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Abstract

Background: Transcription factors and microRNAs act in concert to regulate gene expression in eukaryotes.
Numerous computational methods based on sequence information are available for the prediction of target genes
of transcription factors and microRNAs. Although these methods provide a static snapshot of how genes may be
regulated, they are not effective for the identification of condition-specific regulators.

Results: We propose a new method that combines: a) transcription factors and microRNAs that are predicted to
target genes in pathways, with b) microarray expression profiles of microRNAs and mRNAs, in conjunction with ¢)
the known structure of molecular pathways. These elements are integrated into a Bayesian network derived from
each pathway that, through probability inference, allows for the prediction of the key regulators in the pathway.
We demonstrate 1) the steps to discretize the expression data for the computation of conditional probabilities in a
Bayesian network, 2) the procedure to construct a Bayesian network using the structure of a known pathway and
the transcription factors and microRNAs predicted to target genes in that pathway, and 3) the inference results as
potential regulators of three signaling pathways using microarray expression profiles of microRNA and mRNA in
estrogen receptor positive and estrogen receptor negative tumors.

Conclusions: We displayed the ability of our framework to integrate multiple sets of microRNA and mRNA
expression data, from two phenotypes, with curated molecular pathway structures by creating Bayesian networks.
Moreover, by performing inference on the network using known evidence, e.g., status of differentially expressed
genes, or by entering hypotheses to be tested, we obtain a list of potential regulators of the pathways. This, in
turn, will help increase our understanding about the regulatory mechanisms relevant to the two phenotypes.

Background

Transcription factors (TFs) and microRNAs are well-
known regulators of gene expression. The former bind
directly to the regulatory regions of genes whereas the
latter regulate the expression of genes at a post-tran-
scriptional stage. Although they have different mechan-
isms of regulation, evidence suggests that TFs and
microRNAs regulate target genes in a coordinated way
[1]. In order to facilitate the elucidation of these regula-
tory mechanisms, several databases have been released
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based on the analysis of sequence information for pre-
dicted regulatory interactions. Backes et al. [2] have
compiled a dictionary on microRNAs and their putative
pathways based on the enrichment of the predicted
microRNAs targets for each pathway in KEGG [3] and
TRANSPATH [4]. Le Bechec et al. [5] have created a
database (MIR@NT@N) that stores predicted interac-
tions between: a) a TF and its target genes (including
microRNAs) and b) microRNAs and their predicted tar-
get genes. These databases facilitate the retrieval of reg-
ulatory interactions based on a query list as input but
the expression data of mRNA and microRNA are not
effectively explored. The analysis tool mirConnX [6],

© 2012 Roqueiro et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:yangdai@uic.edu
http://creativecommons.org/licenses/by/2.0

Roqueiro et al. Proteome Science 2012, 10(Suppl 1):515
http://www.proteomesci.com/content/10/51/515

recently published, allows the input of concurrent
microRNA and mRNA profiling data for an integrative
analysis. The targets of TFs and microRNAs are selected
based on the association strength between the regulator
and its target. In all the above mentioned work, the ana-
lysis of the interactions is focused solely on direct tar-
gets. In this work we propose a novel integrative
method to analyze microRNA and mRNA expression
data in conjunction with sequence-based predicted regu-
lators and the structures of existing pathways. We com-
bine all this information into Bayesian networks, which
allow the prediction of pathway regulators, not only
based on direct targets but also by inference of the most
probable effect of the regulators on other downstream
genes. (The preliminary results have been presented at
the BIBM 2011 conference [7]).

Bayesian networks [8] have been extensively used for
the reconstruction of gene networks based on microar-
ray expression data. In this context the goal was the
inference of interactions and statistical dependencies
among genes. These dependencies were, in turn, used to
learn the dynamic structure of a regulatory network [9].
This methodology has been the foundation for numer-
ous algorithmic approaches. In all these cases, the Baye-
sian network (BN) -or its more generic dynamic
counterpart (DBN) - was used as a tool to reverse engi-
neer the gene network, i.e., the interactions between
genes were inferred from observational data. In this
work, we do not focus on the task of learning the struc-
ture of the BN from expression data. Our goal is to use
a known network structure, describing interactions
between genes and proteins, for Bayesian inference. The
network structure can be any experimentally confirmed
interaction network (for example, pathways obtained
from KEGG [3] or from the Pathway Interaction Data-
base [10]). Due to the fact that only some TFs and no
microRNAs are included in the above mentioned path-
ways, we extend the pathways to contain TFs and
microRNAs that are predicted to target nodes in the
pathway. We further compute conditional probabilities
between the nodes in the extended network using
expression data, with the ultimate goal of building a BN
for each individual pathway. Finally, these BNs receive
as evidence a list of differentially expressed genes and
provide as output a ranked list of TFs and microRNAs
that best explain the expression level of genes in the
network. As a result of this, the output TFs and micro-
RNAs are hypothesized to be putative regulators of the
pathway.

