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Abstract

Mass spectrometry, an analytical technique that measures the mass-to-charge ratio of ionized atoms or molecules,
dates back more than 100 years, and has both qualitative and quantitative uses for determining chemical and
structural information. Quantitative proteomic mass spectrometry on biological samples focuses on identifying the
proteins present in the samples, and establishing the relative abundances of those proteins. Such protein
inventories create the opportunity to discover novel biomarkers and disease targets. We have previously introduced
a normalized, label-free method for quantification of protein abundances under a shotgun proteomics platform
(Griffin et al., 2010). The introduction of this method for quantifying and comparing protein levels leads naturally to
the issue of modeling protein abundances in individual samples. We here report that protein abundance levels
from two recent proteomics experiments conducted by the authors can be adequately represented by Sichel
distributions. Mathematically, Sichel distributions are mixtures of Poisson distributions with a rather complex mixing
distribution, and have been previously and successfully applied to linguistics and species abundance data. The
Sichel model can provide a direct measure of the heterogeneity of protein abundances, and can reveal protein
abundance differences that simpler models fail to show.
Introduction
Large-scale proteome analysis using mass spectrometry
and subcellular fractionation techniques can provide in-
ventories of proteins identified in organelles, cells and
tissues (e.g., [1–3]). Such protein inventories create the
opportunity to discover novel biomarkers and disease
targets (e.g., [4–7]). But a more detailed description of
cells, tissues and organisms in health and disease would
benefit greatly from quantitative tools that can carefully
and comprehensively quantify the individual building
blocks, which comprise the living entity. The ability to
quantify properly identified proteins in biological sam-
ples in a comprehensive fashion engenders an enhanced
understanding of cellular behavior during development
or in response to disease, and can lead to novel bio-
marker and target discoveries [4,8].
Much effort has gone into developing more accurate and

cost effective technologies that can capture the dynamics of
biomolecular diversity in more quantitative ways. While
significant advances have been made to develop accurate
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genomic sequencing tools [9] and highly accurate gene ex-
pression analytical methods [10], reliable methods of quan-
tifying protein expression and modification levels have been
challenging [11].
This difficulty is in part due to the immense chemical

complexity of proteins, which are made up from over
twenty amino acid monomers with distinct chemical prop-
erties, as contrasted to biopolymers such as RNA that are
constituted from four monomers with similar properties.
Currently there are no feasible direct methods to establish
protein sequences like that of nucleotide polymers; the only
method to directly determine the identity and the quantity
of proteins in a mixture in large scale is the mass spectrom-
eter, which can determine peptide sequences based on frag-
mentation pattern analysis and expression levels via direct
or indirect means of analysis.
Quantitative proteomic mass spectrometry is indispens-

able to providing valuable insights into protein content
and activity in various cellular states. There are at present
three principal methods of quantifying proteins via mass
spectrometry: labeling approaches such as iTRAQ and
SILAC, which aim to reduce experimental variance and
allow relative comparison of peptides between samples
[12,13]; absolute quantitative approaches such as MRM
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and SISCAPA [7,14], which are highly accurate but thus far
at the expense of completeness; and, label free approaches
that rely on counting spectra or peptide numbers as a proxy
for expression level (reviewed in [15]), or on ion intensities
[16], or that jointly consider peptide count, spectral count,
and fragment-ion intensity [17]. The latter method is
particularly well suited for comparing clinical specimens for
biomarker identification where samples are collected over
long time periods and may have to be compared across
sites [6,18].
We have previously introduced a normalized, label-

free method for quantification of protein abundances
under a shotgun proteomics platform [17]. The intro-
duction of this method for quantifying and comparing
protein expression leads naturally to the issue of mode-
ling protein abundances. In this note, we examine vari-
ous models for patterns of relative protein abundance
from typical 2 dimensional liquid chromatography mass
spectrometry (2D-LC-MS/MS) experiments.
Characterization of the joint distribution of all protein

abundances in a proteome is complicated by the fact that
protein abundances typically differ over several orders of
magnitude. As might be expected, this joint distribution
can be rather complex, and we would not expect a
Gaussian distribution would adequately characterize it
[17,19]. Here, we make no Gaussian assumptions about
any abundances. Rather, from a somewhat historical per-
spective, we have chosen distributions that have been pro-
posed for modeling word counts and species abundances,
as we are positing an analogous problem to these prece-
dents. We formally compare different families of distribu-
tions for protein abundance, with goodness of fit criteria
utilized to determine adequacy of the models for summar-
izing the underlying data. Our fitting criteria allow us to
determine which models best capture the underlying data
structure, and would be appropriate for characterizing
protein abundance distributions.
The protein abundance distributions can be utilized to

establish the success rate of the experiments as defined
by Eriksson and Fenyo [19], or what we have referred to
as coverage [20]. Our ultimate goal was to identify a dis-
tribution that would improve the quantitative accuracy
of label-free stochastic mass spectrometry.

