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Abstract

Background: The sequence database searching has been the dominant method for peptide identification, in
which a large number of peptide spectra generated from LC/MS/MS experiments are searched using a search
engine against theoretical fragmentation spectra derived from a protein sequences database or a spectral library.
Selecting trustworthy peptide spectrum matches (PSMs) remains a challenge.

Results: A novel scoring method named FC-Ranker is developed to assign a nonnegative weight to each target
PSM based on the possibility of its being correct. Particularly, the scores of PSMs are updated by using a fuzzy SVM
classification model and a fuzzy silhouette index iteratively. Trustworthy PSMs will be assigned high scores when
the algorithm stops.

Conclusions: Our experimental studies show that FC-Ranker outperforms other post-database search algorithms
over a variety of datasets, and it can be extended to solve a general classification problem with uncertain labels.

Background
In protein identification, observed peptide spectra are
searched against theoretical fragmentation spectra derived
from target databases. Peptide spectrum matches (PSMs)
are scored by database search tools and those high-scored
PSMs are selected as target PSMs. In fact, more than half
of selected PSMs are not correct [1]. Although many filters
[2,3] have been proposed to refine the outputs further,
they are not universal for different datasets.
To tackle this problem, PeptideProphet [4] used unsu-

pervised learning for automatically selecting PSMs output
by database search tools. Based on the assumption that
the PSM samples are sampled from a mixture distribution
which represents the chance of a “correct” PSM and an
“incorrect” PSM, PeptideProphet applies the expectation
maximization (EM) method to calculate the possibility of
each PSM being “correct”. As only the set of high-scored
PSMs are searched for “correct” ones by PeptideProphet,
some good low-ranked PSMs may be lost. Adaptive

PeptideProphet was proposed in [5] to improve the perfor-
mance of PeptideProphet by iteratively training a discrimi-
nant function from a set of top-ranked PSM
samples, while [6] attempted to extend PeptideProphet by
exploiting decoy PSMs in semi-supervised learning. In
[7-9], decoy databases were used for validation of the
performance of the post-database search algorithms. It is
proposed in [6] to estimate a more accurate probability by
combining decoy PSMs into a unified semi-supervised
expectation- maximization framework.
Support vector machines (SVMs) have also been studied

for the peptide assignment problem in [10,11]. Percolator
[12] employed the SVM to iteratively adjust models fitting
target PSMs with higher scores than decoy PSMs. Percola-
tor, as a semi-supervised learning model, did not fully
make use of the labels and samples of target PSMs. More
recently, a fully supervised SVM learning model is
proposed in [11] to improve the performance of Percolator
by utilizing target PSM data, where those “incorrect” target
PSMs are viewed as noises, and a special loss function is
employed to reduce the noise’s negative impact on the
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learning model. Although most good target PSMs are
identified by the classification learning model from noises
and decoy PSMs, all selected PSMs are treated in the
same way.
In this paper, a new scoring method, FC-Ranker, is

developed not only to identify reliable target PSMs, but
also to evaluate the confidence of each target PSM.
As good target PSMs are close to each other, FC-Ranker
integrates sample clustering into the classification proce-
dure to compute the possibility of each target PSM being
correct. Compared with the standard SVM model, the
proposed fuzzy classification model assigns a weight to
each target PSM indicating its likelihood being correct.
The score of each PSM sample is computed by combining
discriminant function value and fuzzy silhouette value.
The algorithm repeatedly updates the values of the discri-
minant function and fuzzy silhouette index for each PSM
sample, and recompute the weights of targets until the
algorithm stops. In experimental studies, while FC-Ranker
shows a large overlap of the identified target PSMs with
PeptideProphet and Percolator, it has identified more
target PSMs in all datasets.
The first stage of the work was published in [13]. In this

work, we compared the FC-Ranker algorithm with another
benchmark method, Percolator, in the experimental
studies. As Percolator is developed based on the SVM-
based learning model, and hence it provides a better refer-
ence in performance comparison. Furthermore, we added
a new dataset, Tal08, which has different characteristics
(refer to Table 1) with datasets Yeast and UPS1. The
performance of the proposed FC-Ranker algorithm has
been conducted on all three datasets in terms of number
of target PSMs, overlaps and ROC curves, and compared
with PeptideProphet and Percolator. The new data analysis
and results reinforce the efficiency of the proposed
FC-Ranker method.

