Wu et al. Proteome Science 2012, 10(Suppl 1):517
http://www.proteomesci.com/content/10/51/517

PROTEOME
| : Y sciENCE

PROCEEDINGS Open Access

High performance transcription factor-DNA
docking with GPU computing

Jiadong Wu', Bo Hong'", Takako Takeda? Jun-tao Guo?"

From IEEE International Conference on Bioinformatics and Biomedicine 2011
Atlanta, GA, USA. 12-15 November 2011

Abstract

Background: Protein-DNA docking is a very challenging problem in structural bioinformatics and has important
implications in a number of applications, such as structure-based prediction of transcription factor binding sites
and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy
calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show
that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable
to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve
docking quality.

Methods: In an attempt to accelerate the sampling process and to improve the docking performance, we
developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a
potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo
simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques
were developed to improve the computation efficiency and scalability on GPU-based high performance computing
systems.

Results: The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly
developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly

accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex
structures. This study also suggests that further improvement in protein-DNA docking research would require
efforts from two integral aspects: improvement in computation efficiency and energy function design.

Conclusions: We present a high performance computing approach for improving the prediction accuracy of
protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and
thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad
hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem.

Background

Protein-DNA interactions play crucial roles in many key
biological processes. One of these processes is transcrip-
tional regulation, in which transcription factors (TFs)
bind to specific DNA binding sequences to either

* Correspondence: bhong6@gatech.edu; jguo4@uncc.edu

'School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, Georgia, 30332, USA

’Department of Bioinformatics and Genomics, College of Computing and
Informatics, University of North Carolina at Charlotte, Charlotte, North
Carolina 28223, USA

Full list of author information is available at the end of the article

( BioMVed Central

activate or repress the expression of their regulated
genes. Transcription factors form a distinct group of
DNA binding proteins in terms of function and binding
specificity [1]. Owning to their roles in cancer develop-
ment, transcription factors are potential drug targets for
cancer therapy [2-4]. Therefore, knowledge of transcrip-
tion factor-DNA interaction at a structural level not
only can help us better understand the protein-DNA
recognition and binding specificity, more importantly it
can also offer guidance in targeted drug design. More-
over, structure-based transcription factor binding site
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prediction at genome scale has received much deserved
attention recently because structure-based approaches
have the advantage to consider both the position inter-
dependence of TFs and the contribution of DNA flank-
ing sequences in assessing TF-DNA binding specificity
[5-9]. Despite rapid technological advances in experi-
mental structure determination, only a small percentage
of the structures in Protein Data Bank (PDB) are TF-
DNA complexes [10]. Computational modeling, on the
other hand, provides a cost-efficient alternative to the
usually time-consuming experimental methods. Previous
studies have demonstrated that molecular docking can
obtain accurate complex structures for protein-protein,
protein-peptide, and protein-ligand interactions. How-
ever, protein-DNA docking still lags behind due to our
limited knowledge of protein-DNA interactions and it
remains one of the challenging problems in the field of
structural bioinformatics.

There are two key issues in general protein-DNA
docking. One is a potential function for accurate evalua-
tion of protein-DNA binding affinity. The other is con-
formational sampling of the complex structures. It
should be noted that these two issues are related since
the sampling methods generally need the energy func-
tion to guide the search. Improvement has been made
in the development of knowledge-based potentials for
assessing the binding affinity between protein and DNA.
These knowledge-based potentials are developed based
on the mean-force theory and are more attractive due
to their relative simplicity and ease of use. These poten-
tials generally vary in their resolution levels, from resi-
due-based to atom-based potentials and in their
distance scales, from distance-independent to distance-
dependent [9,11,12]. Studies have shown that specific
interaction environments around the contacting amino
acids and nucleotides contribute significantly to the
binding affinity [13,14]. To take structural context into
consideration, Liu et. al. have previously developed a
knowledge-based, multi-body interaction potential for
protein-DNA interaction [11]. This statistical potential
can describe the effects of DNA structure deformation
and local interaction environments. By using three
structurally adjacent nucleotides (termed DNA tri-
nucleotides or triplets) as the basic interaction units, we
developed a rigid-body docking algorithm using Monte-
Carlo simulations and further extended the rigid-body
docking algorithm to a semi-flexible docking approach
in case the DNA structure is unknown [8]. In semi-flex-
ible docking, we use a number of representative DNA
structures that are generated by clustering DNA struc-
tures from solved protein-DNA complexes. Each DNA
structure model is docked with the target protein struc-
ture using the rigid-body docking algorithm. The best
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conformation from all the docked protein-DNA combi-
nations is selected as the final complex model.