Methods
Sample preparation
Luminal vascular endothelial cell plasma membranes and
their caveloae were directly isolated from rat lung as previ-
ously described [21,22]. Proteins were pre-fractionated on
SDS-PAGE gels prior to 2 dimensional liquid chromatog-
raphy mass spectrometry (2D-LC-MS/MS). Gel lanes were
cut into slices, approximately 50 per lane, for in-gel pro-
teolytic digestions. Digested peptides were extracted from
each gel slice three times with 20% ACN and 10% formic
acid solution. The peptides extracted from each gel slice
were first pooled into 7 groups then lyophilized. Each
sample, either plasma membrane (experiment 1) or
caveolae (experiment 2) was separated into five differ-
ent gel lanes, and each lane was subjected to a
complete 2D-LC-MS/MS analyses resulting in five repli-
cate MS analyses of each sample. Proteins were inferred
from each replicate [with the implication, that some pro-
teins were not observed in every replicate]. By convention,
we dropped from consideration any proteins detected in
one run only.

Mass spectrometry
2D-LC-MS/MS: Lyophilized peptides were resuspended
with 15 μl of buffer A (0.1% formic acid, 5% Acetonitrile
(ACN)), then loaded onto a two-dimensional microcapil-
lary column (manually packed C18 reversed phase and
strong cation exchange column). The loaded samples
were directly introduced into the LTQ mass spectrom-
eter equipped with ESI nanospray ion source by eluting
the bound peptides with a 2D-LC-MS/MS scheme con-
trolled by Agilent 1100 HPLC quaternary pump [3].
Briefly, 17 salt steps (ammonium acetate) were applied. Each
salt step was followed by a 5 to 80% ACN gradient contai-
ning 0.1% formic acid to elute the peptides on the C18 co-
lumn. The flow rate was maintained at 200 to 250 nl/min.
Data acquisition for the LTQ was carried out in data-

dependent mode. Full MS scans were recorded on the
eluting peptides over the 400–1400 m/z range with one
MS scan followed by three MS/MS scans of the most
abundant ions. The temperature of the ion transfer tube
of both mass spectrometers was set at 180°C and the
spray voltage was 2.0 kv. The normalized collision en-
ergy was set at 35%. A dynamic exclusion was applied
for Repeat Count of 2, a Repeat Duration of 0.5 minute,
and an Exclusion Duration of 10 min.

Database search for protein identification
The acquired MS/MS spectra were converted into mass
lists using the Extract_msn program from Xcalibur and
searched against a protein database containing rat
sequences using the Sequest program in the Bioworks™

3.1 for Linux (Thermo Fisher Scientific, Inc., Waltham,
MA, USA). The searches were performed allowing for
tryptic peptides only with peptide mass tolerance of 1.5
Da and a minimum of 21 fragmented ions in one MS/
MS scan. Accepted peptide identification was based on a
minimum Cn score of 0.1; minimum cross correlation
score of 1.8(z=1), 2.5(z=2), 3.5(z=3). False positive identi-
fication rate was determined by the ratio of number of
peptides found only in the reversed database to the total
number of peptides found in both forward and reverse
databases. The false positive identification rates were ≤ 1%.
The positive protein identification results were extracted
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from Sequest.out files, filtered and grouped with DTASelect
software using above criteria. Proteins were identified based
on 2 unique significantly identified peptides.

Statistical methods
We consider the following discrete probability distributions:

(1) The negative binomial (NB) distribution, with
probability mass function

Pnb k; γ; pð Þ ¼ Γ γ þ kð Þ
k!Γ γð Þ pk 1� pð Þγ ; k

¼ 0; 1; . . . ; γ > 0; 0 < p < 1:

(2) The discrete Weibull distribution, with probability
mass function

Pw k; v; pð Þ ¼ pk
v � p kþ1ð Þv ; k ¼ 0; 1; . . . ; v > 0; 0

< p < 1:

(3) The Zipf distribution, with probability mass
function

Pz k; pð Þ ¼ k� 1þρð Þ

Zeta 1þ ρð Þ ; k ¼ 1; 2; . . . ; ρ > 0;

where Zeta(.) is Riemann’s zeta function.

