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Abstract

Background: Phenotypes exhibited by microorganisms can be useful for several purposes, e.g., ethanol as an
alternate fuel. Sometimes, the target phenotype maybe required in combination with other phenotypes, in order
to be useful, for e.g., an industrial process may require that the organism survive in an anaerobic, alcohol rich
environment and be able to feed on both hexose and pentose sugars to produce ethanol. This combination of
traits may not be available in any existing organism or if they do exist, the mechanisms involved in the
phenotype-expression may not be efficient enough to be useful. Thus, it may be required to genetically modify
microorganisms. However, before any genetic modification can take place, it is important to identify the underlying
cellular subsystems responsible for the expression of the target phenotype.

Results: In this paper, we develop a method to identify statistically significant and phenotypically-biased functional
modules. The method can compare the organismal network information from hundreds of phenotype expressing
and phenotype non-expressing organisms to identify cellular subsystems that are more prone to occur in
phenotype-expressing organisms than in phenotype non-expressing organisms. We have provided literature
evidence that the phenotype-biased modules identified for phenotypes such as hydrogen production (dark and
light fermentation), respiration, gram-positive, gram-negative and motility, are indeed phenotype-related.

Conclusion: Thus we have proposed a methodology to identify phenotype-biased cellular subsystems. We have
shown the effectiveness of our methodology by applying it to several target phenotypes. The code and all
supplemental files can be downloaded from (http://freescience.org/cs/phenotype-biased-biclusters/).

Background
Phenotypes that certain microorganisms express
includes breaking down the lignocellulosic barrier of
biomass, biodegradation of various environmental con-
taminants etc. Tackling problems in the areas of biore-
mediation and bioenergy with the help of genetic engi-
neering requires as a first step identifying the cellular
subsystems that are involved in the phenotype-expres-
sion by an organism. The phenotype-related cellular
subsystems may be detected using laboratory

experimentation. However, to supplement experimenta-
tion methods, computational methodologies need to be
used.
Biological relationships (e.g., protein functional asso-

ciations) between proteins are often modeled as net-
works (functional association networks from STRING
[1]), where each node is a protein and every pair of
functionally associated proteins is connected with an
edge. Functional association between proteins is derived
from a number of clues like experimental data, gene-
fusion, co-occurrence of the corresponding genes on the
same operon, etc. The subgraphs of these networks can
model the cellular subsystems.
Evolutionary conservation of cellular subsystems can

be used as one clue to identify the phenotype-related
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cellular subsystems [2]. The cellular systems associated
with a phenotype are more likely to be present across
phenotype-expressing organisms and are less likely to be
present across phenotype non-expressing organisms [2].
This strategy can be utilized to identify cellular subsys-
tems that are likely phenotype-related.
An earlier work by Schmidt et al [2] focused on iden-

tifying phenotype-related functional modules that were
modeled as cliques. Functional modules that have a cli-
que structure require that every pair of proteins in the
module has an edge between them. The density of the
subgraph modeled as a clique is 1. Density is the ratio
of the number of edges in the subgraph to the total
number of possible edges in the subgraph. This method
was one of the first to identify phenotype-related sub-
graphs. However, their subgraph identification condition
is too stringent to model all biological functional mod-
ules. This is primarily because biological networks are
prone to missing information (like missing edges) [3].
Paccanarot et al [4] explain that most of the errors in
the networks are false-negatives, i.e., edges that were not
predicted. Hence, Schmidt et al [2] method may not
identify the complete phenotype-related cellular subsys-
tems. They acknowledge this as a drawback and use the
identified cliques as input into another algorithm called
DENSE [5], that can extract extended subsystems from
a single organismal network. These subsystems may or
may not be related towards the target phenotype.
Additionally, Schmidt et al [2] method requires two

inputs: the parameter a-the least number of phenotype-
expressing organisms the identified clique has to be pre-
sent in and the parameter b-the number of phenotype
non-expressing organisms the identified clique can be
present in. These parameters may be hard to estimate
beforehand and, hence, multiple runs with different
parameter values may be required.
Spirin et al [6] showed that significantly dense “non-