We have demonstrated the effectiveness of our protein-
DNA docking algorithm and its application in structure-
based transcription factor binding site prediction [8].
However, the docking algorithm is very computation
expensive. For example, our semi-flexible experiments
with 45 TF-DNA complexes (200 Monte-Carlo simulation
runs for each complex) needed 130, 000 CPU hours when
executed on 2.8GHz Intel Xeon processors (3 weeks on a
240-node CPU cluster). More importantly, the perfor-
mance of the docking algorithm depends substantially on
the coverage of the search space. It has been mathemati-
cally proved that for any random search algorithm to find
a global optimal solution, the probability of repeatedly
missing any measurable subsets of the search space must
be zero [15]. This effectively requires our Monte-Carlo
simulation procedure to search over the entire solution
space, which is infeasible and can only be approximated
by increasing the number of random samples. The compu-
tation cost therefore hinders the implementation and
execution of our algorithm, especially for parameter opti-
mization and large-scale testing runs. In this paper, our
objective is to improve conformational search for TF-
DNA docking algorithm through Graphics Processing
Unit (GPU) computing. GPU has recently evolved from a
fixed-function graphical device into a highly programma-
ble parallel processor, and has been successfully deployed
to accelerate a broad range of scientific applications
[16,17]. GPUs support massive thread-level parallelism
and can significantly accelerate parallel workloads. But the
architectural features of GPUs also pose unique challenges
to GPU application design, especially on the patterns of
their memory accesses and execution paths. In this paper,
we present the GPU implementation of our protein-DNA
docking algorithm, which carefully manages memory
accesses and execution paths to explore GPU acceleration.
We further scale our algorithm from a single GPU card to
a cluster of GPUs and achieve significant performance
improvement. Although the application of GPU to other
docking problems have been previously investigated [18],
to the best of our knowledge, this is the first ad hoc effort
of applying GPU or GPU clusters to the protein-DNA
docking problem.

The effectiveness of our new method is validated
through extensive experiments. Our GPU algorithm
exhibits a 28x speedup on an individual Nvidia M2070
GPU over a single 2.8GHz Xeon core, and achieves a
sustained performance of 10.4 TFLOPS using a cluster
of 128 GPUs, which equals the capability of a conven-
tional cluster with 3600 CPU cores. With the benefit of
such improved computation capability, we are able to
increase the number of random samples for the Monte-
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Carlo simulation procedure and thus expand the traver-
sal in the search space. Experimental results show that
GPU acceleration leads to higher rate of successful pre-
diction of TE-DNA complexes. We also tested our GPU
method on the rigid TF-DNA docking benchmark with
carefully selected 38 cases [19]. We found that more
random sampling can improve the performance of the
easy cases but has almost no effect on the hard cases,
suggesting that better energy functions and search algo-
rithms are needed for these hard cases.

Methods

Datasets

A non-redundant set of 75 TF-DNA complex structures
(less than 35% protein sequence identity) was generated
from PDB [10]. Each of these TF-DNA complex struc-
tures was solved by X-ray crystallography with a resolu-
tion of 3.0 A or better. Since transcription factors are
not well annotated in PDB, we developed an in-house
program for automatic identification of TF-DNA com-
plexes by combing information from Gene Ontology
(GO) terms [20], UniProt keywords [21], and PDB key-
words. Another dataset used for testing our GPU algo-
rithm is the rigid TF-DNA docking benchmark [19].
This benchmark contains 38 non-redundant cases that
are classified into two groups in terms of expected dock-
ing difficulty. Each case in the benchmark is a TF-DNA
binding unit, which is defined as an entity of a DNA
double-helix and one or more TF-chains that interact
with each other with at least three residue-residue con-
tacts based on a heavy-atom distance cutoff of 4.5 A.
The degree of difficulty is assigned based on the
strength of TF-DNA interactions in terms of the num-
ber of residue-base contacts (NRBCs) [19]. The easy
group has 21 cases and the hard group has 17 cases.

TF-DNA docking algorithm

Figure 1 shows the overall framework of our rigid-body
docking algorithm as described previously [8]. Briefly,
for a given pair of transcription factor and DNA, our
algorithm searches for a docked TF-DNA structure that
has the lowest interaction energy using a Monte-Carlo
simulated annealing approach. Each iteration of the
Monte-Carlo simulation consists of two steps: docking
energy calculation and conformational sampling. The
energy function includes the protein-DNA binding affi-
nity (Epinging), the atomic van der Waals (VDW) packing
energy (E,aciing), and the constraint energy (E;osrains) as
seen in Equation 1 (W,acking and Weoserain: are weight
factors).