(4) The Zipf-Mandelbrot distribution, with probability
mass function

Pzm k; ρ; að Þ ¼ k þ að Þ� 1þρð Þ

Zeta 1þ ρ; að Þ ; k ¼ 1; 2; . . . ; ρ

> 0; a > 0:

where here Zeta(r,a) denotes the Hurwitz zeta
function.

(5) The Sichel distribution, with probability mass
function

Ps k; α; θ; γð Þ ¼ 1� θð Þγ=2
Kγ α

ffiffiffiffiffiffiffiffiffiffiffi
1� θ

p� � αθ=2ð Þk
k!

Kkþγ αð Þ;
k ¼ 0; 1; . . . ; α > 0; 0 < θ < 1;�1 < γ < 1

where Kγ(z) denotes the modified Bessel function of
the second kind of order γ and argument z.

(6) The Poisson inverse Gaussian (PIG) distribution.
This is a special case of the Sichel distribution,
obtained by setting γ = −1/2 in the probability mass
function Ps. [Numerical evaluation of Kγ(z) is
enormously simplified if γ = −1/2 or differs from
−1/2 by an integer, advantageous in an earlier era of
less powerful computational capabilities].

Our choice of these distributions is based partly on
historical considerations, as we now describe.
The Poisson distribution is a standard baseline model
for discrete data, and is often used as a starting point for
deriving more realistic models that meet the characteris-
tics of an observed set of data. Mathematically, the Pois-
son is a one-parameter distribution, with the mean equal
to the variance. If discrete data show overdispersion
relative to the Poisson, generalizations might be intro-
duced to accommodate this. Greenwood and Yule [23]
suggested a model in which the mean in the Poisson dis-
tribution is itself random, following a gamma distribu-
tion. This leads to a two-parameter distribution, the
negative binomial, for discrete data. In turn, the negative
binomial has become a standard baseline model for
discrete data overdispersed relative to the Poisson.
In a seminal article, Fisher and colleagues [24] introduced

the notion of mathematically modeling species abundance
data. Their motivation was to model butterfly abundance
data from Malaya [25], and Fisher explored the truncated
negative binomial distribution and extensions to this end.
With species abundance data, as with our peptide setting,
one must consider the zero-truncated forms of the under-
lying distributions, to accommodate the fact that certain
species may not be observed in a finite sampling frame.
This can lead to some added complexities relative to model
fitting, as for example, described by Sampford [26] relative
to the truncated negative binomial distribution. As with
Greenwood and Yule, Fisher et al. [24] assumed that abun-
dances could be modeled by a gamma distribution, which
led to the negative binomial. A special case is Fisher’s log-
series model, where the shape parameter of the gamma dis-
tribution tends to zero. Engen [27] provides a comprehen-
sive review of species abundance models in ecology.
The eponymous Zipf ’s law was introduced by Zipf [28]

as a word frequency distribution: if one tabulates from
an arbitrary text the number of words arranged in the
order of their frequency of usage, the resulting word fre-
quency distribution is generally reverse J-shaped, with a
very long upper tail. Zipf ’s law is a mathematical power-
law representation of this type of distribution. Zipf ’s fre-
quency distribution was later generalized by Mandelbrot
[29], again in a linguistics context.
The discrete Weibull [30] is another model for skewed,

power-like discrete data. The incorporation of an additional
parameter, as with Zipf-Mandelbrot, allows added flexibil-
ity, to accommodate situation in which the power-law rela-
tionship tends to decay in the tail. This is closely related to
the stretched exponential distribution [31]. Newman [32]
and Clauset et al. [33] give particularly lucid accounts of
power-law distributions.
The Sichel distribution was introduced by Holla [34], and

popularized in a series of papers by Sichel (e.g., [35–38]).
Sichel and others have applied it both to linguistics and to
species abundance data (e.g., [39]). The special case of an
inverse Gaussian mixing distribution, leading to the Poisson
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inverse Gaussian distribution, enjoys some computational
advantages (e.g., [40]). The Sichel distribution is a mixed
Poisson distribution, and can be generalized by using
mixing distributions other than the inverse Gaussian
(e.g., [41–44]).
From a theoretical perspective, the negative binomial

