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Abstract

Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate
at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein
sequence classification, usually results in prohibitively high dimensional input spaces, for large values of k. Applying
data mining algorithms to these input spaces may be intractable due to the large number of dimensions. Hence,
using dimensionality reduction techniques can be crucial for the performance and the complexity of the learning
algorithms. In this paper, we study the applicability of feature hashing to protein sequence classification, where the
original high-dimensional space is “reduced” by hashing the features into a low-dimensional space, using a hash
function, i.e, by mapping features into hash keys, where multiple features can be mapped (at random) to the same

classification tasks.

hash key, and “aggregating” their counts. We compare feature hashing with the “bag of k-grams” approach. Our
results show that feature hashing is an effective approach to reducing dimensionality on protein sequence

Introduction

Many problems in computational biology, e.g., protein
function prediction, subcellular localization prediction,
etc., can be formulated as sequence classification tasks
[1], where the amino acid sequence of a protein is used
to classify the protein in functional and localization
classes.

Protein sequence data contain intrinsic dependencies
between their constituent elements. Given a protein
sequence X = X, ..., ¥,.1 over the amino acid alphabet,
the dependencies between neighboring elements can be
modeled by generating all the contiguous (potentially
overlapping) sub-sequences of a certain length &, x; 4, ...,
x;.1, i = k, ..., n, called k-grams, or sequence motifs.
Because the protein sequence motifs may have variable
lengths, generating the k-grams can be done by sliding a
window of length k over the sequence x, for various
values of k. Exploiting dependencies in the data
increases the richness of the representation. However,
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the fixed or variable length k-gram representations, used
for protein sequence classification, usually result in pro-
hibitively high-dimensional input spaces, for large values
of k. Applying data mining algorithms to these input
spaces may be intractable due to the large number of
dimensions. Hence, using dimensionality reduction tech-
niques can be crucial for the performance and the com-
plexity of the learning algorithms.

Models such as Principal Component Analysis [2],
Latent Dirichlet Allocation [3] and Probabilistic Latent
Semantic Analysis [4] are widely used to perform
dimensionality reduction. Unfortunately, for very high-
dimensional data, with hundreds of thousands of dimen-
sions (e.g., 160, 000 4-grams), processing data instances
into feature vectors at runtime, using these models, is
computationally expensive, e.g., due to inference at run-
time in the case of LDA. A less expensive approach to
dimensionality reduction is feature selection [5,6], which
reduces the number of features by selecting a subset of
the available features based on some chosen criteria. In
particular, feature selection by average mutual informa-
tion [7] selects the top features that have the highest
average mutual information with the class. Recently, a
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new approach to dimensionality reduction, called feature
hashing (or random clustering) has been introduced for
text classification [8-11]. Feature hashing offers a very
inexpensive, yet effective, approach to reducing the
number of features provided as input to a learning algo-
rithm, by allowing random collisions into the latent fac-
tors. Specifically, the original high-dimensional space is
“reduced” by hashing the features into a low-dimen-
sional space, using a hash function, i.e., by mapping fea-
tures to hash keys, where multiple features can be
mapped (at random) to the same hash key, and “aggre-
gating” their counts. Figure 1 shows the application of
feature hashing on sparse high-dimensional feature
spaces. Although very effective for reducing the number
of features from very high dimensions (e.g., 2°%) to mid-
size dimensions (e.g., 2'°), feature hashing can result in
significant loss of information, especially when hash col-
lisions occur between highly frequent features with sig-
nificantly different class distributions.

In this paper, we study the applicability of feature
hashing to protein sequence classification and address
the following main questions: (i) How effective is feature
hashing on prohibitively high dimensional k-gram repre-
sentations?; (ii) What is the influence of the hash size (i.
e., the reduced dimension) on the performance of pro-
tein sequence classifiers that use hash features, and what
is the hash size at which the performance starts degrad-
ing, due to hash collisions?; and (iii) How does the per-
formance of feature hashing compare to that of the “bag
of k-grams” approach? The results of our experiments
on three protein subcellular localization data sets show
that feature hashing is effective at reducing dimensional-
ity on protein sequence classification tasks.