E= Ebinding + Wpacking Epacking + Woonstraint Econstraine (1)
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The protein-DNA binding affinity, which dominates
the docking energy, is evaluated using a knowledge-
based distance-dependent amino acid-nucleotide inter-
action potential [11]. The binding affinity between a
DNA triplet and a protein residue is determined by
three factors: 1) the composition of the DNA triplet; 2)
the type of the protein residue; and 3) the distance
between the triplet and the residue. The coordinate of
each DNA triplet is calculated as the geometric center
of the three corresponding nucleotides while the coordi-
nate of CP atom of each residue represents the residue
position (a pseudo CP is used for Glycine based on its
geometric shape).

The calculation of VDW packing energy uses a har-
monic form with soft repulsion and attraction terms as
described previously [8]. Since the knowledge-based
binding energy is derived from the mean force theory
and, in principle, it covers all the energy effects includ-
ing the VDW packing contribution. The primary role
of adding this packing energy to the docking is to
guide the docking process while not affecting the final
docked structures (i.e. W,cxine approaches zero as the
random walk progresses). The constraint energy is also
used to guide the docking process by bringing the
DNA molecule in contact with the protein surface.
This energy becomes zero for correctly docked
structures.

The simulated annealing sampling of the conforma-
tional space includes translation at a step size of 0.01A
and rotation at a step size of 2 degrees. The initial tem-
perature is set to a 0.833 acceptance rate and the cool-
ing rate is 0.998. The simulation continues until the
system converges with an acceptance rate lower than 1%
or when the total number of steps reaches a pre-set
maximum (1.5 million in our current work). To improve
coverage on the conformational search space, we con-
duct multiple Monte-Carlo simulations with different
random seeds.

To evaluate the docking performance, we compared
the docked DNA conformations with the corresponding
DNA structures in the native TF-DNA complexes by
fixing the protein positions. The root mean square
deviation (RMSD) is computed between the predicted
and the native complex using DNA backbone heavy
atoms. In some TF-DNA complexes, the proteins are
homodimers that bind to the same or similar DNA
sequences. In these cases, if the two protein chains
exchange positions in the TF-DNA complex, the new
structure should also be considered as “correct”. For
example, 1AN2 is a dimeric transcription factor Max
that binds to its recognition sequence CACGTG by
direct contact (Figure 2A) [22]. If chain A and chain C
switch their positions, the newly generated structure is
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transcription factor DNA

Monte-Carlo docking simulations
for each protein-DNA combination

Docked structure with the lowest energy

Figure 1 Schematic representation of the docking procedure.

J

technically the same as the native TF-DNA complex evaluation, we calculate the RMSDs by comparing the
(Figure 2B). To address this issue in docking automati-  docked structure with both the native and the “flipped”
cally, we generated a “flipped” DNA structure by flip- DNA structures and record the smaller RMSD for the
ping the two protein chains. Then for docking docked TF-DNA complex.
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chain A: Red

chain C: Green

Figure 2 Example of a homodimeric TF-DNA complex and flipped structures. The complex structure of Max and its cognate DNA
(PDBID:TAN2). Max recognizes its cognate DNA sequence through a homo-dimeric basic helix-loop-helix domain. A: native Max-DNA complex
structure with chain A (red) and chain C (green); B: chain A and chain C are flipped.

GPU computing

All the tests and experiments of our GPU algorithm were
conducted on the ‘Keeneland’ GPU-based HPC system co-
hosted by Georgia Institute of Technology, Oak Ridge
National Lab, and the University of Tennessee [23]. The
system currently contains 120 nodes, each equipped with
3 Nvidia M2070 GPU cards. Nodes in the system are con-
nected via QDR infiniband switches. The software tools
used were GCC 4.1, CUDA 3.2, and MPI 1.4.3-intel.

Our protein-DNA docking approach exhibits three
levels of parallelism: (1) multiple protein-DNA pairs can
be evaluated in parallel; (2) for each protein-DNA pair,
multiple Monte-Carlo simulation runs are independent
of each other; and (3) for each simulation run, the DNA
movement and energy calculations feature fine-grained
parallelism: the calculations are applied to each atom
and amino acid/DNA triplet and can be performed in
parallel within each simulation step. We design our
GPU program to explore all three levels of parallelism.
For notational convenience, we call each Monte-Carlo
simulation run a task.