and Sichel distributions are attractive models for protein
abundance data. The frequencies of the different pro-
teins in the sample can be taken as independent Poisson
variables, where the Poisson parameters are heteroge-
neous; a mixing distribution should then be chosen to
accommodate the overdispersion. In this regard, the
Poisson inverse Gaussian distribution seems preferable
to the negative binomial, but the Sichel distribution,
with one additional free parameter relative to the Pois-
son inverse Gaussian distribution, is correspondingly
even more flexible.
We used maximum likelihood techniques for fitting

observed protein abundance data to all models: this typ-
ically provides more efficient and robust estimates than
other methods, developed prior to the advent of inex-
pensive computing resources. Goldstein et al. [45] have
cautioned against informal methods of parameter esti-
mation with power-law based discrete distributions, and
Clauset et al. [33] provide theoretical justification for
maximum likelihood. We utilized Mathematica 8.0
(Wolfram Research, Inc., 2010) for numerical fitting
using its default global optimization algorithm; in
addition, the program also provides built-in numerical
evaluation of the special functions incorporated in the
probability mass functions above, which facilitates the
optimization.
The method of maximum likelihood in our setting is

straightforward. We describe the method generically, as
follows. Let X denote a positive-integer valued random
variable, with Prob(X=i)=P(i;θ) for some vector of para-
meters θ. We draw a finite random sample, and observe
X=i with frequency fi, for i=1,2,. . .,m. The method of

maximum likelihood entails finding the vector θ̂ that
maximizes the log of the likelihood function

LL ¼
Xm

i¼1

fi log P i; θð Þ½ �:

[In practice it is generally more convenient to
maximize the log of the likelihood function than the
likelihood itself]. With our data, the Xi are the various
Table 1 Summary statistics for peptide counts

Min Max Median Mean

Expt 1 1 525 7 13.13

Expt 2 1 302 6 12.37

Caption. Experiments 1 and 2 refer to the membrane replicates and caveolae replic
identified in experiment 1 and 1069 in experiment 2.
protein abundances, and the P(i) are the probabilities
determined from the models given above. Note, however,
that the minimal observed protein abundance is 1,
whereas the supports of the negative binomial, discrete
Weibull, and Sichel distributions begin at 0. Hence for
these distributions, we fit zero-truncated forms of the
distributions: when maximizing the log likelihood for
these distributions, the P(i) are replaced by P(i)/(1-P(0))
in the above formula for LL. The supports for the Zipf
and Zipf-Mandelbrot distributions begin at 1, obviating
the need to deal with truncated forms of these
distributions.
Because the models are not always nested, we adopt the

Akaike information criterion (AIC; [46]) as our
general criterion for comparing models. [In the case of
nested models, as with the Zipf nested within the Zipf-
Mandelbrot, one might use a likelihood ratio test, to assess
the relative improvement in fit with the more complex
model relative to the simpler one.] The AIC value is
defined as −2[log likelihood - # fitted parameters]. Given a
set of potential models for the data, the minimum AIC
value would be indicative of the preferred model. We
remark that, there is one fitted parameter for the Zipf dis-
tribution, two fitted parameters for the negative binomial,
discrete Weibull, Zipf-Mandelbrot, and Poisson inverse
Gaussian distributions, and three fitted parameters for the
Sichel distribution.
We display observed and fitted distributions with

rank-frequency plots [47]. The rank-frequency plot of a
frequency distribution is in log-log coordinates, with x
denoting the ranks of the items in the distribution, and y
the corresponding relative frequencies. [A Zipf distribu-
tion would be a straight line in a rank-frequency plot,
and the plot can be utilized to estimate the parameter r
characterizing the Zipf distribution]. Newman [32]
describes these plots in greater detail, and astutely notes
their equivalence to complementary cumulative distribu-
tion function plots, but with log-log and not linear
coordinates. We utilize Newman’s construction in the
following. Specifically, we start with a listing of all the
proteins, along with their frequency of occurrence
(abundance), ranked in order of increasing abundance.
The complementary cumulative distribution P(x) of the
frequency x is defined as the fraction of proteins with
abundance greater than or equal to x. Our plots depict
both the observed and the fitted complementary
cumulative distributions.
SD Skewness Kurtosis Var/Mean