clique” clusters formed biologically relevant functional
modules. They provide an example of a functional mod-
ule associated with cell-cycle regulation consisting of
cyclins (CLB1-4 and CLN2), cyclin-dependent kinases
(CKS1 and CDC28), and a nuclear import protein NIP29
identified from Saccharomyces cerevisiae network that is
not a clique. Hwang et al [7] showed that maximal cli-
que enumeration methods discard over 90% of network
nodes when applied to the PPI network of Saccharo-
myces cerevisiae. Hendrix et al [5] identified “non-cli-
que” functional modules that were verified by literature.
Habibi et al [8] showed that protein complexes that are
usually thought to be cliques could also have different
topologies (MIPS ID: 510.40.10 and 550.1.213 com-
plexes) and this could primarily be due to the fact that
biological data sources contain noise and possibly do
not contain the entire information due to limitations of

experiments. Additionally, their detailed study of the
densities of the existing protein complexes from various
sources [9-13] has revealed that many complexes have
density less than 0.1.
In this paper, we propose a methodology (Figure 1

and Figure 2) to identify the statistically significant func-
tional modules that are phenotype-biased. Phenotype-
biased means that it is more conserved across pheno-
type-expressing organisms and less conserved across
phenotype non-expressing organisms. The functional
modules are identified by a comparative analysis using
both phenotype-expressing and phenotype non-expres-
sing organisms. The structure of the functional modules
is a subgraph that is a connected component which is
then filtered to identify the statistically significant com-
ponents. The method does not require parameters simi-
lar to the parameters a and b, in [2] to decide the
number of organisms the resulting subsystem should be
present in.
In our earlier conference paper [14], we identified the

biclusters common to a set of phenotype expressing
organisms and analyzed these biclusters for potential
cross-talking pathways. In this paper, we extend the
methodology to utilize phenotype non-expressing orga-
nismal information to identify phenotype-biased func-
tional modules. This increases the confidence in the
phenotype-relatedness of the identified modules. The
phenotype-bias is quantified using the hypergeometric
statistical test. In [14], we performed the analysis only
for the hydrogen production phenotype. Here, we have
also analyzed respiration, gram-positivity, gram-negativ-
ity and motility phenotypes.

Results
Experimental setup
We set up experiments with four different phenotypes,
hydrogen production (dark and light fermentation),
respiration, gram-stain, and motility. The organisms for
each phenotype were identified using literature search
[15,16]. The functional association network for each
organism was obtained from the STRING [1] database
and the edge score cutoff used was 700 (termed as high
confidence [1]).

Hydrogen production
Biological hydrogen production is being looked at as a
source of alternate energy and there are plenty of micro-
organisms that can utilize different organic substrates to
produce hydrogen. This makes it a useful alternate
energy option to explore [17-19]. Identifying cellular
subsystems related to hydrogen production will be
extremely useful to genetic engineers looking to make
the process of biological hydrogen production more effi-
cient. The light and dark fermentation are two
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important sub-phenotypes of hydrogen production and
experiments based on these phenotypes have been dis-
cussed in this section.
Light fermentation
Initial review of the light fermentation clusters shows
the presence of a set of 13 identical COGs found across

all 8 COG clusters. These “core” COGs include genes
necessary for synthesis of hydrogenase complex(es).
Nitrogen-fixation is the process, in which nitrogenase

catalyzes the conversion of nitrogen gas to ammonia
and inadvertently results in the production of hydrogen
gas as a byproduct [20,21]. Two COGs (COG2710 and

Figure 1 Building the orthologous group-pair, organism bipartite network.
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COG1348), which are associated with the expression of
two key proteins, nitrogenase iron protein (NifH) and
molybdenum iron protein [20], were present across all
the clusters. Although, the presence of these two