A. Task level design and scheduling
Our protein-DNA docking program is designed for
high-performance computing (HPC) systems equipped

with Nvidia GPU cards. Such platforms feature a 4-level
hardware hierarchy: multiple computing nodes; each
equipped with multiple Nvidia GPUs; each GPU con-
tains several multiprocessors; and each of which consists
of multiple processor cores. Such a hardware hierarchy
maps to a 4-level software architecture: multiple MPI
processes, each involving a GPU CUDA kernel, which
contains multiple CUDA thread blocks. Each block con-
sists of multiple CUDA threads. In this software archi-
tecture, the parallel tasks are mapped to different
processes, simulation runs within each task are mapped
to different CUDA thread blocks, and parallel operations
inside each simulation step are mapped to different
CUDA threads. In the design of our protein-DNA dock-
ing algorithm, the master process is responsible of dis-
patching tasks. The slave processes iteratively execute
six operations: obtaining a task from the master, reading
input data, copying data from CPU memory to GPU
memory, executing the CUDA kernels, copying outputs
from GPU memory to CPU memory, and writing out-
puts. We also include an additional pre-docking stage
where the necessary information of the target protein-
DNA pairs are retrieved from text files, assembled into
appropriate data structures, and then stored as binary
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data files. With such pre-docking data ready, the master
process can dispatch docking task by sending out a sim-
ple task ID, the slave process will load data file directly
according to this ID. The MPI processes can thus be
light-weighted, and the startup overhead can be signifi-
cantly reduced.

B. CUDA kernel design

The overall structure of the CUDA kernel for our
Monte-Carlo simulated annealing based docking algo-
rithm is illustrated in Figure 3. The memory spaces on
GPU are pre-allocated to accommodate data structures
for the TF-DNA complexes. Each time before the dock-
ing kernel is launched, the host MPI process loads a set
of TF-DNA data into the GPU memory and runs a ran-
dom number generation kernel to prepare the random
numbers. Within the kernel, each block conducts an
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independent simulation run. The number of concurrent
simulation runs is set equal to the number of multipro-
cessors available on the target GPU cards. For example,
the number is 14 for Nvidia M2070 GPU cards. A
reduction operation is used to compute the total inter-
action energy, and several small pieces of sequential
code are used for setting parameters and making rando-
mized simulated annealing decisions.

The computation of the VDW packing energy domi-
nates the execution time. This interaction only affects
atoms within close proximity and approaches zero as
the distance increases. Consequently, in the computa-
tion, the entire 3D space is partitioned into small cells
(6x6x6 A), and for each DNA atom, we only evaluate its
interaction energy with protein atoms in the same cell
and in the neighboring 26 cells. Our algorithm uses 27

Master MPI Process

<~

Task pool

Dispatch tasks until completion

—>» Receive a task

GPU-based Monte-Carlo simulation

Initialize

Converge or loop 1.5 million iterations

Task com

bletion-

Worker MPI Process

Worker MPI Process

Figure 3 Design of the docking algorithm at CUDA kernel level.
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threads to evaluate one DNA atom with respect of its 27
neighboring cells (including the cell the atom resides).
The binding affinity is evaluated between DNA triplets
and protein residues. During the evaluations, the space
is partitioned into lattices which are coarser-grained
than cells for packing energy calculation. Since a mole-
cule has fewer triplets/residues than atoms, the compu-
tation of binding affinity is faster than the packing
energy.

Results and discussion

Computation cost of TF-DNA docking

The rugged docking energy landscape and the statistical
nature of our docking algorithm suggest that an accu-
rate conformation can be found only if sufficient
Monte-Carlo simulations are conducted assuming the
energy function is accurate. We first show the impor-
tance of conducting more simulation runs and the need
for computational speedups. We conducted 5400 simu-
lation runs for each complex in our dataset of the 75
TF-DNA complexes. Sixty-three out of the 75 com-
plexes have at least one docked conformation with
RMSD less than 2 A. The number of runs needed to
produce one near native conformation is summarized in
Figure 4. It shows that the difficulty of conformational
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search varies for different TF-DNA complexes. For
example, 12 out of the successfully docked complexes
only need 17-32 simulation runs for the random search
to ‘hit’ the near-native conformation. But there also
exist 5 difficult complexes that need more than 4097
runs for one ‘hit’. Since we do not know the search diffi-
culty for a blind docking prediction, it is therefore criti-
cal to increase the number of Monte-Carlo simulation
runs to improve the quality of the docked conformation.