Page 2 of 8

The paper is organized as follows. In Section 2, we
discuss the related work. We provide background on
feature hashing in Section 3. Section 4 presents experi-
ments and results, and Section 5 concludes the paper.

Related work

Feature selection

Feature selection [5,7,12] is a dimensionality reduction
technique, which attempts to remove redundant or irre-
levant features in order to improve classification perfor-
mance of learning algorithms. Feature selection methods
have been widely used in Bioinformatics for tasks such
as protein function prediction and gene prediction,
where the features could be k-grams; microarray analy-
sis; mass spectra analysis; single nucleotide polymorph-
isms (SNPs) analysis, among others (see [13] for a
review).

Topic models

Topic models, such as Latent Dirichlet Allocation (LDA)
[3], Probabilistic Latent Semantic Analysis (PLSA) [4],
and Latent Semantic Indexing (LSI) [14] are dimension-
ality reduction models, designed to uncover hidden
topics, i.e., clusters of semantically related words that
co-occur in text documents. LSI uses singular value
decomposition to identify topics, which are then used to
represent documents in a low dimensional “topic” space.
LDA models each document as a mixture of topics
(drawn from a conjugate Dirichlet prior), and each topic
as a distribution over the words in the vocabulary. LDA
has recently emerged as an important tool for modeling
protein data. For example, Airoldi et al. [15] proposed
the mixed membership stochastic block models to learn
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hidden protein interaction patterns. Pan et al. [16] used
LDA to discover latent topic features, which correspond
to hidden structures in the protein data, and input these
features to random forest classifiers to predict protein
interactions. However, topic models are computationally
expensive, for example, LDA requires inference at run-
time to estimate the topic distribution.

Feature abstraction

Feature abstraction methods [17] are designed to reduce
a model input size by grouping “similar” features into
clusters of features. Specifically, feature abstraction
learns an abstraction hierarchy over the set of features
using hierarchical agglomerative clustering, based on the
Jensen-Shannon divergence. A cut or level of abstraction
through the resulting abstraction hierarchy specifies a
compressed model, where the nodes (or abstractions) on
the cut are used as “features” in a classification model.
Silvescu et al. [17] used feature abstraction to simplify
the data representation provided to a learner on biologi-
cal sequence classification tasks.

Feature hashing

Shi et al. [8] and Weinberger et al. [9] presented hash
kernels to map the high-dimensional input spaces into
low-dimensional spaces for large scale classification and
large scale multitask learning (i.e., personalized spam fil-
tering for hundreds of thousands of users), respectively.
Ganchev and Dredze [18] empirically showed that hash
features can produce accurate results on various NLP
applications. Forman and Kirshenbaum [10] proposed a
fast feature extraction approach by combining parsing
and hashing for text classification and indexing. Hashing
techniques have been also used in Bioinformatics. For
example, Wesselink et al. [19] applied hashing to find
the shortest contiguous subsequence that uniquely iden-
tifies a DNA sequence from a collection of DNA
sequences. Buhler and Tompa [20] applied Locality-Sen-
sitive Hashing (LSH) [21], a random hashing/projection
technique, to discover transcriptional regulatory motifs
in eukaryotes and ribosome binding sites in prokaryotes.
Furthermore, Buhler [22] applied LSH to find short
ungapped local alignments on a genome-wide scale. Shi
et al. [8] used hashing to compare all subgraph pairs on
biological graphs.

Markov models

In the context of protein sequence classification, it is
worth mentioning the fixed and variable-order Markov
models (MMs), which capture dependencies between
neighboring sequence elements. MMs are among the
most widely used generative models of sequence data
[23]. In a k™ order MM, the sequence elements satisfy
the Markov property: each element is independent of
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the rest given the k preceding elements. One main dis-
advantage of MMs in practice is that the number of
parameters increases exponentially with the range k of
direct dependencies, thereby increasing the risk of over-
fitting. Begleiter et al. [24] (and papers cited therein)
have examined methods for prediction using variable
order MMs, including probabilistic suffix trees, which
can be viewed as variants of abstraction wherein the
abstractions are constrained to share suffixes.

In contrast to the approaches above, we used feature
hashing, a very inexpensive approach, to reduce dimen-
sionality on protein sequence classification tasks, and
compared it with the “bag of k-grams” approach.