proteins is essential for nitrogen-fixation to be carried
out by light fermenting microorganisms, expression of
various genes in other metabolic pathways plays impor-
tant roles in either directly or indirectly regulating the
expression of genes encoding NifH proteins. These pro-
teins include ferric iron regulation proteins (sigK, clpB,
and fur-related), ammonia ligase (glnA), and nitrogenase
[22]. In this study, glutamate ammonia ligase (glnA), a
key gene for nitrogenase (NifH), and genes encoding
proteins for iron uptake, are assembled in the same
cluster. In Anabaena, iron uptake proteins and some
nitrogen proteins (e.g., Ntc) have been shown to regu-
late genes encoding glutamate synthetase (glnA) [23].
Review of the role of glutamine synthetase in Anabaena
indicates that this enzyme is responsible for regulating
nitrogenase activity, thus impacting hydrogen produc-
tion [23]. The indirect regulation of nitrogenase by iron
uptake proteins provides an example of cross-talk
between iron and nitrogen-related metabolic pathways.
In addition to nitrogenase, proteins associated with the

synthesis of uptake or expression of hydrogenase, were
identified in 11 of the 19 COGs present in Table 1.
Hydrogen uptake proteins help with removing excess
hydrogen to maintain the reducing environment in cells
[24]. We also identified a number of proteins (e.g., Hyd
and Hyp) involved in formation of [NiFe]-uptake hydro-
genases. The presence of maturation hydrogenase factors
(COG0068, COG0298, COG0309) and accessory proteins
for uptake of nickel (COG0378) are consistent with lit-
erature reports describing the structure of hydrogenase
complexes. Inclusion of hy-drogenase proteins in Table 1
is likely due to the relationship of hydrogenase proteins
with iron uptake genes. To function properly, iron is
needed to form the NiFe center present in the large
hydrogenase subunit (HupL) [25]. As such, hydrogenase
maturation is dependent on cross-talks with iron uptake.
In previous studies by Lopez-Gollomon [23], the

nitrogen regulator protein NtcA was found to work
together with the iron-uptake protein, Fur, to co-regu-
late genes involved in various metabolic functions.
Metabolic functions co-regulated include the transcrip-
tional regulation protein and glutamine synthesis [26].
In this study, genes encoding iron uptake regulator pro-
teins (COG0735) were clustered together with genes
encoding glutamine synthetase (COG0174). The co-
appearance of these two COGs suggests the possible
cross-talk between iron uptake and ammonia assimila-
tion networks. In addition, there is indication that
hydrogenase proteins, such as HupUV, are involved in
regulating the glutamine synthetase gene, glnAII, in
some organisms [20,27].
Dark fermentation
Unlike light fermentation, we did not observe a large set
of COGs present across all clusters. For this set of

Figure 2 Methodology overview to identify phenotype-biased
functional modules.
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organisms, only two COGs were identified as present
across all clusters. This may be partially due to the fol-
lowing two reasons. First, the selection of species and
species diversity have some impact on the types of clus-
ters generated. Second, dark fermentation organisms
tend to utilize a greater variety of fermentation path-
ways, such as acetate fermentation and butyrate fermen-
tation pathways [28]. Greater variation in fermentation
routes will not produce as large of a “core” set of COGs
across all clusters.
An example of COG clusters identified in dark fer-

mentative bacteria is present in Table 2. In this cluster,
13 different COGs consisting of proteins that are either
directly or indirectly responsible for the uptake or pro-
duction of hydrogen, are present. Of these COGs, 7 are
related to the synthesis or expression of [NiFe]-hydroge-
nase, an enzyme that catalyses the reversible oxidation
of molecular hydrogen, and plays a vital role in anaero-
bic metabolism [27]; the others are involved in nitrogen
and iron metabolic pathways that include proteins like
nitrogenase, iron uptake proteins, such as Fur
(COG0735), ammonia assimilation proteins, such as glu-
tamine synthetase (COG3968), and proteins involved in
electron transfer. Previous findings by Butland et al.
[29] show that the presence of proteins (e.g., HypE,
HypD, HupS, HupD) is typically associated with hydro-
gen uptake [25,30]. Based on the other genes (e.g.,
hybG, hupS) present in the cluster, we can predict that