GPU-based TF-DNA docking efficiency

We implemented our protein-DNA docking algorithm
on GPU and tested the execution speed of our GPU
docking program. We used a 2.8GHz Intel Xeon pro-
cessor as the baseline to measure the speedup. Twenty
Monte-Carlo simulation runs were conducted for each
TF-DNA complex. The average speedup across all
complexes is 28. A breakdown of the speedup shows
that the calculation of the packing energy was acceler-
ated by 40, and binding affinity by 35. Not surprisingly,
speedups in moving the DNA and accepting new DNA
positions are small due to the simplicity of these calcu-
lations. We also tested the scalability of our algorithm
when executed on the GPU cluster. In the strong scal-
ing experiment, we assigned 4256, 8512, 17024, and
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Figure 5 Speed-ups of our GPU-based algorithm.

34048 tasks to each GPU respectively. Figure 5 shows
that our algorithm achieved close-to-linear speedups.
When scaled to 128 GPU cards, our algorithm
achieved a sustained speed of 10.4 TFLOPs, which is
comparable to a traditional CPU cluster with 3600
processor cores.

Improvement of TF-DNA prediction accuracy

To assess the improvement on prediction accuracy
with our accelerated GPU algorithm, we ran the GPU
docking algorithm with different number of Monte-
Carlo simulations, 200, 400, 800, and 1600 using the
data set of 75 TF-DNA complexes. The results are
shown in Table 1 where a checkmark “x” indicates at
least one conformation with RMSD < 1 A was found
during the search, and a checkmark in parenthesis
“(x)” indicates a docking result where the conformation
with the lowest energy has an RMSD less than 1A. Our
docking algorithm was successful in finding 47 of 75
(63%) near-native complexes when 200 Monte-Carlo
runs were performed, and the sampling rate for finding
near-native structures increased to 67%, 71%, and 73%
when the number of Monte-Carlo runs increased to
400, 800, and 1600 respectively. When predictions
were made based on the lowest energy, 36 (48%) com-
plexes have been docked with RMSD < 1 A with 200
Monte-Carlo runs. The success rate increased to 51%,
53%, and 55%, respectively as we increased the number
of Monte-Carlo runs to 400, 800, and 1600. The above
results demonstrated that increasing the coverage of
the sampling space improves the chance of finding a
near-native docking conformation, and our GPU based

acceleration method is efficient in increasing the sam-
pling coverage.

Test on the rigid-body TF-DNA docking benchmark

We next tested our GPU accelerated sampling on the
rigid TF-DNA docking benchmark [19]. The benchmark
contains a carefully selected non-redundant set of 38
test cases, encompassing diverse fold families. The 38
test cases are classified into easy (21 cases) and hard (17
cases) groups with respect to the degrees of difficulty in
TEF-DNA docking. The benchmark was designed to
identify the strengths and weaknesses of potential func-
tions and docking algorithms and to facilitate the devel-
opment of better approaches.

We ran our GPU docking simulations on this bench-
mark set with the number of simulation runs at 200,
800, and 1600 respectively. The detailed docking results
are shown in Table 2, in which the first 21 entries above
the line are the easy cases while the remaining cases are
the hard ones. These docking results are summarized in
Table 3. The results clearly show two different trends
for the easy and hard targets. For the easy targets,
increasing sampling runs from 200 to 1600 improved
the number of successful predictions based on the low-
est energy, from 7 to 9 within 1A (or 8 to 10 within 3A)
when compared to the native TF-DNA structures. How-
ever, for the hard targets, more simulation runs did not
improve the number of successful predictions with
either 1A or 3A as a cutoff.

The docking simulations also produced some near-
native structures ("conformation with the lowest RMSD”
in Table 2 and the number in parenthesis in Table 3)
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Table 1 Docking evaluation on 75 non-redundant TF-DNA complexes