Methods

We describe our methodology using mRNA and micro-
RNA expression data generated from eight breast tumor
studies [11-18]. The patients in these studies were
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divided into two groups: estrogen receptor positive (ER
+) and estrogen receptor negative (ER-). It is important
to note that our framework is generic enough so that if
multiple datasets of mRNA and microRNA expression
data on two specific phenotypes are available, then BNs
can be built for inference with the procedure described
below. We started by discretizing the expression data of
mRNAs and microRNAs from ER+ and ER- tumor
microarray profiles. We subsequently obtained the
known structure of 34 KEGG pathways and pre-pro-
cessed them to guarantee that: a) there were no cycles
and b) all nodes in the pathway had expression data.
For nodes that passed the pre-processing step we pro-
ceeded to obtain lists of TFs and microRNAs that are
predicted to target the nodes. We then ranked the TFs
and microRNAs based on their ability to predict the
expression level of a target gene. We obtained one rank-
ing list per gene and expanded the pathways to include
the top 5 TFs and top 3 microRNAs for each gene in a
pathway. Finally, a BN was created for each extended
pathway. Inference was performed by entering, as evi-
dence, the statuses (discrete values) of differentially
expressed genes in the pathway. The inference process
was performed twice with evidence derived for one phe-
notype and later with evidence derived from the other
phenotype. The marginal probabilities were approxi-
mated for all unobserved nodes. From these, the TFs or
microRNAs with the largest difference in marginal prob-
abilities between phenotypes were considered the most
probable regulators of expression in the pathway. An
overview of the entire methodology is illustrated in Fig-
ure 1.

A. Pre-processing of raw microarray data

The raw data from eight studies of ER+/ER- breast
tumors [11-18] were downloaded from the Gene Expres-
sion Omnibus (GEO). Table 1 provides details of the
source of the data and the number of samples for each
tumor type. The first six studies contain only mRNA
expression profiles whereas the last two (Enerly and
Buffa) have concurrent mRNA and microRNA expres-
sion profiles on ER+/ER- breast tumors. Herein, we will
refer to the datasets using the name provided in Table
1. Supplemental Table S1 in Additional file 1 provides
details about the microarray platforms used in these
studies.

Gene expression analysis was performed using
packages in Bioconductor [19]. The Robust Multichip
Averaging algorithm (RMA) [20] with quantile normali-
zation was used for normalization of the Affymetrix
microarrays. Additionally, to minimize the noise level in
the subsequent task of data discretization, Affymetrix
detection calls were used, only for Affymetrix data, to
identify probesets with low or no level of expression.
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Figure 1 Flowchart of data integration methodology. Starting with the processing of raw microarray data, the different analysis steps
progress in a clock-wise manner.

The raw microRNA data from Enerly were normalized
with the RMA algorithm using the AgiMicroRna pack-
age [21]. The mRNA data in the Enerly study as well as
the mRNA and microRNA data in the Buffa study were
already normalized.

Data normalization of each dataset forced its microar-
rays to have the same empirical distribution of intensi-
ties. As an example, the density of expression values of
all the microarrays in the Boersma dataset is shown in
Figure 2a (before normalization) and Figure 2b (after
normalization). In contrast, when only the probesets
marked as Present or Marginal were considered, the
density function adopted a shape closer to that of a nor-
mal distribution (Figure 2c).

Table 1 Analyzed ER+/ER- expression datasets

Dataset name Source Number of samples

ER+ ER-

Boersma (MRNA) GSE5847 [11] 41 52
Desmedt (mRNA) GSE7390 [12] 107 51
Miller (MRNA) GSE3494 [13] 213 34
Minn (MRNA) GSE2603 [14] 57 42
Sotiriou (MRNA) GSE2990 [15] 74 24
Wang (MRNA) GSE2034 [16] 209 77
Enerly (mRNA) GSE19783 [17] 60 35
Enerly (microRNA) GSE19536 [17] 60 35
Buffa (MRNA) GSE22219 [18] 122 79
Buffa (microRNA) GSE22216 [18] 122 79

The Chip Description Files (CDFs) provided by the
manufacturers were used to map probes in the Illumina
and Agilent microarrays. A custom CDF was used to
map probesets to unique Entrez gene Ids [22] for the
Affymetrix microarrays. See Additional file 1, Supple-
mental Methods, Section A for more details about the
pre-processing of microarray data.

B. Discretization of expression data

A characteristic of BNs is that a node in the network
must have distinct (and finite) discrete states. This
required a discretization method to convert the expres-
sion data obtained from a microarray into discrete
values to be fed to the BN. We decided to use 5 states
to discretize the expression values of all genes, namely 1
= very low, 2 = medium low, 3 = medium, 4 = medium
high and 5 = very high.

We implemented three discretization methods and
compared them in order to determine the most appropri-
ate one for our BNs. The first method was named Sigma-
mu and was based on the mean (p) and standard devia-
tion (o) of all the expression values of a microarray. The
expression level of a gene/microRNA was compared
against how many standard deviations away from the
mean it was. The five discrete values were assigned as:
very low and very high (22c from y); medium low and
medium high (21c from y); and medium (< 1o from p).

The second method was based on the quantiles of the
expression values in a microarray. The density function
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Figure 2 Density of expression data and discretization. (a) The raw expression values of all genes in all microarrays of the Boersma dataset,
plotted as a density curve. Each curve corresponds to a microarray. (b) The same density curves after the expression values have been
normalized. The normalization procedure forces all curves to have the same mean and standard deviation. (c) The density curve of a randomly

chosen microarray, after normalization and after removing the probesets marked as “Absent”.

of the expression values in a microarray was used to
obtain estimates of the intervals that accumulated 20%,
40%, 60%, 80% and 100% of the expression values. A
discrete value from 1 through 5 was assigned to a gene/
microRNA based on the interval on which it fell. Please
refer to Additional file 1, Supplemental Methods, Sec-
tion B for details on these two methods.