[NiFe]-hydrogenase is associated with hydrogen uptake
in this group of organisms.
In addition to hydrogenase maturation and expression

proteins, Fe-S oxidoreductases were identified. As part
of the structure of [NiFe]-hydrogenase, Fe-S metal cen-
ters are located on the small subunit of the hydrogenase
complex [25,27]. Thus, it is expected that iron uptake
pathway would cross-talk with hydrogenase-related
pathways. Furthermore, the iron uptake pathway also
cross-talks with nitrogen metabolism, in a sense that
iron uptake proteins can be involved indirectly in nitro-
gen metabolism through regulation of nitrogenase and
maintaining the reducing environment in the cell
through hydrogen uptake (hydrogenase) [26,31].
It has been shown that cross-talk between iron uptake

and nitrogen metabolism enables regulation of ammonia
assimilation [21]; it may be possible that the uncharac-
terized glutamine synthetase protein in Table 2 is sub-
ject to such regulation. In our results, the gene encoding
the uncharacterized glutamine synthetase proteins was
only present in a few species, including Clostridium
acetobutylicum and Clostridium beijerinckii, which both
contained nitrogenase and hydrogenase enzymes. It has
been demonstrated that, in light fermenting organisms,
such as Rhodopseudomonas palustris, glutamine synthe-
tase is regulated by hydrogenase accessory proteins
(HupUV) [21]. However, to the best of our knowledge,
this relationship has not been described in dark fermen-
tation organisms. This knowledge increases the prob-
ability that the uncharacterized glutamine synthetase
protein maybe present in the COG cluster oweing to its
association with nitrogenase proteins, which may further
indicate a possible cross-talk between ammonia assimi-
lation and nitrogen metabolism.

Table 1 COGs associated with light fermentation
identified by the method

COG ID COG Description

COG0068 Hydrogenase maturation factor

COG0298 Hydrogenase maturation factor

COG0309 Hydrogenase maturation factor

COG0374 Ni,Fe-hydrogenase I large subunit

COG0375 Zn finger protein HypA/HybF(possibly regulating
hydrogenase expression)

COG0378 Ni2+-binding GTPase involved in regulationof expression and
maturation of urease and hydrogenase1

COG0409 Hydrogenase maturation factor

COG0680 Ni,Fe-hydrogenase maturation factor

COG1740 Ni,Fe-hydrogenase I small subunit

COG0174 Glutamine synthetase

COG0535 Predicted Fe-S oxidoreductases

COG0716 Flavodoxins

COG1348 Nitrogenase subunit NifH (ATPase)

COG2082 Precorrin isomerase

COG2710 Nitrogenase molybdenum-iron protein,alpha and beta chains

COG2370 Hydrogenase/urease accessory protein

COG1941 Coenzyme F420-reducing hydrogenase, gamma subunit

COG3259 Coenzyme F420-reducing hydrogenase, alpha subunit

COG0735 Fe2+Zn2+ uptake regulation proteins

Table 2 COGs associated with dark fermentation
identified by the method

COG ID COG Description

COG0298 Hydrogenase maturation factor

COG0309 Hydrogenase maturation factor

COG0374 Ni,Fe-hydrogenase I large subunit

COG0409 Hydrogenase maturation factor

COG0680 Ni,Fe-hydrogenase maturation factor

COG1740 Ni,Fe-hydrogenase I small subunit

COG0535 Predicted Fe-S oxidoreductases

COG1348 Nitrogenase subunit NifH (ATPase)

COG2710 Nitrogenase molybdenum-iron protein, alpha and beta
chains

COG0716 Flavodoxins

COG0735 Fe2+/Zn2+ uptake regulation proteins

COG2082 Precorrin isomerase

COG3968 Uncharacterized protein related to glutamine synthetase
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Motility
The motility experiment was set up with a set of 85
motile and 56 non-motile organisms chosen from Slo-
nim et al [16]. The method identified clusters that
contained COG1360, COG1558, COG1157, COG1684,
and COG1536 (Table 3). All these COGS are related
to flagella proteins. The flagella proteins are those
that enable the organisms to move. The method also
found COG0643, COG0835, and COG0784 that are
related to bacterial chemotaxis. It is well known that
chemotaxis controls an organism’s movement with
respect to the chemical composition of its environ-
ment. For example, it helps the organism moves to
the areas where there is very high concentration of
food [32].
COGS related to the Type III secretion system

(COG1766, COG1684, COG1987, COG1338, and
COG1886) were also identified. It has been shown that
Type III secretion proteins share similarities with flagella
proteins in structure and function [33]. Additionally, we
identified COG0835, COG0643, COG1344, COG1291,
COG0784, COG1508, and COG1191 associated with the
two-component systems. This is a signaling pathway
that regulates motility [34].