Methods

The traditional k-gram approaches construct a vocabu-
lary of size d, which contains all k-grams in a protein
data set. A protein sequence is represented as a vector x
with as many entries as the number of k-grams in the
vocabulary. For a protein sequence, an entry i in x can
record the frequency of k-gram i in the sequence,
denoted by x;. Because only a small number of k-grams
(compared to the vocabulary size) occur in a particular
sequence, the representation of x is very sparse, i.e.,
only a small number of entries of x are non-zero. How-
ever, storing the parameter vectors in the original input
space requires O(d) numbers, which

Algorithm 1 Feature Hashing
Input: Protein sequence x; hash functions % and ¢,
h: §S—{0,---,b—1},€:S — {£1}.

Output: Hashed feature vector x™ .

x =0, .., 0];

for all k-gram € x do

i = h (k-gram) % b; //Places k-grams into hash bins,
from 0 to b-1.

xlh = xf‘ + &(k — gram); //Updates the i hash feature
value.

end for

return x" //Records values of hash features.

may become difficult given today’s very large collec-
tions of protein and DNA sequence data. Feature hash-
ing eliminates the need for such a requirement by
implicitly encoding the mapping into a hash function.
Next, we briefly overview feature hashing.

Feature hashing

Feature hashing [8-11] is a dimensionality reduction
technique, in which high-dimensional input vectors x of
size d are hashed into low-dimensional feature vectors
x" of size b. The procedure for hashing a protein
sequence X is shown in Algorithm 1 and is briefly



Caragea et al. Proteome Science 2012, 10(Suppl 1):S14
http://www.proteomesci.com/content/10/51/514

described next (see also Figure 1). Let S denote the set
of all possible strings (or k-grams) and / and ¢ be two
hash functions, such that h: S — {0,---,b— 1} and
& : S — {£1}, respectively. For a protein sequence x,
each k-gram in x is directly mapped, using /4, into a
hash key, which represents the index of the k-gram in
the feature vector X", such that the hash key is a num-
ber between 0 and b - 1. Note that & can be any hash
function, e.g. hashCode () of the Java String class,
or murmurHash function available online at http://sites.
google.com/site/murmurhash/. Each index in x" stores
the value ("frequency counts”) of the corresponding
hash feature. The hash function & indicates whether to
increment or decrement the hash dimension of the k-
gram, which renders the hash feature vector x" to be
unbiased (see [9] for more details).

Thus, an entry i in x™ records the “frequency counts”
of k-grams that are hashed together into the same hash
key i. That is,

A= Y gk,

leh(k)=i

(1)

fork=0,..,d-1andi =0, .., b - 1. Note that in the
trivial case of £ =1, x? represents the actual frequency
counts (see Figure 2).

As can be seen, multiple k-grams can be mapped,
through #, into the same hash key. According to Birth-
day Paradox, if there are at least /p features, then
collisions are likely to happen [8], and hence, useful
information for high accuracy classification could be
lost through feature hashing. The k-grams in a collec-
tion of protein sequences typically follow a Zipf distri-
bution, i.e., only very few k-grams occur with high
frequency, whereas the majority of them occur very
rarely (see Figure 3). Because hash collisions are inde-
pendent of k-gram frequencies, most collisions are
likely to happen between infrequent k-grams. Weinber-
ger et al. [9] have proven that, for a feature vector x
such that ||x]||, = 1, the length of x is preserved with
high probability, for sufficiently large dimension (or
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hash size) b and sufficiently small magnitude of x, i.e.,
|[|x|] (lower and upper bounds are theoretically
derived).

However, for many practical applications, the value of
b can be smaller than the theoretical lower bound. This
may be problematic as the smaller the size of the hash
vector x™ becomes, the more collisions occur in the
data. Even a single collision of very high frequency
words with different class distributions, can result in sig-
nificant loss of information. Next, we empirically study
the applicability of feature hashing on a protein subcel-
lular localization prediction task.