Results and discussion
The FC-Ranker algorithm is compared with PeptidePro-
phet [4] and Percolator [12] to validate its effectiveness.
We used a PC with Intel (R) CPU 1.80 GHz×2, and RAM
2.0Gb for all experiments.

Experimental Setup
Dataset
FC-ranker was examined over three datasets: S. cerevisiae
Gcn4 (Yeast), Universal Proteomics Standard (UPS1) and
Tal08 [14]. Trysin digestion of the protein samples gener-
ates three types of tryptic peptides: full-digested (both
ends of a peptide satisfy enzyme specificity rule), half-
digested (only one end satisfies the enzyme specificity
rule) and none-digested (neither of the ends satisfies the
rule). The database of Yeast protein sequences was
obtained from Saccharomyes Genome Database (SGD)

[15] and the Sigma48 protein sequences database
from NCBI gene bank [16]. The attributes of each PSM
sample include x-correlation, delta-cn, ions, sprank and
calc-neutral-pep-mass.
The SEQUEST search results on UPS1 contains 48

purified human proteins and 17,335 PSMs, consisting of
8974 target PSMs and 8361 decoy PSMs. On the Yeast
dataset, it contains 6652 proteins and 14,891 PSMs,
consisting of 6702 target PSMs and 8189 decoy PSMs.
On the Tal08 dataset, it contains 9907 target PSMs, and
8746 decoy PSMs, totally 18,653 PSMs.
Statistics of the three datasets are listed in Table 1.

Preprocess
In addition to those attributes output by SEQUEST, such
as x-correlation, delta-cn, ions, sprank and calcneutral-
pep-mass, another attribute “digested type” was added in
the representation, with scalars “2”, “1” and “0” for full-
digested type, half-digested type, and none-digested type,
respectively. The values of each attribute have been trans-
formed linearly beforehand such that they have zero mean
and unit variance (this is called a normalization process).
We multiply a weight of 2.0 to the values of x-correlation
and delta-cn attributes after normalization, inasmuch as
these two attributes take more important position in data
representation. As the attribute “digested type” also plays
an important role by experimental experience, a weight of
2.0 was applied, similarly, on the values of this attribute
after the normalization process.
Parameter setting
In all of the experiments, the parameter c is set to 1.0 in
the proposed fuzzy linear programming SVM model
where the Gaussian (RBF) kernel

k(x1, x2) = exp(−||x1 − x2||2
2σ 2

),

was chosen, with parameter s = 2.0.
In the iterations of FC-Ranker algorithm, we set n = 70

in Eq. (10) and p̂ = 0.03|�+|,ŝep = 0.25 Eq. (15). The strat-
egy for solving large-scale programming was employed as
described in the subsection “FC-Ranker for the large-scale
problem”, where the parameter r was chosen as 0.2.

Validation of sep throughout iterations
Figure 1 depicts the variation of the values of sep in the
iterations of the FC-Ranker algorithm on Yeast and UPS1

Table 1 Statistics of datasets

Total Target set Decoy set

Total Full Half None Total Full Half None

Yeast 14891 6702 1453 1210 4039 8189 106 1465 6618

UPS1 17335 8974 645 2013 6316 8361 118 1707 6536

Tal08 18653 9907 1081 2133 6693 8746 164 1923 6659
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datasets. On both of the two datasets, the value of s̄1 is
almost equal to s̄−1 initially, and then values of s̄1 increases
as iterations proceed while values of s̄−1 decreases
throughout the procedure. Hence, an increasing curve
of sep which is defined as (s̄1 − s̄−1)/2is observed in the
figure. At iteration 4 of Figure 1A(Yeast dataset) the value
of sep exceeds the given threshold 0.25, reaching the ter-
mination criteria of the algorithm. The increasing values
of sep illustrates that the identified good target PSMs
indexed by Ω1 are closer to each other and were separated
from decoy PSMs as the iterations increase, showing the
effectiveness of the fuzzy silhouette index.