The third method we implemented is based on the
clustering of expression values of the genes/microRNAs
in a microarray. Partition Around Medoids (PAM) was
used as our clustering algorithm. The genes/microRNAs
whose expression values were clustered in the lowest
cluster -cluster 1, corresponding to the lowest expres-
sion levels- were discretized as very low. Conversely, the
genes clustered in the highest cluster (cluster 5) were
discretized as very high. Genes in clusters 2 and 4 were
discretized as medium low and medium high respec-
tively. Finally, genes in the remaining cluster (3) were
discretized as medium.

Independent of the discretization method used, probe-
sets marked as “Absent” in Affymetrix microarrays were
given a discrete value of very low. This process was
repeated for all microarrays to yield a discrete value for
each gene/microRNA in each microarray.

C. Differential expression analysis
Determining what genes were differentially expressed in
each of the eight datasets had different purposes. Differ-
entially expressed genes in the first six datasets were
used to determine the most appropriate discretization
method, whereas the differentially expressed genes in
the Enerly and Buffa datasets were used as evidence in
the Bayesian inference process.

The differential expression analysis was performed on
all normalized microarrays. For Affymetrix, a probeset
was discarded if it was not marked as “Present” or

“Marginal” in more than 85% of the samples in the
study, or if the coefficient of variability (CV) of the
expression values of the probeset was less than 50%
across samples in the study. The limma package [23]
with the Benjamini-Hochberg correction for multiple
tests was used for differentially expression analysis. The
adjusted p-value threshold was set to 0.05.

For the Agilent mRNA chips, the normalized expres-
sion data were downloaded from GEO and only the
probes with unique Entrez gene Ids were kept. For the
Agilent microRNA data, the probes with a detection sig-
nal of less than 10% of the samples or not associated
with H.sapiens were discarded.

The normalized expression data of Illumina mRNA
chips were downloaded from GEO and those probes
with unique Entrez gene Ids were retained. Probes with
a CV less than 20% were filtered out. For the Illumina
microRNA chips, only probes associated with H.sapiens
were retained. The differential expression analyses were
performed with limma as described above. See Addi-
tional file 1, Supplemental Methods, Section C for more
details.

D. Structure pre-processing for KEGG pathways

The KEGG database [3] provides experimental knowl-
edge in many forms, one of them being molecular net-
works called KEGG pathway maps. For our work, the
pathway maps were analyzed as networks, with direc-
ted edges between the nodes representing a known
interaction. The pathways analyzed were related to sig-
naling (KEGG Ids 04010-04350) and cancer (05200-
05223).

The structure of a pathway including nodes and edges
was used as the backbone of a BN. Before the BN could
be constructed, a pre-processing step was implemented
on the pathway. This pre-processing yielded a new
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network, based on the original pathway, with the follow-
ing properties:

+ No cycles: The KEGG pathway was transformed
into a directed acyclic graph (DAG). Edges that cre-
ated a loop were discarded.

+ Nodes with expression data: The Entrez ID of each
node in the pathway was checked against the list of
genes that had expression data (10,722 Entrez IDs
from our microarray analysis, see Additional file 1,
Supplemental Methods, Section B). Nodes with no
expression data were removed. The parents and chil-
dren (if any) of a removed node were updated to
include new edges linking them.

«» Limited types of interactions: Only the following
interactions annotated in a KEGG pathway were
taken into consideration: a) gene expression rela-
tions: expression, repression and indirect effect; and
b) protein-protein interactions: activation, inhibition
and indirect effect.

The package KEGGgraph [24] in Bioconductor was
used for parsing the raw KEGG Markup Language files.

E. The predicted targets of transcription factors and
microRNAs

Since our goal in implementing a BN for a known path-
way is the identification of the set of TFs and micro-
RNAs that are putative regulators of nodes in the
pathway, the new network obtained from the previous
pre-processing step needed to be expanded to include
the TFs and microRNAs that are predicted to target the
nodes in the pathway. We followed two different
approaches to determine which TFs and microRNAs
may target a node in the pre-processed network.

1. TF target prediction. bindSDb [25] is a database
we developed to store experimentally proven and
predicted transcription factor binding sites. For the
prediction portion, the database returns a set of TFs
that are predicted to bind to the promoter region of
a gene based on sequence analysis. It uses the
MATCH [26] algorithm to determine if a TF may
bind to the promoter of the gene. Each TF was
represented by one or more position weight matrices
from TRANSFAC (ver. 2010.1) [27]. In our work, for
each gene in a pathway, or protein encoded by a
gene, we obtained from bindSDb all the TFs that are
predicted to bind to the promoter region of the gene
(defined as +2Kb, -2Kb from the transcription start
site).

Additionally, we obtained from TRANSFAC the
information about the genes that encode the pre-
dicted TFs (when available). In this way, each gene
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in the pathway will be associated with a set of genes
whose protein products, i.e. TFs, are predicted to
target the gene. If one of the predicted TFs was
already present in the pathway, then it was not
included as a putative regulator of the gene.

2. microRNA target prediction. All microRNA-gene
predictions were downloaded from TargetScan
Human release 6.0 [28]. TargetScan is a microRNA
target prediction algorithm that searches highly con-
served 3’'UTR targets for 8-mer and 7-mer sites
matching the seed region of microRNAs. We down-
loaded target predictions for 677 microRNA families,
as defined by TargetScan, and obtained a total of
54,479 unique pairs between microRNA family and
target gene.