Experiments and results

We used three protein subcellular localization data sets
in our study: psortNeg introduced in [25] and available
online at http://www.psort.org/dataset/datasetv2.html,
and plant, and non-plant introduced in [26] and avail-
able online at http://www.cbs.dtu.dk/services/TargetP/
datasets/datasets.php. The psortNeg data set is
extracted from PSORTdb v.2.0 Gram-negative
sequences, which contains experimentally verified locali-
zation sites. Our data set consists of all proteins that
belong to exactly one of the following five classes: cyto-
plasm (278), cytoplasmic membrane (309), periplasm
(276), outer membrane (391) and extracellular (190).
The total number of proteins in this data set is 1444.
The plant data set contains 940 proteins belonging to
one of the following four classes: chloroplast (141), mito-
chondrial (368), secretory pathway/signal peptide (269)
and other (consisting of 54 proteins with label nuclear
and 108 examples with label cytosolic). The non-plant
data set contains 2738 proteins, each in one of the fol-
lowing three classes: mitochondrial (361), secretory path-
way/signal peptide (715) and other (consisting of 1224
proteins labeled nuclear and 438 proteins labeled
cytosolic).

Experimental design
Our experiments are designed to explore the following
questions: (i) How effective is feature hashing on

0 1 2 b—2 b-1
P h i h 2 h & a h a h
xh; To | Ty | %2 Tp—2| Tp—1
X ) 2 To l T3 T4 . Td—-3 Tg—2 Td—1
0 1 2 3 4 d—3 d-2 d-1
Figure 2 The feature hashing representations. The transformation of “bag of k-grams” into the feature hashing representations.
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(c) psortNeg, follow a Zipf distribution, i.e, only very few k-grams occur with high frequency, whereas the majority of them occur very rarely.

prohibitively high-dimensional k-gram representations?;
(ii) What is the influence of the hash size on the perfor-
mance of biological sequence classifiers that use hash
features, and what is the hash size at which the perfor-
mance starts degrading, due to hash collisions?; and (iii)
How does the performance of feature hashing compare
to that of the “bag of k-grams” approach?

To answer these questions, we proceeded with the fol-
lowing steps. We first preprocessed the data by generat-
ing all the k-grams from each collection of sequences, i.
e., generating all the contiguous (potentially overlapping)
sub-sequences of length &, for various values of k. This
was done by sliding a window of length k over
sequences in each data set. Note that if a k-gram does
not appear in the data, it was not considered as a fea-
ture. The number of unique k-grams is exponential in k.
However, for large values of k, many of the k-grams
may not appear in the data (and, consequently, their fre-
quency counts are zero).

Given a protein sequence x, we applied feature hash-
ing in two settings as follows: (i) We first generated all
the k-grams of a fixed length k, where k = 3. Each such
k-gram was then hashed into a hash key. We refer to
this setting as the fixed-length k-grams; (ii) We then
generated all the k-grams of various lengths k, for values
of k =1, 2, 3, and 4. Thus, this setting uses the union of
k-grams, for values of k ranging from 1 to 4. Each such
k-gram (i.e., unigram, 2-gram, 3-gram, or 4-gram) was
hashed into a hash key. We refer to this setting as the
variable-length k-grams.

We trained Support Vector Machine (SVM) classifiers
[27] on hash features, in both settings, fixed-length and
variable-length k-grams, and investigated the influence
of the hash size on the performance of the classifiers.
Specifically, we trained SVM classifiers for values of the
hash size (i.e., the reduced dimension) ranging from 2'°
to 2%2, in steps of 1 for the powers of 2, and compared
their performance.

Furthermore, we applied feature hashing to sparse
high-dimensional variable-length k-gram representations
to reduce the dimensionality to a mid-size b-dimen-
sional space, e.g., b = 2'¢ or b = 2'*, and compared the
performance of SVM classifiers trained using hash fea-
tures with that of SVM classifiers trained using “bag of
k-grams”.

Specifically, the feature representations used in each
case are the following:

+ a bag of d variable-length k-grams (where all the
variable-length k-grams are used as features). This
experiment is denoted by baseline.

+ a bag of b hash features obtained using feature
hashing over all d variable-length k-grams, i.e., for
each k-gram, feature hashing produces an index i
such that i = h(k-gram) % b, where & represents a
hash function. This experiment is denoted by FH.