Comparison of target PSMs
We compared the target PSMs output by PeptideProphet,
Percolator and FC-Ranker under FDR level 0.05 in Table
2. On the Yeast, FC-Ranker identified 1475 target PSMs
while PeptideProphet output 1443 target PSMs and Perco-
lator output 1393 target PSMs. There are in all 32 target
PSMs more found by FC-Ranker than PeptideProphet and
82 target PSMs more than Percolator. On the UPS1, there
are 681 target PSMs found by FC-Ranker, which is 243
PSMs (55.5%) more than that of Percolator and 115 PSMs
(20.3%) more than that of PeptideProphet. On the Tal08,
FC-Ranker output 1092 target PSMs, which is 135 PSMs
(14.1%) more than that of PeptideProphet and 139 PSMs
(14.6%) more than that of Percolator. Similar results of
PSMs output by the three methods on particular digested
types are also shown in Table 2.
We analyzed the outputs of the target PSMs of the three

methods and their overlaps are summarized in Figure 2. It
is shown that there are large overlaps among the output
PSMs of the three approaches in all Yeast, UPS1 and
Tal08 datasets. Specifically, FC-Ranker, PeptideProphet
and Percolator identified 1248 common target PSMs in
Yeast dataset (Figure 2A), which covers 86.5% of the total
target PSMs by PeptideProphet, 89.6% of the output of
Percolator and 84.6% of the output targets of FC-Ranker.
Particularly, FC-Ranker identified 129 PSMs (8.9%)

selected by PeptideProphet but not covered by Percolator,
and found 14 PSMs (1.0%) selected by Percolator but not
covered by PeptideProphet.
On the UPS1 dataset (Figure 2B), the three algorithms

have 383 target PSMs in common. The overlap covers
67.7% of the total target PSMs by PeptideProphet, 87.4%
by Percolator and 56.2% by FC-Ranker. Particularly, there
are 520 target PSMs catched by PeptideProphet and FC-
Ranker in common, covering 91.9% of the total target
PSMs by PeptideProphet and 76.4% by FC-Ranker; there
are 406 target PSMs catched by Percolator and FC-Ranker
in common, covering 92.7% of the total target PSMs
by Percolator and 59.6% by FC-Ranker. Particularly, FC-
Ranker identified 137 PSMs (24.2%) selected by Peptide-
Prophet but not covered by Percolator, and found
23 PSMs (5.3%) selected by Percolator but not covered
by PeptideProphet.
On the Tal08 dataset (Figure 2C), the three algorithms

have 829 PSMs in common. The overlap covers 86.6% of
the total target PSMs by PeptideProphet, 87.0% by Perco-
lator and 75.9% by FC-Ranker. Particularly, there are 862
target PSMs catched by PeptideProphet and FC-Ranker
in common, covering 90.1% of the total target PSMs by
PeptideProphet and 78.9% by FC-Ranker; there are

Figure 1 Variations of sep throughout the iterations. A: On Yeast dataset; B: On UPS1 dataset. The curve of sep is increasing throughout
the iterations on both Yeast and UPS1 dataset. Similar curve of sep is also observed on Tal08 dataset, which is not listed here for simplicity of
the layout.

