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Abstract

Background: Many problems in protein modeling require obtaining a discrete representation of the protein
conformational space as an ensemble of conformations. In ab-initio structure prediction, in particular, where
the goal is to predict the native structure of a protein chain given its amino-acid sequence, the ensemble
needs to satisfy energetic constraints. Given the thermodynamic hypothesis, an effective ensemble contains
low-energy conformations which are similar to the native structure. The high-dimensionality of the
conformational space and the ruggedness of the underlying energy surface currently make it very difficult to
obtain such an ensemble. Recent studies have proposed that Basin Hopping is a promising probabilistic search
framework to obtain a discrete representation of the protein energy surface in terms of local minima. Basin
Hopping performs a series of structural perturbations followed by energy minimizations with the goal of
hopping between nearby energy minima. This approach has been shown to be effective in obtaining
conformations near the native structure for small systems. Recent work by us has extended this framework to
larger systems through employment of the molecular fragment replacement technique, resulting in rapid
sampling of large ensembles.

Methods: This paper investigates the algorithmic components in Basin Hopping to both understand and control
their effect on the sampling of near-native minima. Realizing that such an ensemble is reduced before further
refinement in full ab-initio protocols, we take an additional step and analyze the quality of the ensemble retained
by ensemble reduction techniques. We propose a novel multi-objective technique based on the Pareto front to
filter the ensemble of sampled local minima.

Results and conclusions: We show that controlling the magnitude of the perturbation allows directly controlling
the distance between consecutively-sampled local minima and, in turn, steering the exploration towards
conformations near the native structure. For the minimization step, we show that the addition of Metropolis Monte
Carlo-based minimization is no more effective than a simple greedy search. Finally, we show that the size of the
ensemble of sampled local minima can be effectively and efficiently reduced by a multi-objective filter to obtain a
simpler representation of the probed energy surface.
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Background
Many problems in protein modeling demand obtaining a
discrete representation of the protein conformational
space in terms of an ensemble of conformations. In the
ab-initio structure prediction problem, in particular, where
the goal is to predict the native structure of a protein
chain given its amino-acid sequence, the ensemble needs
to satisfy certain energetic constraints. Under the thermo-
dynamics treatment [1], the native structure is located at
the basin of a funnel-like energy surface [2,3]. Thus, search
algorithms that generate conformations and are guided
towards low-energy ones by a potential energy function
should obtain an effective ensemble containing low-energy
conformations near the native structure. This is predomi-
nantly not the case due to the size and high-dimensionality
of the protein conformational space and the ruggedness of
the underlying energy surface [4]. Despite these challenges,
the rapidly growing gap between the wealth of protein
sequence data and the relatively sparse set of experimen-
tally-determined native protein structures necessitates
research into computational approaches to determining
protein structure. The ability to deter-mine structural infor-
mation through ab-initio computational methods promises
to elucidate the relationship between protein structure and
function and advance studies of biological function and
drug design. [5-7].
The two predominant reasons that it is challenging to

obtain a conformational ensemble near the (unknown)
native structure of a protein are poor sampling capability
by the search algorithm and inaccuracies in the energy
function employed by this algorithm to probe low-energy
regions of the energy surface. Limited sampling capability
is to be expected when considering a vast high-dimen-
sional search space. For the purpose of illustrating this
point, consider a protein chain of n amino acids. Each
amino acid contains a group of atoms. A shared subset
among all known amino acids, known as backbone
atoms, defines the main backbone thread that runs
through the protein chain. Even if focusing on modeling
only this thread and its spatial arrangements, which we
refer to as conformations, the space populated by these
conformations has many dimensions. There are 4 heavy
backbone atoms per amino acid. A cartesian representa-
tion would define a 4 * 3n-dimensional space. One can
reduce this down to a 3n- or a 2n-dimensional space if
instead of maintaining cartesian coordinates, only back-
bone dihedral angles are maintained to represent a con-
formation. For a small protein of 30 amino acids, the
conformational space has at least 60 dimensions in this
angular representation.
The high-dimensionality of the search space favors cer-

tain approaches to the problem of obtaining an ensemble
of conformations near the native structure in a reason-
able amount of time. Methods based on the Molecular

Dynamics (MD) approach simulate the actual folding
process where a protein slowly tumbles down the energy
surface from its unfolded to the folded native state. Simu-
lating folding kinetics demands very small moves in the
energy surface in order to retain accuracy when integrat-
ing equations of motions. For this reason, MD-based
approaches demand significant computational resources
(e.g., Folding@Home) and/or specialized hardware (e.g.
Antoine) [8,9]. Conducting, instead, a global energy opti-
mization which forgoes information of folding kinetics is
useful and justified under the thermodynamics treatment.
Approaches based on optimizing the energy of a confor-
mation can obtain native conformations orders of magni-
tude faster than approaches that simulate folding
pathways [10]. Many of these approaches follow the
Monte Carlo (MC) approach in order to enhance their
sampling capability over the MD approach. MC-based
approaches, however, still struggle to obtain native
conformations on medium-size proteins due to the com-
plexity of the protein energy surface [4]. Due to this sig-
nificant challenge, stochastic optimization algorithms for
protein conformational search remains a very active field
of research. [11].
Many stochastic optimization techniques for ab-initio