F. Selection of TFs and microRNAs with Random Forest
The previous step provided a list of predicted TFs and
microRNAs targeting each individual gene in a pathway.
Ideally, we would expand our pathway by adding incom-
ing edges to a gene from every TF and microRNA in
that list. As it will become clear later, this was infeasible
especially because of the large number of TFs and
microRNAs that may target a gene. Table 2 shows the
number of TFs and microRNAs that are predicted to
target the genes of three signaling pathways (see Addi-
tional file 2 for full details). If a node in a BN has more
than 100 parents, we simply cannot maintain its condi-
tional probability table (such a table will consist of 5'*
entries). Therefore, it is necessary to limit the number
of regulators for each gene. To that respect, we used a
machine learning approach to obtain a rank of the TFs
and microRNAs that are predicted to target each gene.
Based on this ranking a few top regulators of a node
will be selected as additional parents of the node. Two
classifiers were created with the random forest (RF) clas-
sification algorithm [29] on each gene of a pathway
based on the expression levels of the associated TFs and
microRNAs, respectively. For each classifier, the values
of the predictor variables were the discretized expression
levels of the TFs (mRNAs’ of the encoding genes) or
microRNAs. Our ultimate goal was not to find a classi-
fier to predict the expression level of genes but to use
RF to measure the importance of each predictor vari-
able. In this manner, for each gene, a group of TFs and
microRNAs that could differentiate the expression level
of the gene across different microarrays were obtained.
The layout of the input data to RF is shown in Figure
3. More specifically, the supervised learning predictor
for gene g is defined as T, = (y;, «;) with i = 1 to M,
where M is the total number of microarrays used in the
classifier. For TFs, M = 980 (the first six studies listed
in Table 1) and for microRNAs, M = 296 (Enerly and
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Table 2 Number of target TFs and microRNAs
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KEGG Id Pathway name

Number of TFs per node

Number of microRNAs per node

Average Max Average Max
04010 MAPK signaling pathway 95.3 165 10.7 54
04150 mTOR signaling pathway 90.3 152 17.1 59
04115 p53 signaling pathway 91.8 151 14.2 59

This table shows the number of TFs and microRNAs that target genes in a KEGG pathway. The column Average indicates the average number of TFs or
microRNAs targeting a gene in the pathway. The maximum number of TFs or microRNAs targeting a gene in that pathway is shown in column Max. This is
equivalent to the number of incoming edges the node will have if all TFs or microRNAs were added to the pathway.

Buffa datasets). The multi-class response vector y con-
tains the M discrete expression levels of gene g in the
microarrays. Each vector «; has values for k predictor
variables (TFs or microRNAs that target gene g), that is,
x; for j = 1 to k contains the discrete expression value
of predictor j in microarray i. The values were coded
according to the data discretization: from 1 through 5,
where 1 = very low and 5 = very high. For each gene, an
ensemble of 2,000 trees (for TFs) and 500 trees (for
microRNAs) was created. One third of the variables
were randomly chosen at each tree level and one third
of the samples were left as out of bag. Variable impor-
tance was determined after performing permutations on
the trees to assess the change in their predicting power.
Each variable was assigned a mean decrease of accuracy
score and the ranking of predictor variables for the gene
was based on this score. The analysis was implemented
with the R package randomForest.

G. Pathway extension

At this stage, we have all the required information to
create a BN for a pathway. The modified pathway
obtained after pre-processing in section D was extended
to accommodate the TFs and microRNAs ranked in

section F. Our RF analysis output two variable impor-
tance rankings for each gene: one for the TFs and one
for the microRNAs. These rankings list the TFs and
microRNAs in decreasing order of the variable impor-
tance score assigned to each of them. An extended path-
way was then created by connecting each node in the
pre-processed pathway with the nodes representing the
top 5 TFs and top 3 microRNAs, only if their variable
importance score was greater than zero. Note that the
same TF may target more than one gene in the pathway.
Therefore, the node for the TF was added just once with
multiple edges going from this node to different target
genes. The same consideration applied to the micro-
RNAs. This newly merged pathway was then fed to the
BN process.

H. Bayesian network construction
Simply put, a BN can be characterized as [30,31]:

+ A directed acyclic graph G = (V, E) where Vis a
set of variables and E is a set of directed edges
between the variables.

+ Each variable in V has a finite set of mutually
exclusive states.

Classification variables:
Transcription Factors or

Discrete microRNAS that target gene,
expression value A
of geney [ 1 2 ,ﬂ
microarray very low 113 5 2
microarray medium_low 1
microarray medium 2|3 5 1

between 1 and 5) of the predictors in all microarrays.

Figure 3 Data layout for random forest classification. Layout of the data matrix for geneg given as input to random forest. The first column
indicates the discrete expression value of the gene. The other k columns correspond to the k predictors -TFs or microRNAs, one classifier for TFs
and another for microRNAs- predicted to target geneg. The values for each of the columns are also the discrete expression values (as a number
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« For each variable B with parents A;, A,,..., A, there
is a set of parameter probabilities in the form of
conditional probability tables (CPTs) that capture P
(B | Ay Az Ay).

The first two items have been addressed in previous
sections (pre-processing and discretization). The crea-
tion of the CPT for a given node in the pathway was
implemented in the following way:

1. If the node did not have any parents, the CPT was
basically a vector representing the prior of the node. It
was computed by obtaining the frequencies of each dis-
crete value across all the appropriate microarrays (TFs
and genes used the first six datasets of Table 1, whereas
microRNAs used either the Enerly or Buffa dataset).