Conformation with the lowest RMSD Conformation with the lowest energy Number of Monte-Carlo runs
ID PDBID Edocking RMSD(A) Edocking RMSD(A) 200 400 800 1600
1 1a02 248321 11.72 -87.22 2251
2 1a0a -138.17 041 -140.53 046 X(X) X(X) X(X) X(X)
3 1akh -194.5 0.15 -195.44 0.17 X(X) X(X) X(X)
4 1am9 -246.58 0.1 -248.37 0.11 X(X) X(X) X(X) X(x)
5 1an4 -50.06 805 -96.87 13.65
6 1b72 -202.72 0.2 -203.79 04 X(X) X(X) X(X) X(x)
7 Thdt -33533 0.08 -338.16 0.11 X(X) X(X) X(X) X(X)
8 1cf7 -1235 022 -125.81 037  x( X(X) X(X) X(X)
9 1cma -52.28 0.19 -56.19 20.75 X(X) X(X) X(X) X(x)
10 1d3u -390.32 0.21 -396.4 04 X(X) X(X) X(X) X(x)
11 1d5y -122.22 15.62 -178.55 63.19
12 1dh3 -33.21 1.94 -388 30.76
13 Tefa -171.99 0.06 -175.57 0.2 X(X) X(X) X(X) X(X)
14 1g2d -32991 0.18 -336.89 0.64 X(X) X(X) X(X) X(X)
15 1gd2 -192.36 0.08 -1954 0.13 X(X) X(X) X(X) X(X)
16 Tgxp -200.25 0.14 -205.16 0.22 X(X) X(X) X(X) X(x)
17 1heéf -195.97 0.09 -195.97 0.09 X(X)
18 1h88 -81.23 214 -11261 70.87
19 1hod -181.85 0.21 -18543 028  x(x) X(X) X(X) X(X)
20 Tic8 -358.99 017 -364.87 0.25 X(X) X(X) X(X) X(X)
21 1je8 -309 6.09 -85.71 63.32
22 1jfi -320.51 0.21 -324.72 026  x() X(X) X(X) X(X)
23 1jj4 -141.63 022 -143.72 04 x(x) X(X) X(X) X(X)
24 1jt0 -275.84 0.09 -279.95 0.14 X(X) X(X) X(X) X(X)
25 Tku7 -54.95 0.66 -72.58 2243 x() X() X() X()
26 1131 -93.27 349 -135.37 62.72
27 1le5 -466.48 0.2 -470.46 022 X(X) X(X) X(X) X(x)
28 1lg1 -23293 038 -233.89 0.39 X(x) X(X) X(X) X(X)
29 Tmdm -7893 834 -87.35 50.2
30 Tmdy -1313 0.12 -133.91 0.23 X(X) X(X) X(X) X(X)
31 Tmnm -232.86 0.1 -234.38 0.16 X(X) X(X) X(X) X(X)
32 Tnkp -22591 0.19 -226.15 0.19 X(X) X(X)
33 Tnlw -260.52 043 -261.85 047 X(X) X(X) x(X) x(X)
34 107 -87.62 04 -89.39 053 X(X) X(X) x(X) X(X)
35 1pp7 -41.26 334 -57.53 843
36 Tpue -70.94 0.29 -80.75 56.96 X() X() X() X()
37 1puf -269.14 042 -271.22 0.5 X(X) X(X) X(X) X(X)
38 Tgne -598.6 0.2 -606.45 0.36 X(X) X(X) X(x) X(x)
39 19p9 -22062 0.17 -22197 0.17 X(X) X(X) X(x) X(x)
40 1r8d -73.99 11.58 -106.13 35.66
41 rio -179.09 0.08 -180.44 0.15 X(X) X(X) X(X) X(X)
42 Trzr -123.71 0.72 -142.16 377 X() X() X()
43 1skn -32.36 435 -73.58 3334
44 112k 100.11 0.96 96.65 0.98 X(X) X(X) X(x) X(x)
45 Tttu -57.09 1.7 -78.09 30.8
46 1u8b -47.93 1.12 -83.26 3023
47 Tu8r 595.89 0.76 262.38 98.73 X() X() X() X()
48 Tysa 3800.94 12,51 -54.74 2861
49 129¢ -160.1 0.21 -19441 7544 x() X() X() X()

50 1zme -38.31 12.31 -76.31 2211
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Table 1 Docking evaluation on 75 non-redundant TF-DNA complexes (Continued)

51 1zrf -155 0.25 -156.66 0.25 X(X) X(X) X(X) X(X)
52 1254 -91.84 061 -104.68 46.32 X() X() X() X()
53 2as5 -329 0.36 -340.64 0.46 X(X) X(X) X(X) X(x)
54 209 -3893 048 -46.69 2573 X()
55 2d5v -19342 042 -196.68 0.5 X(X) X(X) X(X) X(X)
56 2drp -30341 0.16 -306.18 0.34 X(X) X(X) X(X) X(x)
57 2er8 -2348 0.16 -108.6 29.25 X X() X() X()
58 2etw -1054 0.21 -106.11 0.26 X(X) X(X) X(X) X(x)
59 2fio -51.12 1849 -146.84 46.95

60 2gli -194.58 0.18 -197.61 033 X(X) X(X) X(x) X(X)
61 2h27 4797 0.2 -86.91 23.1 X() X()
62 2nll -199.27 031 -201.17 0.51 X(x) x(x) x(X) x(X)
63 2ntc -50.65 3.26 -103.2 3395

64 2pio 86.73 0.39 5557 40.36 X() X() X() X()
65 2ql2 -136.32 09 -140.33 1.02 X() X() X() X()
66 2r1j -262.07 027 -26347 0.55 X(X) X(X) X(X) X(X)
67 2w7n -86.31 033 -91.12 347 X() X() X() X()
68 2yvh 192.78 048 -46.35 54.44 X() X() X() X()
69 3a5t -91.62 0.18 -91.89 0.19 X(X) X(X) X(X)
70 3bs1 -51.78 592 -66.91 28.18

