij could increase the classification rate of ANBC when
Eij is augmented in the structure of NBC. For ANBC,
the number of all possible augmented edges are (n - 1)
(n - 2). After we calculate LCR for all possible augmen-
ted edges, the edges that have negative LCR are
excluded from structure searching space. To decrease
more the number of available augmented edges, we
select the edge Eij only if LCRij is equal to the max
LCRih for h Î X\i. Because variable Xi can have only a
single Xj as a parent except class variable, only the vari-
able that maximizes LCRXi�

\C
Xi

is selected as the parent
of Xi. In searching step, the structure is iteratively
updated by randomly adding or deleting an augmented
edge maintaining the acyclic property and the limited
number of parents per attribute (Each attribute can
have at most two parents including class variable).

Experiments
Lung cancer data
In this section, lung cancer data is used to gauge the
performance of proposed personalized medicine system
with a new score function LCR for learning discriminate
structure of ANBC. RPPA for lung cancer consists of 55
antibodies (Table 1), 75 cell lines. There are 24 drugs to
measure the drug sensitivity of each cell lines but a drug
is not tested in all cell lines which mean each drug has
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tested in Different set of cell lines. The sensitivity of
each drug is measured with 43 cell lines on average. As
a preprocessing, the drug sensitivity is discretized into 2
states (High or Low) by K-means clustering algorithm in
which the maximum and minimum values of drug sensi-
tivity are used for initial centroid. The protein expres-
sion level of RPPA is discretized by minimum entropy
based discretization method [13].

Experimental setup
We conducted the comparative evaluations with the fol-
lowing classification algorithms: Support Vector

Machine with three Different kernels, Linear kernel
(SVML), Polynomial kernel (SVMP), and Radial basis
function kernel (SVMR), Logistic Regression (LR), Ran-
dom Forest (RF), Tree-Augmented Naive Bayes (TAN)
[10], NBC, and ANBC we proposed. To evaluate the
performance of Different methods, we measure the pre-
diction accuracy on average using leave-one-out estima-
tion Since the structure is randomly updated in
searching, 5 times leave-one-out are performed in
ANBC. The original continuous values of RPPA are
used in SVM, LR, and RF. For the parameter estimation,
only maximum likelihood parameters are used for NBC,
TAN, and ANBC since we only compare the structure
leaning methods rather than discriminative parameter
learning methods. To avoid zero conditional probability
in logarithm of likelihood when we calculate the joint
probability, we set θ̂ijk =

Nijk+N′
ijk

Nij+N′
ij
, N′

ijk = 0.5 , N′
ij = 1 if

Nijk = 0 or Nij = 0. Accuracy is calculated by a ratio of
the number of correct predictions to the total number
of samples in leave-one-out estimation. In addition, for
reasonable comparison, feature selection is applied for
all classification methods because some of methods may
not produce a good result in high dimension data and
also all 55 proteins may be not related to drug sensitiv-
ity directly. For SVM, LR, and RF, attributes are selected
by using Information Gain [14] and Ranker

Table 1 55 antibodies of used in RPPA

pSrc(Y527) p53 ERK pERK GSK3 pGSK3 CyclinB1 pRb

pIRS1(Y1179) p38 pp38 PTEN NQO1 Stat3 pNF-
kBp65

pStat3

pIRS1(Y896) p16 pJNK pPTEN CDK4 pAKT CyclinD3 EGFR

pIGF1R(Y1158-
1162)

Src RAF1 pRAF1 Bcl2 JNK b-
Catenin

b-Actin

pIGF1R(Y1162-
1163)

p27 pp53 Hsp27 IKBa pIKBa Vimentin pMDM2

pEGFR(Y1173) p21 sClu IGF1R MDM2 IRS1 pSrc
(Y416)

gH2AX

E-Cadherin Rb AKT pBcl2 mTOR pmTOR NF-
kBp65

Prefix p indicates phosphorylation.

Table 2 Accuracy of sensitivity prediction for 24 drugs with 20 selected features