2. If the node had parents A;, A,,..., A,, the CPT
reflected the probability of all possible combinations of
states between the node and its parents. The probability
of each possible combination was obtained by counting
and then dividing by the total number of observations.
A high-dimensional matrix C of 5-by-5-by...(p + 1)-
times was used to compute the CPT. The matrix C was
initialized with 1s to assume that each possible combi-
nation of states was possible. Then, for each microarray,
the discrete expression values of the node and its par-
ents were obtained as a vector v = [Va;, Va2, s Vaps
Visodel. The contents of matrix C at the cell Clv,;, V4o,
ws Vaps Vode] Were then incremented by one. At the end,
each position of C was divided by the sum of all ele-
ments in C. The matter of what set of microarrays to
use was resolved in the following way:

« If any of the node’s parents A;, A,,..., A, was a
microRNA, either the Enerly or Buffa dataset was
used.

« Otherwise, the first six datasets listed in Table 1
were used.

This distinction was absolutely necessary. In order to
compute the CPT of a node that had at least one micro-
RNA as parent, we needed to process microarrays that
had both expression values for genes/TFs as well as
microRNAs. Evidently, the CPTs of nodes with a micro-
RNA targeting them were created from fewer observa-
tions than nodes whose parents were only TFs or other
pathway nodes.

An important aspect of a BN is the evidence, i.e., the
values assigned to the observed nodes. For evidence, the
907 differentially expressed genes between ER+ and ER-
samples that overlapped as the top 2000-ranked genes
in the mRNA-Enerly and mRNA-Buffa datasets were
used (See Additional file 1, Table S6). Only those differ-
entially expressed genes that were part of a pathway
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(not as TFs but as KEGG pathway nodes) were used as
evidence.

Once the BN for a pathway was created, we conducted
two rounds of inference. Because the CPTs in our BN
were created using all the data from ER+ and ER- sam-
ples, in order to identify a contrast between these two
conditions we subjected the same BN to two different
sets of evidence corresponding to two scenarios. In sce-
nario #1, the evidence value assigned to a gene was the
median of all the discrete values of that gene corre-
sponding to ER+ samples. Conversely, in scenario #2,
the evidence was formed by obtaining the medians of
the discrete values in ER- samples. Regardless of which
of the two scenarios we are analyzing, for a BN with
variables X;, X,,..., X,,,s where the evidence e = [X,,,},
X120 X4s) and the values of variables X;, X,,..., X,, are
unobserved, we would like to obtain P(X;, X,..., X, | e).
This joint probability is defined as:

n+s

 Xnss) = l_[P(Xi|parents(Xi)) (1)

i=1

P(X1, Xy, ...

Because the size of the CPT for each variable X; is
exponential on the number of parents of X;, this compu-
tation is prohibitive for large networks. To complicate
matters further, we would like an answer to the ques-
tion: what is the probability of X; = x given the evidence
e? This requires the marginalization of X; from equation
(1).

Since exact inference is computationally infeasible, we
have to find an approximation to the marginal probabil-
ity P(X; | e). In our work, this was achieved by using a
Gibbs sampler. The marginal probabilities for all unob-
served nodes were sampled at a rate of Q x number of
nodes in the BN, with Q = 250. See the Results section
for details on how Q was computed. The BN creation,
Gibbs sampler, inference engine and marginalization of
nodes were implemented with the Bayes Net toolbox
(BNT) for Matlab [32].

Results

Comparison of the three discretization methods

Data discretization has a strong effect over the condi-
tional probabilities assigned to each node in the BNs.
Therefore, we conducted a comparison of the three dis-
cretization algorithms described in the Methods section
to determine the one that was most appropriate to our
study.

We compared the discrete values obtained from each
method to identify the one that created the largest con-
trast between the two phenotypes in the data (ER+ vs.
ER- in this case). To detect this contrast, we used as
reference the genes which we had determined to be
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differentially expressed in each dataset (see Additional
file 1, Table S5). In theory, if a gene is differentially
expressed in a dataset, it means that the expression
values of the gene in the ER+ samples are different from
the expression values of the same gene in ER- samples.

To quantify that difference for a given gene;, we used
the unweighted pair-group method arithmetic averages
(UPGMA) between ER+ and ER- samples.

1
ER + ||ER — | 2, 2 dy)

x€ER+y€eER—

Ageney, =

where:

« gene; must be differentially expressed in dataset,

+ ER+ and ER- are the samples for each phenotype

« the distance measure d() is simply the absolute
value of x - y, where x and y are discrete values
between 1 and 5.

Figure 4 shows the average difference as defined above
for the three methods in all datasets. Clearly, the PAM
method obtained the largest difference of discrete values
between the two phenotypes. Other evaluation criteria
also confirmed that PAM provided the best discrete
values among the three methods (see Additional file 1,
Supplemental Methods, Section B). Therefore, the fol-
lowing results were derived based on the PAM method
for discretization.