71 3clc -68.46 6.97 -94.63 12.53

72 3coq -30.5 18.87 -79.66 3057

73 3cro -114.09 06 -119.95 1.07 X() x() X() X()
74 3d1n -944.87 0.19 -952.56 0.21 X(X) X(X) X(x) X(x)
75 3dfx -107.27 0.35 -107.27 0.35 X(X) X(X)

Total 47(36)  50(38)  53(40) 55(41)

Table 2 Docking simulations on a rigid TF-DNA benchmark with 38 cases

PDB 200 simulation runs 800 simulation runs 1600 simulation runs

conformation with  conformation with  conformation with  conformation with  conformation with  conformation with
the lowest RMSD the lowest energy the lowest RMSD the lowest energy the lowest RMSD the lowest energy

RMSD Edocking RMSD Edocking RN!SD Edocking RMSD Edocking RMSD Edocking RMSD Edocking

(A (R) (R) (R) (R) (R)
laay 038 -208.30 042 -209.88 0.35 -208.39 044 -210.37 0.35 -208.39 044 -210.37
1an2 0.66 -119.22 0.66 -119.22 0.57 -118.31 0.66 -119.22 0.57 -118.31 0.66 -119.22
14 039 -127.55 054 -129.26 038 -128.13 052 -12942 030 -127.97 056 -129.73
1jt0 5.20 -82.27 520 -82.27 046 -124.44 046 -124 44 046 -124.44 046 -124.44
1imb 0.16 -199.62 0.16 -199.62 0.07 -199.77 0.17 -200.04 0.06 -198.95 0.18 -200.19
1gn4 0.17 -313.59 040 -31547 0.16 -312.87 041 -316.10 0.16 -312.87 0.39 -316.35
1gpi 447 -78.92 447 -78.92 447 -78.92 447 -78.92 342 -80.24 342 -80.24
Tsax  1.12 1481 2863 -85.69 112 1481 2863 -85.69 1.09 16.15 19.15 -86.56
Tro 1388 -57.73 16.76 -81.33 13.68 -60.80 2082 -8143 13.68 6081 2084 -81.71
1z9¢ 1.02 -67.71 32.24 -124.23 1.02 -67.71 3222 -124.68 0.98 -67.40 3222 -124.68
1254 0.58 -99.50 30.17 -100.80 0.28 -95.76 30.18 -100.94 0.28 -95.76 0.69 -101.68
2ac0 0.22 12531 14.40 103.80 0.22 12531 14.40 103.15 0.21 123.26 14.45 103.06
2cgp 069 -162.09 0.83 -165.63 069 -162.60 0.83 -165.63 068 -162.92 0.83 -165.63
2elc 408 -4743 6.03 -65.54 1.03 5802 6.05 -65.72 1.03 5802 6.05 -65.72
2it0 10.10 -84.19 1391 -88.21 10.10 -84.19 13.99 -88.93 7.02 -64.61 1391 -89.00
2or1 1.05 -200.25 161 -209.88 0.90 -199.81 163 -210.06 0.86 -199.78 1.62 -210.64

2yvh 19.38 -79.05 36.64 -97.66 17.29 -67.95 35.64 -97.98 10.69 -62.60 3564 -97.98
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Table 2 Docking simulations on a rigid TF-DNA benchmark with 38 cases (Continued)