Respiration
This experiment was set up with a set of 77 aerobic
organisms and 57 anaerobic organisms. For aerobic
respiration, COGs related to the enzymes present in the
TCA cycle were identified. They are COGs related to
citrate synthase (COG0372), acitonase (COG1048), and
Malate dehydrogenases (COG0039) (Table 4). Some
COGs such as the malate synthase (COG2225), isoci-
trate synthase (COG2224), glyoxylate bypass were also
found. The entire list of TCA-related COGs identified
can be found in Table 4. There were also other litera-
ture verified COGs (COG0843, COG0109,COG1048,
COG1622, COG1845, and COG0372) found by the
method described in [35].
For anaerobic experiment, we found COG1924,

COG1592, COG2221, and COG2033. The COG1924 is
related to oxygen sensitive proteins [36] (Table 5). The
other COGs were pulled out computationally by another
genotype-phenotype methods [35,36] applied to the
anaerobic phenotype. We also identified COGs from the
Arginine and proline metabolism, the reason for this
could be attributed to the L-argnine which could serve
as an energy source for anaerobes.

Gram-positive and gram-negative
This experiment was set up with a set of 61 gram posi-
tive bacteria and 109 gram negative bacteria. For gram
negativity, COG2877, COG2885, COG1044, COG1519,
COG0763, and others related to the Lipopolysaccha-ride
biosynthesis were found (Table 6). This pathway has
been shown to be related to gram-negativity [33].
Another set consisting of COG0043, COG0163,
COG2227, COG1008, and COG1005 were found. These
are associated with the ubiquinone pathway that is also
shown to be associated with gram-negativity [33]. The

Table 3 COGs associated with motility identified by the
method

COG ID COG Description

COG1843 Flagellar hook capping protein

COG1291 Flagellar motor component

COG1344 Flagellin and related hook-associated proteins

COG1256 Flagellar hook-associated protein

COG1338 Flagellar biosynthesis pathway, component FliP

COG4786 Flagellar basal body rod protein

COG1360 Flagellar motor protein

COG1558 Flagellar basal body rod protein

COG1157 Flagellar biosynthesis,type III secretory pathway ATPase

COG1684 Flagellar biosynthesis pathway, component FliR

COG1536 Flagellar motor switch protein

COG1766 Flagellar biosynthesis/type III secretory pathway lipoprotein

COG1684 Flagellar biosynthesis pathway,component FliR

COG1987 Flagellar biosynthesis pathway,component FliQ

COG1338 Flagellar biosynthesis pathway, component FliP

COG1886 Flagellar motor switch/type III secretory pathway protein

COG0643 Chemotaxis protein histidine kinaseand related kinases

COG0835 Chemotaxis signal transduction protein

COG0784 FOG: CheY-like receiver

COG0643 Chemotaxis protein histidine kinase and related kinases

COG1508 DNA-directed RNA polymerase specialized sigma subunit,
sigma54 homolog

COG1191 DNA-directed RNA polymerase specialized sigma subunit

Table 4 COGs associated with aerobic respiration
identified by the method

COG ID COG Description

COG0372 Citrate synthase

COG1048 Aconitase A

COG0045 Succinyl-CoA synthetase, beta subunit

COG0074 Succinyl-CoA synthetase, alpha subunit

COG0479 Succinate dehydrogenase/fumarate reductase,Fe-S protein
subunit

COG1053 Succinate dehydrogenase/fumarate reductase,flavoprotein
subunit

COG2142 Succinate dehydrogenase,hydrophobic anchor subunit

COG0039 Malate/lactate dehydrogenases

COG2224 Isocitrate lyase

COG2225 Malate synthase

COG2084 3-hydroxyisobutyrate dehydrogenaseand related beta-
hydroxyacid dehydrogenases

COG2379 Putative glycerate kinase
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COG0848 found by the method has been shown to be
associated with the target phenotype [37].
From gram-positive bacteria (Table 7), the method

identified COG3764 and COG3773. COG3674 relates to
plasma membrane proteins and was identified by pre-
vious research as related to gram-positivity [37]. The
COG3773 is associated with endospore formation that
usually occurs in gram-positive bacteria when there is a

lack of nutrients. We also found COG0619 and
COG1122 as single connected component; these COGs
are associated with uptake of MET/or MET-precursors,
which are associated with regulation of genes involved
in amino acid metabolism in gram-positive bacteria [38].