In our experiments, we used the LibLinear implemen-
tation of SVM, available at http://www.csie.ntu.edu.tw/
~cjlin/liblinear/. As for the hash function, we experi-
mented with both the hashCode of the Java String
class, and murmurHash. We found that the results
were not significantly different from one another in
terms of the number of hash collisions and classification
accuracy. We also experimented with both
£:S — {£1} and £ =1 - actual counts, and found that
the results were not significantly different. The results
shown in the next subsection use the hashCode func-
tion and & = 1. On all three data sets, we reported the
average classification accuracy obtained in a 5-fold cross
validation experiment. The results are statistically signif-
icant (p < 0.05). The classification accuracy is shown as
a function of the number of features. The x axis of all
figures in the next subsection shows the number of fea-
tures on a log, scale (i.e., number of bits in the hash-
table).
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Table 1 Comparison of fixed-length with variable-length
k-gram representations.

Bag of fixed or variable length k-grams non-plant
Accuracy %  # features
1-grams 71.21 20
2-grams 70.85 400
3-grams 79.80 7999
4-grams 79.03 146598
(1-2)-grams 70.56 420
(1-3)-grams 79.69 8419
(1-4)-grams 82.83 155017
(1-5)-grams 80.09 950849

The performance of SVM classifiers trained using feature hashing on fixed
length, 1-, 2-, 3-, 4-gram representations, as well as variable length, (1-2)-, (1-
3)-, (1-4)-, (1-5)-grams representations, where the hash size is set to 2?2, on
the non-plant data set.

Results

Comparison of fixed length with variable length k-gram
representations

Table 1 shows, on the non-plant data set, the perfor-
mance of SVMs trained using feature hashing on fixed
length as well as variable length k-gram representations,
where the hash size is set to 2%2. As seen in the table,
the performance of SVMs trained on fixed length k-
gram representations is worse than that of SVMs trained
using variable length k-gram representations, with k ran-
ging from 1 to 4 resulting in the highest performance
(the representation is denoted by (1-4)-grams). The per-
formance of SVMs trained on fixed-length k-gram
representations is expected to be worse than that of
their counterparts trained on variable length k-gram
representations, as protein sequence motifs have usually
variable length. The performance of SVMs trained using
variable length k-gram representations increases as we
add more dependencies in the data (i.e., larger values of
k), but starts decreasing as k becomes greater than 4,
which may be due to overfitting. Similar results are
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obtained for the plant and psortNeg data sets (data not
shown).

The number of variable length k-grams, for k ranging
from 1 to 4, is 155,017. Feature hashing eliminates the
need for storing the vocabularies in memory by impli-
citly encoding the mapping from strings to integers into
a hash function. We conclude that feature hashing is
very effective on prohibitively high-dimensional k-gram
representations, which would otherwise be impractical
to use. Because (1-4)-gram representation results in the
highest performance, we used it for subsequent
experiments.

The influence of hash sizes on classifiers’ performance
and the comparison of feature hashing with baseline (i.e.,
the “bag of k-grams” approach)

Figures 4a, b, and 4c show the influence of the hash size
b on the performance of the SVM classifiers, trained
using variable-length k-grams as feature representations,
on the three protein data sets used in this study, non-
plant, plant, and psortNeg, respectively. The values of
b range from 2'° to 2°>. The figures also show the
results of the comparison of feature hashing (FH) with
baseline on the same data sets.

As can be seen in the figures, as the hash size b
increases from 2'° to 222, the performance of SVM clas-
sifiers increases as well, due to a smaller rate of hash
collisions for larger values of b. Table 2 shows, on all
three data sets used, the number of unique features and
the percentage of collisions for various hash sizes. The
number of unique features is calculated as the number
of non-empty entries in the hash vector, and the num-
ber of collisions as the number of entries with at least
one collision. Note that the percentage of collisions
below 2'* is 100%.

As the hash size increases beyond 21 the performance
of SVM classifiers does not change substantially, and,
eventually, converges. For example, on the non-plant data
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Figure 4 Feature hashing vs. “bag of k-grams”. Comparison of feature hashing with the “bag of variable length k-grams” approach, referred
as baseline on the protein data sets: (a) non-plant, (b) plant, and (c) psortNeg, respectively, using (1-4)-grams representations.
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Table 2 The number of variable-length k-grams and the rate of hash collisions for various hash sizes.