Table 2 Target PSMs output by PeptideProphet,
Percolator and FC-Ranker

TP+FP TP FP

Total Full Half None Total

Yeast PeptideProphet 1481 1443 1374 68 1 38

Percolator 1429 1393 1342 51 1 36

FC-Ranker 1513 1475 1376 83 16 38

UPS1 PeptideProphet 582 566 403 147 16 16

Percolator 450 438 278 144 16 12

FC-Ranker 698 681 444 198 39 17

Tal08 PeptideProphet 982 957 881 76 0 25

Percolator 978 953 895 58 0 25

FC-Ranker 1119 1092 865 173 54 27
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847 target PSMs catched by Percolator and FC-Ranker
in common, covering 88.9% of the total target PSMs by
Percolator and 77.6% by FC-Ranker. Particularly, FC-
Ranker identified 33 PSMs (3.4%) selected by Peptide-
Prophet but not covered by Percolator, and found 18
PSMs (1.9%) selected by Percolator but not covered by
PeptideProphet.

ROC curve
Figure 3 shows ROC curves of the three methods on the
Yeast, UPS1 and Tal08 datasets. On the Yeast dataset
(Figure 3A), when FPR level near zero FC-Ranker has the
same TPR level with PeptideProphet while higher TPRs
are reached by FC-Ranker than those by PeptideProphet
and Percolator on other FPR levels. On both the UPS1
dataset (Figure 3B) and Tal08 dataset (Figure 3C), FC-
Ranker reaches higher TPRs than the other two methods
throughout all FPR levels. Particularly, on Tal08 dataset,
FC-Ranker reaches evidently high TPR levels even on
comparatively high FPR levels.
Figure 4 depicts the relation between the number of TP

and FDR, where we observed similar patterns with the
corresponding ROC curves.

Methods
Classification and clustering methods for peptide
identification
Fuzzy clustering
Clustering analysis is an unsupervised learning method to
group similar data samples together. Silhouette index was
introduced in [17,18] to measure how well a sample
belongs to a cluster.
Suppose that there are l data samples {x1, . . ., xl}, which

are grouped into K clusters, denoted as C ={C1, . . ., CK}.
Denote by d(xi, xj) the distance between two samples xi

and xj, and by Ck =
{
xk1, . . . , x

k
mk

}
the samples of the kth

cluster, where mk = |Ck | and k = 1, . . ., K. The average
distance, denoted by aki , between the ith data sample in

cluster Ckand other samples in the same cluster is formu-
lated as

aki =
1

mk − 1

∑
j=1,...,mk ,j�=i

d(xki , x
k
j ), i = 1, . . . ,mk,

and the minimum average distance between the ith
data sample in cluster Ckand all other data samples in
clusters Cv, v = 1, . . ., K, v ≠ k is defined as

bki = min
v=1,...,K,v �=k

{
1
mv

mv∑
j=1

d(xki , x
v
j )

}
, i = 1, . . .mk.

Then, we define the silhouette value of the ith data
sample in Ck as follows

ski =
bki − aki

max{aki , bki }
.

Clearly, the silhouette values located in the interval [−1, 1].
The silhouette value of the cluster Ck is defined as

sk =
1
mk

mk∑
i=1

ski , k = 1, . . . ,K.

Classification
Our task is to identify those correct PSMs from a set of
PSMs generated by some database searching tools in pep-
tide identification. Usually decoy PSMs are employed to
validate target PSMs, then the samples of PSMs can be
categorized into “good” class, with labels “ +1”, and “bad”
class, with labels “−1”. In the setting of classification, we
use a vector of attributes such as x-correlation, delta-cn,
ions, sprank, calc-neutral-pepmass, etc., to represent a
PSM data sample. Let {xi} ⊆ Rq, i = 1, . . ., l be the PSM
data samples with q the number of attributes. We aim at
finding a discriminant function f : Rq ® R to classify the
PSM data samples according to their labels.
One of the greatest challenges arising from the problem