Discussion
In summary, the proposed methodology identifies the
phenotype-biased cellular subsystems. The results of the
method provide clues on which subsystems are co-pre-
sent to help in phenotype expression. This information
could potentially be put to use by genetic engineers.
However, there are three points that should be pon-
dered over.
There are several points that are worth bringing out

especially when analyzing network data of both pheno-
type-expressing and phenotype non-expressing organ-
isms. The first point is on the importance of
phylogenetic diversity of the underlying organisms. Our
results depend on the organisms chosen for the experi-
ment. There could be cases where the conserved biclus-
ters were identified purely due to the fact that the
chosen organisms were phylogentically close. Thus, as
part of future work we will look into incorporating
some scoring mechanism, such that the identified phe-
notype-biased biclusters are also conserved across a set
of phylogenetically diverse set of organisms.
The second point of discussion stems from the fact

the same organism can express multiple phenotypes.
Currently we look at only one phenotype at a time. The
current methods that analyze multiple phenotypes at the
same time [33] do so by looking at one phenotype at a
time and by correlating the results of the different
experiments. Analyzing multiple (possibly related) phe-
notypes together might provide new insights into path-
way cross-talking mechanisms. Another direction of
future work is to extend our method to work with mul-
tiple phenotypes.
The third point of discussion stems from the fact that

a phenotype may have several subphenotypes. For exam-
ple, all hydrogen producing organisms do not express
the phenotype in the same manner. Hydrogen produc-
tion has three subphenotypes dark fermentation, light
fermentation and biophotolysis, two of those were

Table 5 COGs associated with anaerobic respiration
identified by the method

COG ID COG Description

COG1924 Activator of 2-hydroxyglutaryl-CoA dehydratase(HSP70-class
ATPase domain)

COG1592 Rubrerythrin

COG2221 Dissimilatory sulfite reductase(desulfoviridin), alpha and beta
subunits

COG2033 Desulfoferrodoxin

Table 6 COGs associated with gram negativity identified
by the method

COG ID COG Description

COG2877 3-deoxy-D-manno-octulosonic acid(KDO) 8-phosphate
synthase

COG2885 Outer membrane protein andrelated peptidoglycan-
associated (lipo)proteins

COG1044 UDP-3-O-[3-hydroxymyristoyl]glucosamine N-acyltransferase

COG1519 3-deoxy-D-manno-octulosonic-acid transferase

COG0763 Lipid A disaccharide synthetase

COG0838 NADH:ubiquinone oxidoreductase subunit 3 (chain A)

COG0337 3-dehydroquinate synthetase

COG0852 NADH:ubiquinone oxidoreductase 27 kD subunit

COG1143 Formate hydrogenlyase subunit 6/NADH:ubiquinone
oxidoreductase 23 kD subunit (chain I)

COG0713 NADH:ubiquinone oxidoreductase subunit 11 or 4L (chain K)

COG0649 NADH:ubiquinone oxidoreductase 49 kD subunit 7

COG0382 4-hydroxybenzoate polyprenyltransferaseand related
prenyltransferases

COG0043 3-polyprenyl-4-hydroxybenzoate decarboxylaseand related
decarboxylases

COG0163 3-polyprenyl-4-hydroxybenzoate decarboxylase

COG2227 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol
methylase

COG1008 NADH:ubiquinone oxidoreductase subunit 4 (chain M)

COG1005 NADH:ubiquinone oxidoreductase subunit 1 (chain H)