Drug Name SVML SVMP SVMR LR RF NBC TAN ANBC

8-aminoadenosine 68.89 68.89 68.89 71.11 55.56 91.11 93.33 93.33

8-Cl-adenosine 51.11 55.56 55.56 55.56 64.44 93.33 86.67 92.89

Carboplatin 71.11 73.33 73.33 62.22 71.11 86.67 80.00 88.00

Chloroquine 70.45 65.91 65.91 54.55 70.45 97.73 88.64 95.91

Cisplatin 79.07 65.11 65.11 58.14 81.40 90.70 93.02 91.63

Cyclopamine 28.89 40.00 17.78 51.11 42.22 84.44 80.00 86.67

Diazonamide 80.49 80.49 80.49 60.98 70.74 92.68 90.24 90.73

Docetaxel 90.24 90.24 90.24 78.05 90.24 100 100 100

Doxorubicin 41.30 56.52 56.52 43.48 58.70 89.13 76.09 88.70

Erlotinib 86.05 86.05 86.05 88.37 90.70 88.37 97.67 88.37

Etoposide 55.81 62.79 62.79 53.49 65.12 95.35 90.70 94.88

Gefitinib 90.00 90.00 90.00 90.00 90.00 95.00 65.00 95.00

Gemcitabine 81.81 81.81 81.81 61.36 77.27 100 100 100

Gemcitabine/Cisplatin 73.81 71.43 71.43 61.90 66.67 95.24 65.24 91.43

Irinotecan 47.50 55.00 55.00 50.00 40.00 92.50 90.00 92.50

Orexin 83.33 83.33 83.33 77.78 83.33 100 100 100

Paclitaxel 85.11 85.11 85.11 61.70 85.11 100 93.62 100

Paclitaxel/Carboplatin 90.20 90.20 90.20 82.35 90.20 98.04 98.04 98.04

Peloruside A 80.95 80.95 80.95 66.67 80.95 92.86 92.86 95.24

Pemetrexed 59.09 52.27 52.27 68.18 65.91 93.18 81.82 93.18

Pemetrexed/Cisplatin 61.90 61.90 61.90 57.14 47.62 83.33 85.71 90.00

Smac Mimetic 84.62 84.62 84.62 66.67 82.05 97.44 92.31 97.44

Sorafenib 87.23 87.23 87.23 78.72 85.11 97.87 91.49 97.87

Vinorelbine 79.07 79.07 79.07 51.16 76.74 90.70 93.02 90.70

Average 72.00 72.83 71.90 64.61 72.15 93.57 91.06 93.85
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implemented in Weka [15]. To select proteins (features)
in NBC, TAN, and ANBC, we used Mutual Information
between attribute and class variable. The number of fea-
tures to be selected is predefined as 10, 20, and 30.

Experimental results
Table 2 shows the classification accuracy of each classifica-
tion method for 24 drugs in 20 selected features (The
results in 10 and 30 features are in the additional file 1).
Over all, ANBC outperformed support vector machine
classification with three Different kernels, logistic regres-
sion, and random forest algorithm in all feature sets (10,
20, and 30 features). ANBC outperforms NBC in 10 and

20 selected features but not 30 features. Surprisingly NBC
performed better than TAN which has developed to solve
the limitation of independence assumption in NBC. The
reason for this might be the small sample size of our data
(43 per drug on average) as it is shown that NBC can out-
perform the discriminatively trained model for small sam-
ple data sets in the empirical results of [16] and it is true
that the number of samples should be sufficient for condi-
tional probability (likelihood in the classifier form) to
represent the data. In Table 2, ANBC achieved 100% accu-
racy in four drugs, Docetaxel, Gemcitabine, Orexin, and
Paclitaxel. Logistic regression shows the lowest accuracy,
64.61% on average, and SVM with Radial basis function

Figure 3 Scatter plots of the accuracy of the proposed method vs. state-of-the-art classifiers.
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kernel has the lowest accuracy, 17.78% in Cyclopamine.
The scatter plot (Figure 3) is for comparison of two algo-
rithms. Each point represents a data set (24 drugs) where
the y and x coordinate of a point is the accuracy rate
according to ANBC and counterpart respectively. The red
points above the diagonal line represent the drug whose
sensitivity is predicted better in ANBC (vertical axis) than
counterpart (horizontal axis). In Figure 3(f), 6 red points
are relatively far from the diagonal line while NBC has bet-
ter accuracy in 3 drugs (blue points). ANBC also has bet-
ter accuracy than TAN in most of the drugs except four
drugs (Figure 3(g)). Figure 4 shows the accuracy of each
classifier using Different feature sets. The performance of
each method is similar to Table 2. ANBC, NBC, and TAN
outperform other methods in all three feature sets. In
ANBC and NBC, the prediction accuracy slightly increases
when they have larger number of features while the per-
formance of TAN and SVM is independent of the number
of features. In LR and RF, the accuracy is decreased with
more features. The results imply that Bayesian network
based classifiers (ANBC, NBC, and TAN) can work more
effectively than other methods in RPPA and drug sensitiv-
ities, and it is confirmed that the classification for the drug
sensitivity prediction with RPPA can be potentially
improved by effectively using the dependency of proteins.
However, the result of TAN implies that too many aug-
mented edges may decrease the accuracy in small sample
size data.

Conclusion
In this paper, we introduce the personalized medicine
with RPPA and drug sensitivity. The goal of persona-
lized medicine is to provide the optimal therapy to

patients who have Different biological profile regarding
the target cancer. For this goal, Bayesian network classi-
fier is applied for the drug sensitivity prediction given
patient’s RPPA. We propose a new score function LCR
for learning discriminative structure of Bayesian net-
work classifier. All augmented edges are scored by LCR
that is based on the difference between CR before and
after a single edge is augmented. In other words, the
score represents how the edge augmented in NBC is
likely to increase the classification rate in ANBC. Based
on the scored edges, the discriminative structure is dis-
covered through Hill-Climbing search. Since it is known
that NBC normally outperforms discriminative learning
algorithm for small sized sample data (In our data the
number of samples on average is 43), we focus on the
idea that is to augment only a least number of edges to
improve the performance mostly maintaining the advan-
tage of NBC structure while TAN augments too many
edges in NBC. In the experiments, ANBC with pro-
posed score function is compared to well-known classi-
fication algorithms such as Support vector machine,
Logistic regression, and Random forest. We also com-
pare to Bayesian network classifiers, TAN and NBC
with generative parameters. The results show that the
ANBC outperforms other classification algorithms and
achieves slightly better accuracy than NBC in small
sized sample data sup-porting the claim that the depen-
dency of proteins can be used to improve the sensitivity
prediction for the personalized medicine. To overcome
the limitation of sample size, we plan to investigate
more about discriminative parameter learning and effec-
tive feature selection for Bayesian network classifier as
future works.

Figure 4 Classification accuracy using Different feature sets.
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Additional material

Additional file 1: Accuracy of sensitivity prediction for 24 drugs
with 10 and 30 selected features. The file includes two tables for
classification accuracy in 10 and 30 selected features.
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