Value of b non-plant plant psortNeg
# features Collisions % # features Collisions % # features Collisions %

2% 155017 0 111544 0 124389 0
2% 153166 121 110236 118 122894 122
2 147223 5.29 107299 395 118871 464
2'8 132754 1630 99913 1143 109535 1322
2V 99764 4504 82141 3138 87618 3566
2’8 59358 7853 53616 64.29 55555 68.85
2" 32474 95.80 31788 89.56 32075 9202
2 16384 100 16384 100 16384 100

The number of unique features (denoted as # features) and the rate of collisions on non-plant, plant, and psortNeg data sets, respectively, for variable length k-

gram representations, where k varies from 1 to 4.

set, with 2'® hash size, SVM achieves 81.3% accuracy,
whereas with 2>? hash size, SVM achieves an accuracy of
82.83% (Figure 4a). On the plant data set, SVMs achieve
78.4% and 78.51% accuracy, with 216 and 222 hash sizes,
respectively (Figure 4b). Furthermore, as the hash size
increases beyond 2'®, the percentage of hash collisions
decreases until no collisions occur (Table 2). For all three
data sets, with 2>* hash size, there are no hash collisions.
The performance of SVMs trained on hash features in the
2% dimensional space is matched by that of SVMs trained
on hash features in the 2'® dimensional space, suggesting
that the hash collisions beyond 2'® does not significantly
distort the data.

Because 2%2 (= 4,194,304) highly exceeds the number of
unique features, and the rate of hash collisions becomes
zero, this can be regarded as equivalent to the classifiers
trained without hashing, which require storing the voca-
bularies in memory, referred as baseline (or the “bag of
k-grams”) (Figure 4). Moreover, we considered 216 as the
point where the performance starts degrading. Note that
the vocabulary sizes, i.e., the number of unique variable
length k-grams, for non-plant, plant, and psortNeg, are
155017, 111544, and 124389, respectively.

We conclude that, if feature hashing is used to reduce
dimensionality from very large dimensions, e.g., 2** to
mid-size dimensions, e.g., 216 the hash collisions do not
substantially hurt the classification accuracy, whereas if it
is used to reduce dimensionality from mid-size dimen-
sions to smaller dimensions, e.g., 2'°, the hash collision
significantly distort the data, and the corresponding
SVMs result in poor performance. Also, feature hashing
makes it possible to train SVMs that use substantially
smaller number of dimensions compared to the baseline,
for a small or no drop in accuracy, for example, for a
hash size of 2'® = 65536 (compared to 155017 variable-
length k-grams on the non-plant data set).

Conclusion
We presented an application of feature hashing to
reduce dimensionality of very high-dimensional feature

vectors to mid-size feature vectors on protein sequence
data and compared it with the “bag of k-grams”
approach.

The results of our experiments on three protein sub-
cellular localization data sets show that feature hashing
is an effective approach to dealing with prohibitively
high-dimensional variable length k-gram representations.
Feature hashing makes it possible to train SVM classi-
fiers that use substantially smaller number of features
compared to the approach which requires storing the
vocabularies in memory, i.e., the “bag of k-grams”
approach, while resulting in a small or no decrease in
classification performance.

Because recent advances in sequencing technologies
have resulted in an exponential increase in the rate at
which DNA and protein sequence data are being
acquired [28], the application of feature hashing on bio-
logical sequence data advances the current state of the
art in terms of algorithms that can efficiently process
high-dimensional data into low-dimensional feature vec-
tors at runtime.

In the future, it would be interesting to investigate
how the performance of hash kernels compares to that
of histogram-based motif kernels for protein sequences,
introduced by Ong and Zien [29], and the mismatch
string kernels for SVM protein classification introduced
by Lesli et al. [30]. Along the lines of dimensionality
reduction, it would be interesting to compare the per-
formance of feature hashing with that of feature abstrac-
tion [17] on protein sequence classification tasks.
Furthermore, another direction is to apply feature hash-
ing to other types of biological sequence data, e.g., DNA
data, and other tasks, e.g., protein function prediction.
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