of the peptide identification is that there is lack of data

Figure 2 Overlap of the identified PSMs by FC-Ranker, PeptideProphet and Percolator. A: On Yeast dataset; B: On UPS1 dataset; C: On Tal08
dataset. “Prophet” indicates the results of PeptideProphet.
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samples with deterministic +1 labels. For a standard classi-
fication setting, the discriminant function is solved by
training the models on two balanced types of data samples
with deterministic labels. In peptide identification problem,
however, a great number of PSMs generated by database

searching engines are incorrect, and the data samples with
+1 labels are quite unreliable. Thus, the great amount of
data samples with incorrect +1 labels would extremely dis-
tort the trained discriminant function if they are employed
directly in the standard classification models.

Figure 3 ROC curves of FC-Ranker, PeptideProphet and
Percolator. A: On Yeast dataset; B: On UPS1 dataset; C: On Tal08
dataset. True Positive Rate (TPR): TPR = TP/(TP + FN), False Positive
Rate (FPR): FPR = FP/(FP + TN), with TP : number of true positives,
FP : number of false positives, FN : number of false negatives,
TN : number of true negatives.

Figure 4 Performance comparison of FC-Ranker,
PeptideProphet and Percolator in terms of the number of true
positives (TPs). A: On Yeast dataset; B: On UPS1 dataset; C: On
Tal08 dataset. False Discovery Rate (FDR): FDR = 2 · FP/(FP + TP),
with TP : number of true positives, FP : number of false positives.
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Here, we consider the kernel-based SVM classifier as
follows:

f (x) =
l∑

i=1
αjk(xj, x) + b

where b Î R, k(·,·) is a chosen kernel function. The label
of a data sample x is predicted as +1, if f (x) >0, otherwise
it is predicted as −1. A quadratic programming is usually
solved to obtain the coefficients a and b, which requires
huge computations overhead, especially for large-scale
problems. To overcome this problem, a class of linear
programming SVM is introduced in [19].
For the l data samples {(xi, yi)}, i = 1, . . ., l, with xi Î

Rq, yi Î {1, −1}, the linear programming SVM model is
formulated as

min
α,r,ξ ,b

−r + c
∑l

i=1 ξi

s.t. yif (xi) = yi(
∑l

j=1 αjyjk(xj, xi) + b) ≥ r − ξi,
−1 ≤ αi ≤ 1, ξi ≥ 0, i = 1, . . . , l

(1)

where c >0 is a given constant, and the discriminant

function f (·) =
∑l

j=1
αjyjk(xj, ·) + b.

The basic FC-Ranker algorithm
In this section, the FC-Ranker algorithm is present to
calculate the score of each PSM data sample. The score
values reflect the possibility of the PSM data samples
being correct, and those PSMs with high scores are
selected for users at last.
Denote by Ω = {1, . . ., l} the set of indices of l PSM data

samples, by Ω+ the set of indices of target PSMs, by

�−1 = {i ∈ �|yi = −1},

the set of indices of decoy PSMs, by Ω1 the set of indices
of good target PSMs, and Ω0 = Ω+ \ Ω1 the set of bad
target PSMs. The FC-Ranker algorithm aims to select the
set Ω1 from Ω+ utilizing the data samples indexed by Ω−.
To classify good target PSMs from others, a discriminant
function f is constructed such that the function value f (xi)
is positive if sample xi belongs to Ω1, and negative
otherwise. A large discriminant function value of a target
PSM sample xi indicates that the sample locates far away
from the decision boundary, and hence large possibility of
being a good PSM. However, only a large discriminant
function value of f (xi) itself is not sufficient to ensure that
the PSM sample xi is good. Take the sample represented
by “☐” in Figure 5 as an example, it has a large distance
from the decision boundary and thus has a large function
value of f (☐). This sample, however, tends to be a bad
PSM since it locates too far away from the other PSM data
samples indicated by the set Ω+.