COG1663 Tetraacyldisaccharide-1-P 4’-kinase

COG0774 UDP-3-O-acyl-N-acetylglucosamine deacetylase

COG1212 CMP-2-keto-3-deoxyoctulosonic acid synthetase

COG0859 ADP-heptose:LPS heptosyltransferase

COG2908 Uncharacterized protein conserved in bacteria

COG2870 ADP-heptose synthase, bifunctionalsugar kinase/
adenylyltransferase

COG3307 Lipid A core - O-antigen ligase and related enzymes

COG0445 NAD/FAD-utilizing enzymeapparently involved in cell division

COG0848 Biopolymer transport protein

Table 7 COGs associated with gram positivity identified
by the method

COG ID COG Description

COG3764 Sortase

COG3773 Cell wall hydrolyses involved in spore germination

COG0619 ABC-type cobalt transport system, permease component
CbiQ and related transporters

COG1122 ABC-type cobalt transport system, ATPase component
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discussed in this paper. Thus, when methods seek to
identify phenotype-related systems using multiple organ-
ism data, it is imperative to identify systems present in
any subset of organisms as opposed to all the organisms.
The subsystem present in a subset (as opposed to all)
may be a specific path (subphenotypes) to carry out the
phenotype. Our methodology models that intuition by
using the bicluster definition for the functional module,
thus naturally allowing the identified cluster to be pre-
sent in any organism subset (of size ≥ 2).

Conclusion
We have developed a method to identify phenotype-
biased functional modules by utilizing both phenotype-
expressing and phenotype non-expressing organismal
network data. By applying our method to four pheno-
types, hydrogen production, gram stain, motility and
respiration, we were able to identify functional modules
that were associated with the target phenotypes. The
findings were validated via literature evidence.

Methods
Orthologous group-pair, organism bipartite network
In order to identify functional modules across a given
set of organismal protein functional association net-
works, we need a representation that would help us
enumerate these modules efficiently. The organismal
protein functional association network is obtained from
STRING database [39], each node is a protein and a
pair of proteins are connected by an edge if there is
some evidence of their functional association. Some
examples of the evidences considered in STRING are
gene fusion, co-occurrence on the same operon, co-
expression etc. In this paper we propose the orthologous
group-pair, organism bipartite network that combines
the information present in all of the individual organis-
mal protein functional association networks into one
single network (Figure 1).
As a first step to constructing this network, we need

some kind of transformation that would help us under-
stand the commonalty and differences among the net-
works. One such transformation is replacing all proteins
in all of the organismal networks with their correspond-
ing orthologous group IDs (Figure 1.2). The most com-
mon representation used in biology is the manually
curated Clusters of Orthologous Groups (COGs) [40].
In the second step, we construct two sets, O and C

(Figure 1.3). In C, each element is a pair (x, y), where
both x and y are COGs. In O, each element represents
an organism. These two sets become the two partites of
the graph.
As a final step, we construct the orthologous group-

pair, organism bipartite network (Figure 1.3), N = (O, C,
E). An edge (a, b) Î E, where a Î O and b = (u, v) Î C

exists if and only if the COG pair (u, v) is functionally
associated in organism a, i.e., in the organismal protein
functional association network A = (V(A), E(A)) corre-
sponding to organism a, ∃x, y Î V(A) : x and y belong
to orthologous cluster groups u and v, respectively, and
(x, y) Î E(A). Since in this paper we make use of COGs,
the network N will henceforth be referred to as the
COG-pair, organism bipartite network.

Network representation and preprocessing
The COG-pair, organism bipartite network, N is repre-
sented using an adjacency matrix for the purpose of
identifying the conserved functional modules (Figure
1.4). The organisms are the row-headers and each col-
umn header is a COG-pair. A matrix cell has a 1, if the
corresponding organism (row-header) and the COG pair
(column-header) are connected by an edge in network
N. This matrix is typically sparse.