3clc 642 -61.80 2043 -77.15 6.42 -61.80 2043 -77.15 6.23 -51.19 2043 -77.15
3dnv 0.58 -144.19 0.69 -145.67 0.58 -144.19 0.70 -145.68 0.58 -144.19 0.68 -145.71
3e6c 1352 -68.30 16.25 -96.54 7.18 -61.11 16.22 -97.42 7.8 -61.11 16.22 -97.42
3926 3.68 -40.08 36.98 -43.99 234 -42.74 438 -44.12 234 -42.74 439 -44.18
1001 0.95 4.05 10.57 -9.36 0.95 4.05 10.57 -9.36 0.95 4.05 10.61 -941
Tby4 043 -186.88 043 -186.88 040 -185.19 042 -186.99 040 -185.19 042 -187.09
Tcma 0.71 -46.26 0.71 -46.26 0.53 -33.93 0.71 -46.26 048 -33.24 0.71 -46.26
Tgxp 1.21 -55.52 3872 -74.32 0.93 -56.93 3872 -74.73 0.93 -56.93 38.70 -74.80
Th8a 15.79 -106.71 18.70 -116.66 15.55 -108.11 18.70 -116.66 15.54 -108.31 18.73 -116.71
Thjc 2.00 -50.80 2531 -67.89 2.00 -50.80 25.29 -68.16 2.00 -50.80 25.29 -68.16
1r8d 13.90 -57.78 3596 -92.92 1241 -82.12 3592 -9333 11.64 -67.42 36.12 -94.01
Trio 2398 60.74 60.65 -43.07 2395 61.05 60.65 -43.16 2395 61.05 60.58 -43.44
Txpx 1.27 -56.51 20.96 -7348 1.21 -56.52 20.96 -7348 1.20 -56.85 20.96 -7348
lzme 1383 -44.24 3210 -70.01 13.83 -44.24 3209 -70.12 13.83 -44.24 3212 -70.88
2bnw 347 -4243 8.16 -44.98 341 -4244 8.16 -44.98 340 -42.25 8.18 -45.05
2coy 503 -56.01 3152 -88.13 4.15 -58.13 3152 -88.53 415 -58.13 3152 -88.53
2fio 1840 -52.54 4365 -137.99 18.40 -52.54 3345 -1245.70 17.68 -43.64 3345 -1245.70
2irf 0.55 -88.97 0.96 -92.62 0.55 -88.97 0.95 -92.82 043 -87.69 0.96 -92.98
2rbf 6.35 -38.23 8.66 -52.78 6.35 -38.23 8.66 -52.78 6.35 -38.23 24.06 -53.50
2zhg 12.53 -45.59 28.78 -81.92 6.85 -54.71 28.76 -82.33 545 -50.31 28.75 -82.56
3hdd 4.19 -100.07 4.56 -102.31 4.09 -100.98 4.56 -102.31 4.09 -100.98 4.57 -102.40

that were missed due to the higher docking energies.
More simulation runs resulted more near-native struc-
tures for the easy cases while there are almost no
changes for the hard cases (Table 2). A larger percen-
tage of the near-native structures in the easy cases also
have the lowest energies than those in the hard cases.
This is consistent with the rationale of assigning degrees
of docking difficulty based on the interaction strength
and suggesting that in addition to developing more effi-
cient search algorithm we need better energy functions
for discriminating the native or near-native structures
from the decoy ones.

Conclusions

Protein-DNA docking is a computation extensive pro-
blem. Due to the statistical nature of our Monte
Carlo-based protein-DNA docking algorithm and the
potentially rugged energy landscape, it is desirable to

Table 3 Summary of docking simulations on the rigid-
docking benchmark

# of simulations category RMSD<1A RMSD<3A
200 Easy 7(9) 8(12)
Hard 34) 3(7)
800 Easy 8(11) 9(15)
Hard 3(5) 3(7)
1600 Easy 9(12) 10(15)
Hard 3(5) 3(7)

run multiple Monte-Carlo simulations with different
seeds for better prediction performance. In this paper,
we present a GPU-based high-performance protein-
DNA docking algorithm that was designed for large
scale GPU clusters. Modern GPU is not only a power-
ful graphics engine but also a highly parallel program-
mable processor featuring peak arithmetic and memory
bandwidth that often substantially outpaces its CPU
counterpart [17]. Rapid improvement in GPU pro-
grammability and capability has spawned a research
community that has successfully mapped a broad
range of computationally demanding problems to the
GPU, including many bioinformatics and biomedical
problems [24-27]. To take advantage of GPU’s massive
parallel processing capability, we developed this GPU-
based docking algorithm to accelerate the random
sampling process, and thus improve the performance
of the TF-DNA docking algorithm. To this end, we
designed special techniques to improve the efficiency
of the CUDA kernel and the scalability over the entire
cluster.

Experimental results using a non-redundant dataset
demonstrated a 28x speedup using a single GPU card
and close-to-linear scalability when using GPU clusters.
Further testing on a rigid TF-DNA docking benchmark
revealed that such improved computing capability
improves the chance of finding near-native conforma-
tions for the easy cases in the benchmark, but not on
the hard cases, suggesting there is a limit for improving
prediction accuracy by simply increasing the number of
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simulation runs with our current energy function and
search algorithm. There is clearly a need for developing
more efficient search algorithms and more accurate
interaction potentials.

List of abbreviations used

CUDA: compute unified device architecture; GPU: graphical processing unit;
HPC: high performance computing; MPI: message passing interface; NRBC:

number of residue-base contact; PDB: protein data bank; RMSD: root mean
square deviation; TF: transcription factor; VDW: van der Waals.
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