On the other hand, a data sample may not be a good
target PSM either if it locates comparatively close to other
target PSMs but has a small discriminant function value.
The data sample represented by “⊕” in Figure 5 should
also be excluded from the set Ω1. The above observations
hints us that a good target PSM data sample should satisfy
two rules: 1) has a large discriminant function value; 2) is
close to other target PSMs.
Fuzzy SVM classification
A weight θi Î [0, 1] is introduced for each target sample xi
indexed by Ω+ to indicate its possibility of being correct
since its label is not trustworthy. A large weight of a sam-
ple usually indicates that the PSM has more possibility to
be correct. Since it is definitely sure that the decoy PSMs
are incorrect, we constantly set the weights θi to 1 for xi Î
Ω−. Denote loss(f (xi), yi) the empirical error of sample xi,
then the empirical error can be formulated as∑
i∈�

loss(f (xi), yi) in traditional classification problems with

deterministic labels. Assigning a weight to each data
sample, we reformulate the total empirical error as∑
i∈�

θi · loss(f (xi), yi).
Thus, the linear programming SVM model (1) is

transformed as follows

min
α,r,ξ ,b

−r + c
∑

i∈� θiξi

s.t. yi(
∑l

j=1 αjyjk(xj, xi) + b) ≥ r − ξi, i ∈ �,
−1 ≤ αi ≤ 1, ξi ≥ 0, i ∈ �,

(2)

Figure 5 Classification and clustering. “−” represents decoy PSM,
while “+” represents target PSM. The data sample represented by
“☐” locates far away from the decision boundary. However, the
possibility of it being a correct PSM is remote since it goes too far
away from other data target PSMs. The data sample represented by
“⊕” also has a small possibility to be a correct PSM since it locates
near the decision boundary.
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where a Î Rl, b Î R1, r Î R1 and ξ = [ξ1, . . ., ξl] Î Rl.
Model (2) is referred as the fuzzy linear programming
SVM model.
The model (2) can be rewritten as

min
α,r,ξ ,b

〈
[0Tt 0 cθT − 1], [αTb ξTr]

〉
s.t. [�(y)K�(y) y Il − 1l]

⎡⎢⎢⎣
α

b
ξ

r

⎤⎥⎥⎦ ≥ 0,

r ≥ 0,
−1 ≤ αi ≤ 1, ξi ≥ 0, i ∈ �,

(3)

where θ = [θ1, . . ., θl]
T , Λ(y) = Diag(y), 0l Î Rl is a

vector with zero elements, 1l Î Rl is a vector with
each element equal to 1, Il is the l × l unit matrix, and K =
(k(xi, xj))1≤i≤l,1≤j≤l. The model can be solved by existing
optimization softwares, such as Mosek.
Fuzzy silhouette
To adapt the situations with uncertain labels we generalize
the silhouette concept for deterministic setting to fuzzy
silhouette index.
For k = −1, 1, i Î Ωk, the average distance of sample

xi to the other data samples in Ωk is formulated as

βk
i =

∑
j∈�k,j�=i θjd(xi, xj)∑

j∈�k,j�=i θj
(4)

where θi Î [0, 1]. Then, we define the fuzzy silhouette
of sample xi as

si =
β−1
i − β1

i

max{β−1
i ,β1

i } , i ∈ �. (5)

It measures the degree that a PSM sample goes far
away from the decoys and that is close to the good target
samples. Hence, a PSM data sample is more likely to be a
correct one if it has a large fuzzy silhouette value.
For the sets of Ω-1, Ω1 and Ω0 we define their average

fuzzy silhouettes as

s̄k =

∑
i∈�k

si
|�k|

where |Ωk | is the cardinality of Ωk , k = −1, 1, 0. We
also define

sep = (s̄1 − s̄−1) /2 (6)

as a metric to indicate the separation degree of decoy
PSM samples and good PSMs.
Score of the samples
Based on the fuzzy SVM model and fuzzy silhouette
metric we design a scoring scheme, which defines the
score of sample xi as

score(i) = (1 − sep) · ϕ(f (xi)) + sep · ψ(si), (7)

where �(·) and ψ(·) are functions for scaling the values of
f (xi) and si, respectively. Here, function �(·) : R ® [−1, 1]
is constructed as an increasing function, and ψ(·) as
an increasing function mapping from [−1, 1] to [−1, 1].
Particularly, we choose function �(f (xi)) and ψ(si) as