Approximation of marginal probability for Bayesian
inference

In order to empirically determine the value of Q, i.e., the
number of samples to draw while using the Gibbs sam-
pler in the estimation of the marginals, we proceeded to
create two toy BNs of 16 and 36 nodes. The 16-node
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network was based on three nodes from the MAPK sig-
naling pathway. These three nodes were subjected to all
the steps in our methodology: pathway pre-processing,
prediction of target TFs and microRNAs, RF classifica-
tion and variable importance and, finally, pathway
extension. The three pathway nodes (in green) with the
TFs (squares) and microRNAs (triangles) that target
them are shown in Figure 5a. These two toy BNs were
small enough that the full joint probabilities could be
computed precisely. Therefore, all marginals were com-
puted in an exact manner. We then approximated the
marginals using a Gibbs sampler and the approximation
error was determined for different number of iterations
of the sampler. For the 16-node BN it can be seen that
there is little oscillation of the error, and that after 4,000
samples the error stays below 0.05 (Figure 5b). Our
empirical Q = 4,000/16 = 250 was used to determine
how many samples had to be taken per node. A similar
analysis was done with the 36-node network arriving to
a similar value of Q. For this network we continued test-
ing the number of samples up to 50,000 to show how
the approximation error continues to decrease (See
Additional file 1, Figures S7 and S8).

Inference results on the breast cancer data

We have systematically constructed BNs for all the 34
KEGG pathways based on the procedures described in
Methods. The number of nodes and edges in the origi-
nal pathways and the number of nodes and edges in the
expanded Bayesian networks are provided in the Addi-
tional file 2.

We present our inference results in an attempt at
uncovering the relationships among TFs, microRNAs
and pathway genes that are associated with ER+ and
ER- breast tumors. ER+ and ER- tumors display differ-
ent molecular patterns in terms of cell differentiation,

1.4
1.2
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between the two groups.
A
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Figure 4 The average distance of the discretized values of differentially expressed genes between ER+ and ER-, for all datasets.
UPGMA of discrete values in differentially expressed genes between ER+ and ER-. The PAM discretization method provides the largest difference
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Figure 5 Toy BN of 16 nodes and its error in approximating marginals using Gibbs sampler. (a) Network with 16 nodes extracted from
the extended MAPK signaling pathway. The three nodes (in green) are the original nodes from the pathway. The TFs (squares) and microRNAs
(triangles) that target them are also included. Due to the small size of the network the marginals were computed precisely. (b) Approximation of
the marginal after different sample sizes of the Gibbs sampler. It can be seen that after 4,000 samples the error stays below 0.05.
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proliferation, survival, invasion and angiogenesis. Under-
standing the distinct molecular mechanisms in tumors
with different ER status will provide insight into poten-
tial novel targets for breast cancer treatment [33].

Each BN of a pathway was given two different sets of
evidence corresponding to two scenarios. In scenario #1,
the evidence was the discrete values in ER+ samples of
the differentially expressed genes. After providing the
BN with the evidence we ran the inference process and
approximated the marginals for all unobserved nodes. In
scenario #2, the same inference process was performed
and the marginals were approximated. In this case, the
evidence used was the discrete values in ER- samples of
differentially expressed genes.

In addition to these two scenarios, we created two
BNs for each pathway: one BN using the first 6 datasets
+ Enerly and another using the first 6 datasets + Buffa.
Although many nodes in each BN had the same CPTs,
those nodes that had a microRNA as parent had their
CPTs derived from a different dataset (either Enerly or
Buffa). Our goal in creating these two BNs was to pro-
vide further validation to our predictions. If we find a
TF or microRNA that our inference process reports as a
highly probable regulator, and this coincides in both the
Enerly- and Buffa-derived BNs, that provides a greater
confirmation that our prediction is plausible. Figure 6
depicts the flowchart of the analysis to create two BNs
and to run inference using two scenarios.

When analyzing the results, we decided to focus on
nodes that fulfilled any of the following two conditions:

« the node’s marginals had one state with a probabil-
ity larger than 0.8 in scenario #1 and lower than 0.8
in scenario #2 (or vice versa).

« at least one of the node’s marginals for one state
had a 2-fold variation in probability between sce-
nario #1 and scenario #2, with the resulting prob-
ability being larger than 0.5.

There is no particular reason why we chose these
threshold values. They are in fact very stringent and
served the purpose of providing a reduced set of results
that were easy to manually validate against the true
KEGG pathway structure.

Cell cycle pathway

In the cell cycle pathway (KEGG Id 04110) we had 9
differentially expressed genes that were obtained from
our differential expression analysis. One of those genes,
CCNDL1 (Cyclin D1), was over-expressed in ER+ samples
(Figure 7, marked in red). Being over-expressed in ER+
means that the expression level of CCND1 in ER+ sam-
ples was larger than that in ER- samples, in a statisti-
cally significant way. Table 3 shows how the discrete
value of CCNDI1 in scenario #1, when the discrete value
corresponding to ER+ is used as evidence, is larger than
the discrete value in scenario #2, when the discrete
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value corresponding to ER- is used instead. It goes from
very low in #2 to medium in #1. Table 3 also shows the
marginals for a selected group of nodes when the 6
datasets + Buffa were used to create the BN (Table S8
in Additional file 1 shows the marginals for the 6 data-
sets + Enerly). These marginals, for each scenario, indi-
cate the most probable state in which the expression of
a gene, TF or microRNA might be, based on the evi-
dence entered in that scenario.