26.36 10.56 164.7 52.9

20.43 6.06 60.8 33.7

ates respectively, as described in the methods. 2075 unique proteins were
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Figure 1 Rank-frequency plots of protein abundances from the first experiment, together with fitted distributions. A. Negative binomial.
B. Discrete Weibull. C. Zipf. D. Zipf-Mandelbrot. E. Poisson inverse Gaussian. F. Sichel. Observed data are depicted in blue, and the fitted
distributions are depicted in red. As described in the Methods, we start with a listing of all the proteins, along with their frequency of occurrence
(abundance). The complementary cumulative distribution P(x) of the abundance x is defined as the fraction of proteins with abundance greater
than or equal to x. Our plots depict both the observed and the fitted complementary cumulative distributions (ordinates) vs protein
abundances (abscissas).
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Figure 2 Rank-frequency plots of protein abundances from the second experiment, together with fitted distributions. A. Negative
binomial. B. Discrete Weibull. C. Zipf. D. Zipf-Mandelbrot. E. Poisson inverse Gaussian. F. Sichel. Observed data are depicted in blue, and the fitted
distributions are depicted in red. As described in the Methods, we start with a listing of all the proteins, along with their frequency of occurrence
(abundance). The complementary cumulative distribution P(x) of the abundance x is defined as the fraction of proteins with frequency greater
than or equal to x. Our plots depict both the observed and the fitted complementary cumulative distributions (ordinates) vs protein
abundances (abscissas).
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Table 2 Comparative statistics for six models

Model AIC, Expt 1 AIC, Expt 2

negative binomial 14533.9 7326.9

discrete Weibull 14413.6 7280.8

Zipf 16146.9 8067.0

Zipf-Mandelbrot 14703.5 7482.7

Poisson inverse Gaussian 14238.4 7203.0

Sichel 14167.3 7189.8
Caption. Experiments 1 and 2 refer to the membrane replicates and caveolae
replicates respectively, as described in the methods. AIC denotes Akaike’s
information criterion; smaller values connote better model fits.
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Results
We are interested in quantitatively mapping the proteins
expressed on the surface of vascular endothelial cells as
they exist natively in tissue, and have developed subcel-
lular tissue fractionation techniques to isolate luminal
endothelial cell surface membranes directly from lung
and other tissues. These endothelial plasma membranes
(experiment 1) and their caveolae (experiment 2) were iso-
lated from rat organs, and were subsequently analyzed by
SDS-PAGE and mass spectrometry (see Methods). With
the first experiment, a total of 27252 peptides were
detected in 5 2D-LC-MS/MS cycles; these identified 2075
unique proteins, based on our model selection criteria
outlined in the methods section. In the second experi-
ment, a total of 13226 peptides were detected in 5 2D-LC-
MS/MS cycles; these identified 1069 unique proteins.
Summary statistics for the relative peptide counts are
given in Table 1. If abundances were Poisson distributed,
then the ratio of variance to mean would be about 1; the
large variance/mean ratios are indicative of extra-Poisson
variability. Within each experiment, the data are quite dis-
persed, and extremely right-skewed; heavy tails exist be-
cause of several extreme values of abundance counts.
In Figures 1 and 2 we display rank-frequency plots of

the observed protein abundance distributions from the
two experiments, along with the individual models fitted
by maximum likelihood. The AIC values corresponding
to the fits are given in Table 2. With both experiments,
the ordering of the models would be

Sichel < PIG < discrete Weibull < NB
< Zipf �Mandelbrot < Zipf ;

with the left to right ordering indicative of best to worst
fitting. The added flexibility of the general Sichel distribu-
tion with arbitrary parameter γ provides an improvement
in fit over the Poisson-inverse Gaussian distribution with
γ = −1/2; in turn, both of these models are noticeably better
than the other models, relative to AIC values. The rank-
frequency plots for Set 1 show that only the Sichel model
adequately represents the empirical frequency distribution
in the right tail. With Set 2, the Poisson-inverse Gaussian
model more closely resembles the Sichel model; lack of fit
in the right tail is again noticeable for the other models.
The Zipf distribution is particularly noteworthy for its lack
of fit throughout the range of the empirical distribution of
frequencies.