ϕ(f (xi)) =
2
π
sign(f (xi) − f0)atan((|f (xi) − f0|fmax)1/4), (8)

ψ(si) = (si − s0)/smax, (9)

where fmax and smax are the largest values of {|f (xi) − f0|}
and {|si − s0|} for i Î Ω+, respectively, and f0 is the thresh-
old of the values of discriminant function, s0 the threshold
of fuzzy silhouette. The power of14on |f (xi) − f0| is intro-
duced to smooth the weight contributions.
The FC-Ranker algorithm
The FC-Ranker algorithm iteratively adjusts the index set
of good PSM Ω1 by calculating the scores and weights of
the data samples until a stop criterion is met. Initially, the
algorithm set �0

1 = �+ and �0
0 = φ, i.e. all PSM samples

are viewed as good ones at iteration 0. At iteration k, the
algorithm solves the fuzzy linear programming SVM
model (3), calculates the fuzzy silhouette values of the
samples according to Eq. (5) and updates the index set Ω1

and Ω0 such that the indices of target PSMs in Ω1 with
small scores are moved to Ω0, while the indices of target
PSMs in Ω0 with large scores are moved to Ω1.
At the kth iteration, PSM samples indexed by Ω+ are

ranked according to their scores, and the top n% of them
in Ω1 are reserved. Then�k

1 is updated by the discriminant
function values as

�
k+1/3
1 = {i ∈ �k

1| f (xi) is ranked at top n% in all {f (x)}i∈�k
1
}, (10)

where 0 < n <100 is a constant percentage. Based on the
calculated fuzzy silhouettes,�k+1/3

1
is then updated by

�
k+2/3
1 = {i ∈ �

k+1/3
1 |si is ranked at top n% in all{ sj} j∈�

k+1/3
1

} (11)

and �k
0 is updated by

�
k+1/3
0 = �+\�k+2/3

1 . (12)

Finally, for i Î Ω new scores score(i)k+1, are computed
according to Eq. (7) and the weights θ k+1

i are calculated by
the following equation

θ k+1
i =

{
max{score(i)k+1, 0}, i ∈ �+;

1, i ∈ �−.
(13)

Then indices of the samples indexed by �
k+1/2
0

are
moved to�

k+2/3
1

if the samples have large score values,
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i.e.,

�k+1
1 = �

k+2/3
1 ∪ {i ∈ �

k+1/2
0 |f (xi) ≥ f̄ k+2/31 },

�k+1
0 = �+\�k+1

1 ,
(14)

where f̄ k+2/31
is the average of {f (xi)|i ∈ �

k+2/3
1 }.

The algorithm terminates when the number of identified
good PSM samples reaches a given threshold




p, or the
separation degree sepk+1 defined by Eq. (6) reaches a
threshold ŝep, i.e.,∣∣�k+1

1

∣∣ ≤ 


p, or sepk+1 ≥ ŝep. (15)

The FC-Ranker algorithm is summarized in Algorithm 1.
Algorithm 1 The FC-Ranker Algorithm
Input: {xi, yi}, i Î Ω;
Output: Scores of samples indexed by Ω;
1: Initialization: k = −1,�0

1 = �+,�
0
0 = ∅, θ0

i = 1, i Î Ω.
2: while Stop criterion (15) is not satisfied do
3: k := k + 1.
4: SVM classification.
5: Solve fuzzy SVM classification model Eq. (3);
6: Calculate �

k+1/3
1

via Eq. (10).
7: Clustering analysis.
8: Calculate fuzzy silhouettes si, i Î Ω via (5);
9: Calculate �

k+2/3
1

, �k+1/2
0

via Eq. (11), (12).
10: Update weights.
11: Calculate score(i)k+1, θk+1 via Eq. (7), (13);
12: Calculate �k+1

1 , �k+1
0 , sepk+1 via Eq. (14), (6).