When inspecting the TFs that from sequence analysis
and RF we have predicted to target CCND1 directly
(NFIB, STAT6, SREBF1) we realize that their marginals
are very similar in both scenarios. Because we know that
the expression of CCND1 changed between scenarios #2
and #1, we are looking for a TF or microRNA that may
also have changed between those scenarios and that
may help explain the change in expression for CCNDI.
Neither of the TFs or microRNAs (not shown in Figure
7) that target CCNDI1 have a significant change in their

marginals between scenarios. The TF TFE3

(transcription factor binding to IGHM enhancer 3) may
provide a better explanation of why CCND1 is differen-
tially expressed, even if TFE3 does not target CCND1
directly. In Figure 7 TFE3 is in light blue and targets
SMAD3. Between scenarios #2 and #1 we can see
(Table 3) that there is more certainty in scenario #1 that
SMAD?3 is at a lower state (a combined very low and
medium low of 0.29+0.39 = 0.68). This implies a lower
level of expression in that scenario (vs. 0.21+0.31 = 0.52
in scenario #2). The marginals have a moderate change
from higher expression states in scenario #2 to lower
states in #1. This transition is much sharper for Enerly
(See Additional file 1, Table S8). In the Cell cycle path-
way, SMAD3 promotes the expression of CDKN2B,
which in turn regulates the expression of CCND1 and
CDK4 by inhibiting them. Our BN simply keeps directed
edges between nodes (as in Figure 7) but is not aware of
the semantics of each edge (inhibition, expression, and
so forth). Nevertheless our results adjust very well to
the semantics of the pathway. When SMAD3 switches
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CDK4

Figure 7 Analysis of the cell cycle pathway. Selected nodes from the merged cell cycle pathway. The original nodes in the pathway are in
green. The TFs (squares) and microRNAs (triangles) that target them are also included. The differentially expressed gene CCND1 is marked in red
and the TF TFE3 (putative regulator) is in light blue According to the pathway definition in KEGG, SMAD3 promotes the expression of CDKN2B
and CDKN2B inhibits CCND1 and CDK4. According to our analysis, CCND1 was over-expressed in ER+ samples.

to a lower state (from scenario #2 to #1), CDNK2B has
also a sharp increase of certainty of being in a very low
expression state (from 0.48 in scenario #2 to 0.99 in sce-
nario #1). Therefore, with a high chance of having low
expression of CDKN2B, we also have a high chance of
not inhibiting neither CCND1 nor CDK4 and this
results in an increase in their expression level (for
CCND], from very low in scenario #2 to medium in #1;
and for CDK4 it goes from a somewhat uncertain state
of expression in scenario #2 to a 0.82 certainty of having
medium high expression level in scenario #1).

Upon reviewing the TFs that are predicted to target
SMAD3, we see that TFE3 is the only one with a
marked contrast between scenarios. In scenario #2 there
is 0.65 probability that its expression is medium high
but this probability decreases to a 0.31 (more than 2-
fold decrease) in scenario #1. This sharp decrease occurs
because in scenario #1 there is more certainty of TFE3
being in a medium state of expression (0.69 vs. 0.04 in
scenario #2). We therefore hypothesize that the tran-
scription factor TFE3 is a key regulator in the Cell cycle
pathway when comparing ER- and ER+ samples. We are
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Table 3 Selected probability marginals for the cell cycle pathway (6 datasets + Buffa)

Node Marginals
Scenario #1 Scenario #2
very low medium low medium medium high very high very low medium low medium medium high very high

SMAD3 0.29 0.39 0.18 0.09 0.06 0.21 0.31 0.19 0.12 0.16
CDKN2B 0.99 0.01 0.01 048 0.11 0.12 0.14 0.14
CCND!1 (de)* (de)

CDK4 0.01 0.01 0.82 0.16 0.12 0.2 0.18 0.28 0.22

TFE3 0.69 0.31 0.04 0.31 0.65 0.01
LMO2 0.06 0.82 0.12 0.01 0.01 0.14 0.77 0.08 0

ELK4 0.98 0.01 0.01 0.98 0.01 0.01
SREBF2 0.01 0.99 0.09 0.01 0.89 0.01

PAX4 1.0 1.0

NFIC 0.22 0.36 0.35 0.07 0.14 0.36 0.29 0.19 0.01
STAT6 0.01 0.01 0.09 0.9 0.09 0.9 0.01
SREBF1 0.98 0.01 0.07 09 0.03

NFIB 0.12 0.26 032 023 0.08 0.13 029 0.29 0.21 0.07
PPARA 0.99 001 0.98 001 0.01 0.01

hsa-mir-375 0.04 0.1 0.1 0.33 042 0.04 0.07 0.15 033 042

*de: the gene is differentially expressed and was used as evidence.

not implying by any means that TFE3 affects directly the
expression of SMAD3 but there is a clear relationship
between their changes in expression levels and this
allows us to postulate TFE3 as a regulator in the
pathway.

In fact, TFE3 is a well-known transcription factor [34]
and there is ample evidence of its synergizing effects
with SMAD3 to enhance Transformer Growth Factor B
(TGF-B) dependent transcription [35,36].
p53 signaling pathway
The analysis of the p53 signaling pathway (KEGG Id
04115) provides an example of how to identify a regula-
tor based on direct interactions between the regulator
and genes in the pathway. For this pathway, our differ-
ential expression analysis reported 8 differentially
expressed genes. Very few TFs passed our selection cri-
teria and only one of them overlapped between the
Enerly and Buffa datasets. This is the case of STAT5B
known as signal transducer and activator of transcrip-
tion 5B. STAT5B was predicted to target only 2 genes
in this pathway: IGFBP3 (insulin-like growth factor
binding protein 3) and PERP (p53 apoptosis effector
related to PMP-22). These two genes are located in dif-
ferent parts of the pathway and are not directly related
to each other. The marginals corresponding to IGFBP3
do not seem to have much of a variation between our
two scenarios (Additional file 1, Tables S9 and S10). In
contrast, PERP is differentially expressed (under-
expressed) in ER+ samples. We can see that the TF
STATS5B shifts its certainty of being in a state of med-
ium low expression in scenario #2 to a more uncertain
state in scenario #1. In fact, in scenario #1 we see an

increment in the marginals corresponding to the lowest
level of expressions (very low and medium low) which
can be interpreted as a possible decrease of expression
of STAT5B from scenario #2 to scenario #1.