Obtaining the conserved COG clusters
As a first step to identifying the modules, we identify
sets of COG edges that are conserved across two or
more organisms. These sets can be represented as bicli-
ques (Figure 2.B) in the COG-pair, organism bipartite
network. To avoid enumerating the same information
more than once, we only enumerate the maximal bicli-
ques (Figure 2.C).
Definition 0.1 Given a bipartite graph N = (O, C, E),

a subgraph S = (O’, C’, E’) of N is a biclique if ∀a Î O’
and b Î C’, (a, b) Î E’.
Definition 0.2 A biclique S of N is also maximal if

there is no supergraph S’ of S that forms a biclique in N.
The problem of identifying maximal bicliques using

the binary matrix representation translates to identifying
the maximal biclusters (Figure 2.B) in the matrix.
Although any biclustering technique that works on bin-
ary matrices would suffice, we chose Prelic et al.’s
Bimax biclustering algorithm [41]. There are two rea-
sons for this choice: (1) Bimax performs on par with the
best biclustering techniques [41], and (2) It has also
been shown that Bimax is able to output all the optimal
(maximal) biclusters in the given binary matrix [41].
The algorithm uses a divide-and-conquer approach to
enumerate maximal bicliques (maximal biclusters) in the
COG-pair, organism bipartite network (Figure 2.C).

Comparative analysis using phenotype non-expressing
organisms
So far, we have hypothesized that biclusters conserved
across 2 or more phenotype-expressing organisms are
likely phenotype related. We strengthen the notion of
phenotype-related to phenotype-biased by performing
comparative analysis using a set of both phenotype-
expressing and phenotype non-expressing organisms.
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Phenotype-biased biclusters are likely to be conserved
more across a set of phenotype expressing organisms
and less across a set of phenotype non-expressing
organisms.
Figure 2.D-G shows the steps in the comparative ana-

lysis pipeline. The analysis begins with a set of biclusters
identified in Figure 2.C. The orthologous group-pair,
organism bipartite network is built for the set of pheno-
type non-expressing organisms. This network is then
converted into its matrix representation (phenotype
non-expression matrix). Each phenotype-related biclus-
ter, identified previously, is now analyzed in the context
of the phenotype non-expression matrix. We seek to
identify the number of phenotype non-expressing organ-
isms the bicluster is conserved in. This information can
be utilized to calculate the phenotype-bias of this
bicluster.
The phenotype-bias is quantified by using the hyper-

geometric statistical test. Let P be the total number of
organisms (both phenotype-expressing and phenotype
non-expressing). Let S be the total number of phenotype
expressing organisms. Let X be total number of organ-
isms (both phenotype-expressing and phenotype non-
expressing) the bicluster B is present in. Let Y be the
number of phenotype-expressing organisms the bicluster
B is present in. The bias (p-value) of the bicluster B is
calculated as follows:

bias(B) =

(
S
Y

) ∗
(
P−S
X−Y

)
(
P
X

) (1)

We apply a p-value cutoff of 0.05 to identify all the
phenotype-biased biclusters.

Enumerating the connected components
Each phenotype-biased maximal bicluster identified in
the previous section represents the set of COG-COG
edges conserved across the set of phenotype-expressing
organisms. However, we cannot consider the COG-
COG edge set as a functional module as is. A functional
module has to be a connected subgraph of an organis-
mal network as opposed to a collection of edges. A con-
nected component subgraph is one where there is path
between every pair of nodes in the subgraph. However,
there is no guarantee that all the COG-COG edges in
the bicluster are connected. Thus, all the connected
component subgraphs from the COG-COG edge set of
each bicluster are enumerated (Figure 2.I).

Assessing statistical significance
The results of the previous section only guarantee that
the subgraphs output are connected components but
there is no clear indication whether the subgraphs could

potentially represent functional modules or if their
occurrence was purely random. One way to check this
would be to compare the density of each component
with the density that could be obtained at random for a
subgraph with the same number of nodes.
The Monte Carlo method [42,43], a robust statistical

significance method, is utilized to assess the significance.
For every connected component S = (V, E), we calculate
the density b(S). We randomly sample subsets of |E|
COGs each from the set of all possible COGs M. We
estimate an empirical p-value as R/W, where W is the
total number of random subsets generated (W ~ 1000)
and R is the number of random subsets that produce a
test statistics b() greater than or equal to that of b(S).
We then use a cutoff (say 0.05) to identify the statisti-
cally significant components.
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