13: end while

FC-Ranker for the large-scale problem

The number of PSMs output by a database search engine
is usually extremely large. In this section, some implemen-
tation practice is discussed further such that the algorithm
is capable for solving large-scale problems.
Fuzzy SVM classification for the large-scale problem
If the data matrix is sparse, the interior-points algorithms
would be competent in solving large-scale linear program-
ming problems. The kernel matrix K in Problem (3) is,
unfortunately, not sparse in general. In fact, kernel matrix
K is usually quite dense and most of its elements are
nonzero. To store a large dense matrix K is not a trivial
task. Take a matrix K with Gaussian kernel and l = 400,
000 as an example, if four bytes are occupied per element
then the matrix K would have l2 = 1.6 × 1011 elements
and take up 640Gb of storage in all.
Interestingly, our experimental experience indicates that

the kernel matrix is usually quite low rank in the peptide
identification problem. Hence, a sub-matrix K’ consisting
of l’ columns of K (l’ << l) is selected to substitute K in
Problem (3). These l’ columns of the sub-matrix are
selected randomly from the total columns of matrix K.
This operation can be implemented by sampling l’ data

samples randomly and then calculating the sub-matrix K’
according to the kernel function. It reduces the storage
greatly. Denote an index set Ω’ ⊂ Ω which consists of the
indices of l’ columns. Then the matrix (K’)ij = k(xi, xj ), i Î
Ω, j Î Ω’ can be calculated with size of l × l’. Let y’ = (y’)
jÎΩ’, then Problem (3) is reduced to

min
α,r,ξ ,b

〈
[0Tt 0 cθT − 1], [αTb ξTr]

〉
s.t. [�(y)K ′�(y′) y Il − 1l]

⎡⎢⎢⎣
α

b
ξ

r

⎤⎥⎥⎦ ≥ 0,

r ≥ 0, ξi ≥ 0, i ∈ �

−1 ≤ αi ≤ 1, j ∈ �′.

(16)

Where α ∈ Rl′, b Î R1, r Î R1, r Î Rl, and Λ(y′) = Diag(y′).

Fuzzy silhouette for the large-scale problem
For updating fuzzy silhouette value si of sample i, the
major work is to compute β1

i and β−1
i in Eq. (4) where it is

required to calculate l distances. In all, each iteration com-
putes |Ω| * |Ω| = l2 distances with total samples. Denote a
given sample rate by r with r Î (0, 1). We sample r * |Ω1|
indices of targets from Ω1, and r * |Ω−1| indices of decoys
from Ω−1, denoted by Ωt and �′

−1, to substitute Ω1 and
Ω−1 in Eq. (4), resp. Then at most rl(|Ω−1| + |Ω1|) ≤ rl
distances need to be calculated at each iteration.

Conclusion
A new scoring method has been developed based on the
iterations of FC-Ranker algorithm which were equipped
with fuzzy silhouette index and a fuzzy SVM classification
model to cope with the large amount of incorrect labels of
target PSM samples. In the fuzzy classification model,
each PSM was assigned a calculated weight which
indicates the possibility of the PSM sample being correct.
The performance of FC-Ranker algorithm has been com-
pared with PeptideProphet and Percolator on Yeast, UPS1
and Tal08 datasets, showing that FC-Ranker surpassed
PeptideProphet and Percolator in terms of ROC and the
quantity of identified target PSM samples under the same
FDR level. Moreover, FC-Ranker outputs more target
PSMs than PeptideProphet and Percolator does while they
share a large number of PSMs in common.
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