STATS5 is one of the seven members of the STAT
(signal transducers and activators of transcription)
family of TFs and mediates the responses of cytokines,
growth factors and hormones [37]. It has been shown
that STAT5 regulates apoptosis in a wide range of
tumor cells [38]. STAT5A and STAT5B are different
proteins encoded by different genes.

PERP, a p53 transcriptional target, is induced specifi-
cally during apoptosis but not cell cycle arrest. Downre-
gulation of PERP is associated with the aggressive,
monosomy 3-type of uveal melanoma (UM) [39]. It has
not been proven that PERP is a direct target of STAT5B
[37]. But through our Bayesian inference process we
were able to determine that STAT5B (by interacting
with PERP) might be a key regulator in the p53 signal-
ing pathway. This result was validated by two BNs con-
structed with different datasets (Enerly and Buffa)

ErbB signaling pathway

The previous results reported only TFs as potential reg-
ulators of their pathways. In the BNs of the ErbB signal-
ing pathway (KEGG Id 04012), we identified a
microRNA as a putative regulator. In this pathway there
were 6 differentially expressed genes. One of them,
PLCG2 (phospholipase C, gamma 2 phosphatidylinosi-
tol-specific) is under-expressed in ER+ (Additional file
1, Tables S11 and S12). Upon examining the TFs and
microRNAs targeting that gene, only the microRNA
hsa-miR-135b passed our selection criteria. In scenario
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#1 of Enerly, hsa-miR-135b reaches a certainty of being
at a medium expression level (0.81) whereas in scenario
#2 there is uncertainty about its level of expression, with
higher probabilities in the very low and medium low
states (0.23 and 0.36 respectively). This transition
between scenarios #2 and #1 may be seen as an increase
in the expression level of the microRNA. Because
microRNAs have been shown to negatively regulate the
expression of their target genes, if we couple the possi-
ble increase in expression of hsa-miR-135b between sce-
narios #2 and #1 with the fact that the expression of
PLCG2 decreases between scenarios #2 and #1, we can
propose with higher confidence that hsa-miR-135b is a
potential regulator of the ErbB pathway by possibly
affecting the expression of PLCG2. In this example, we
also had validation of this fact between the Enerly and
Buffa datasets.

Discussion

We proposed an integrative bioinformatics methodology
that combines a) the TFs and microRNAs that are pre-
dicted to target pathway genes, with b) microarray
expression profiles of mRNA and microRNA, in con-
junction with c) the known structure of molecular path-
ways. All these elements were integrated into a
probabilistic framework (BN) that was used to make
inferences about key TFs and microRNAs as regulators
of the pathway. Using the procedures described in our
work, one can systematically construct a BN for each
individual pathway of interest. We have utilized 8
microarray expression datasets of mRNA and microRNA
on ER+ and ER- breast tumors to demonstrate how to
use the differentially expressed genes as evidence in
order to infer key regulators in the constructed BNs.
Another important use of our framework is to propose
hypotheses about the expression levels of TFs or micro-
RNAs and their effect on genes. We foresee the
researcher posing questions of the form: “What would
the expression level of genes g; and g, be if microRNA3
is expressed at a very high level?”

Several technical issues deserve further investigation.
When making inference about the expression level of a
gene, TF or microRNA, we would ideally want to obtain
the most probable explanation (MPE) given the evidence
at hand. This evidence can be tangible, i.e., obtained
from a microarray experiment, or, as it was mentioned
before, it can be a set of hypotheses that interest us. In
either case, an exact solution to the MPE problem in
Bayesian inference has proven to be elusive due to the
fact that approximating the MPE or finding the k-th
MPE are both NP-hard problems [31]. Thus, in this
work we have decided to use the marginals as a proxy
for MPE. In turn, we approximated the marginals for
the unobserved nodes using a stochastic sampling
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algorithm (Gibbs sampler). We plan to improve our
methodology by thoroughly examining different impor-
tance sampling algorithms that will minimize the var-
iance between the drawn samples and the target
distribution [40].

Finally, a self-imposed limitation of our model was the
removal of edges that would create cycles in the net-
work. Our next step will be to improve our probabilistic
framework to use a dynamic Bayesian network (DBN)
that allows for cycles and that better reflects the positive
feedback present in many molecular pathways.

Conclusions

This paper presents a novel approach to the integrative
analysis of microRNA and mRNA expression profiles
with transcription factors and microRNAs within the
context of molecular pathways. We developed a prob-
abilistic framework (Bayesian network) which enables
the inference of potential pathway regulators (transcrip-
tion factors and microRNAs) that are likely causal regu-
lators of the differentially expressed genes in a pathway.
Our method may be useful to identify target genes of
transcription factors and microRNAs.

Additional material

Additional file 1: supplemental-material-B474.doc. This file contains
the Supplemental Methods and Supplemental Results sections. These
supplements provide extra details about the analysis steps we followed
and the results we obtained. Both these sections contain supplemental
tables and figures referenced in the main text.

Additional file 2: supplemental-table-S15.xls. Contains details about
the number of nodes, edges, transcription factors and microRNAs at
different stages of the processing of KEGG pathways.
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