Discussion
It has become apparent that peptide and thus protein abun-
dances, as measured by large scale high-throughput shot-
gun proteomics experiments, are not normally distributed
[17,19]. This may be reflective of the complex nature of the
proteome, especially when post-translational modifications
are taken into account, or the inherent sampling limitations
of the currently available MS technology as mentioned in
the introduction. Nonetheless, we sought to characterize
the protein abundance distributions in terms of their con-
tributing peptides from two separate large-scale 2D-LC-
MS/MS protein identification experiments. Our goal was to
identify a distribution model that best fits or describes the
protein abundance data, which can take into account the
real world variation in protein abundances.
From the earliest reports of 2D-LC-MS/MS data

[14,48,49], it has become clear that protein abundance
differs over several orders of magnitude, with many pro-
teins having a relatively small abundance, a few with
relatively large abundances. This reflects the inherent
dynamic range of any proteome, prior to identification
by mass spectrometry. One must not forget that protein
detection by traditional mass spectrometry methods is
dependent on the inherent physical properties of the
proteins and their resulting peptides. Peptide detection
is highly dependent on the ease with which the peptide
can be ionized. Ionization efficiency can be thought of as
the tendency of the peptide to ionize and contribute to a
mass spectrum thus facilitating the identification of the
peptide and thus the protein. This is influenced mainly
by the inherent structural properties of the peptide, such
as length, mass, amino acid composition, and various
biophysical properties, such as hydrophobicity, number
of charges and potential modifications. Thus, one must
be acutely aware that not every peptide in a given
complex sample can and will be identified even though
multiple methods have been developed in recent years
to enhance peptide and protein coverage of a complex
protein sample [3,50].
Let us next consider the issue of the external validity

(generalizability) of our findings. To address this, we
analyzed a smaller dataset reported by Ishihama et al.
[51], Table 1. The relevant data consist of concentrations
of 46 proteins that the authors had identified and
quantified in mouse neuro2a cells [with a different quan-
titation method than that of Griffin et al.]. We proceeded
to fit the 6 distributions described previously, and
obtained the following ordering of the models:
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Sichel < PIG < Zipf-Mandelbrot < discrete Weibull
< NB < Zipf.

The respective AIC values were: 586.97, 592.45,
599.53, 603.54, 604.59, and 705.35. The pre-eminence
of the Sichel distribution remains, as does the poor
performance of the Zipf distribution. With this smal-
ler dataset, Zipf-Mandelbrot outperforms the discrete
Weibull and the negative binomial, although differences
are at best modest. Nevertheless, we have insufficient evi-
dence that a Sichel distribution would obtain with other
quantification methods (e.g., spectral counting methods
emPAI or RIBAR / xRIBAR); a cautious interpretation is,
that we observed a Sichel distribution with the quantifica-
tion method of Griffin et al. [17], but that the observed dis-
tribution may also depend on the mass spectrometer
technology used.
From the analyses described in this study, one might

infer that simple models of protein distribution do not
adequately fit the experimental data, with empirical evi-
dence pointing toward a more complicated mixing
distribution. Indeed, the more complex Poisson inverse
Gaussian or Sichel distributions work well to accommo-
date the heavy tail that is typically observed in proteo-
mics experiments. These models accommodate the fact
that protein abundances as reflected in the number of
peptides detected per protein within a given sample and
between identical samples can be different. This is not
surprising giving the complex nature of the sample and
the contribution of ion suppression effects which can
mean that a peptide detected in one sample may not be
detected in a subsequent MS analysis of the same
sample. In fact, we previously found that each MS
measurement of a shotgun proteomics analysis identifies
only a subset of proteins and that second and third MS
measurements of the same sample would reveal about 33%
and 16% respectively of new proteins not detected in the
previous analyses [1,20]. This means that multiple MS
measurements should be performed to comprehensively
define the full proteome to the degree possible with the
technique used, hence why 5 replicate analysis of each
sample were performed in the protein identification experi-
ments analyzed in this paper. Furthermore, due to the in-
trinsic properties of some proteins, especially their large
hydrophobicity peptides, or lack of accessible tryptic cleav-
age sites, some peptides may never be detected by the
mass spectrometer. This suggests that, rather than total
proteomic identification, the goal of these experiments
should be adequate coverage of the entire proteome [20].
Thus, the ability to model protein abundance distributions
from 2D-LC-MS/MS experiments or even fit the distribu-
tions to a specific model implies that one could theoretic-
ally exploit the properties of the model to improve protein
coverage through optimizing experimental design [20].
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