structure prediction have converged on a unifying strategy
of sampling of a large number of low-energy conforma-
tions. The emphasis on the size is due to the fact that
many local minima may be present in the energy surface,
particularly in those constructed by current functions
available to measure the potential energy of a protein con-
formation. Sampled conformations are the end points of
independent MD or MC trajectories which perform a
local optimization on a given coarse-grained energy func-
tion. In full ab-initio protocols, stochastic optimization
with a coarse-grained energy function constitutes only
stage one. After the ensemble of low-energy conforma-
tions is obtained, often referred to as decoys, the decoy
ensemble is reduced in preparation for a second stage of
optimization. The reduction employs either filtering by
energies or grouping by structural similarity through clus-
tering-based techniques. The purpose of the reduction is
to reveal a subset of conformations representing local
minima that are worth optimizing further at greater struc-
tural detail and through some finer-grained energy func-
tion in order to improve their proximity to the native
structure [5,12-17].
Optimization-based approaches are effective at obtain-

ing native conformations for many small to medium size
proteins, however, the accuracy of these approaches is
ultimately bound by the accuracy of the employed energy
function. State-of-the-art energy functions employ
approximations to improve performance, but these
approximations can lead to errors in the energy function
which are responsible for deviations between the global
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minimum of the energy function for a particular protein
and the experimentally-determined native structure for the
protein [10,18]. Because of these deviations, approaches
which sample a broad range of low-energy minima, rather
than focussing on a single global minimum, are more
appropriate for coarse-grained energy functions. These
sampled minima can then be further scrutinized though
additional heavy-duty optimization techniques.
In most MC-based methods, the broad view is obtained

by launching many independent MC trajectories. In
other approaches, the trajectories are integrated into a
tree-based or population-based search framework, main-
taining a broader view and thus a more diverse decoy
ensemble by employing analysis of the ensemble to effec-
tively guide the search towards relevant regions of the
search space [19-22]. In robotics-inspired approaches, a
tree of conformations grows in conformational space
[19,20], and low-dimensional embeddings of the energy
surface and conformational space are used to collect
online statistics with which to adaptively bias the search
towards low-energy regions and away from over-sampled
regions. In evolutionary-inspired approaches [21,22],
multi-objective analysis of energy terms is used to guide
the search towards a diverse population of conforma-
tions. Currently, this multi-objective analysis is applied
only to all-atom representations and applied to very
small proteins.
None of the above methods explicitly sample local

minima in the energy surface. Rather, they rely on some
post-analysis to group conformations together to identify
captured local minima. Recent studies by us and others
have proposed that Basin Hopping (BH) is a promising
stochastic optimization framework to directly obtain a
discrete representation of the protein energy surface in
terms of local minima [23-25]. The framework was ori-
ginally introduced to obtain the Lennard-Jones minima
of small atomic clusters [26]. The inspiration for the BH
framework in [26] comes from evolutionary search algo-
rithms, such as Iterated Local Search (ILS). ILS consists
of iterated applications of perturbation followed by local
search and is popular for solving discrete optimization
problems [27]. An adaptation of ILS for molecular mod-
eling introduces a Metropolis-like criterion to bias the
sampling of local minima towards lower-energy regions
of the search space.
Pervious realizations of the BH framework, most notably

in the MC with Minimization algorithm, essentially differ
in their implementation of the perturbation and minimiza-
tion components [28,29]. The perturbation component
typically directly modifies the atomic coordinates of a con-
formation and minimization is performed through a gradi-
ent descent or low-temperature Metropolis MC trajectory.
Successful applications of BH algorithms include obtaining
local minima of small atomic clusters, mapping the energy

surface of polyalanines, and modeling of other small pro-
teins [10,30-32].
In recent years, new attention has been given to BH as

a framework for ab-initio protein structure prediction
[23-25,33]. In [23], a particular realization of the BH
framework on small proteins is shown to obtain both
lower-energy minima and conformation closer to the
experimentally-determined native structure than the MD
with Simulated Annealing approach. Here conformations
are perturbed by modifying atomic coordinates by small
random values. Minimization is then implemented as a
gradient descent over a coarse-grained energy function.
While effective on small proteins, the performance of this
implementation decreases significantly on sequences with
more than 75 amino acids [23].
In recent work, we extend the effectiveness of BH to

longer protein sequences by employing molecular frag-
ment replacement with a coarse-grained energy function
[24,25] (detailed in the Methods section). Experiments
show that the resulting BH algorithm is able to sample
conformations near experimentally-determined native
structures as well as other state-of-the-art structure pre-
diction protocols. This proposed coarse-grained sampling
algorithm is intended to generate decoy conformations as
the first step in a structure prediction protocol which then
further refines selected decoy conformations.
Given the recent attention and promise of BH as a

framework for protein structure prediction, a greater
understanding of the effectiveness and efficiency of the
key BH components is critical. While some studies into
the efficacy of different perturbation moves for identify-
ing low-energy isomers of small Si and CU clusters exist
in the computational physics community [34], no such
study is available for proteins.
In this work we offer a detailed analysis of the BH fra-

mework in the context of structure prediction. We provide
an in-depth analysis of BH’s two key components, pertur-
bation and minimization, and show how adjusting these
components affects sampling of decoy conformations.
Controlling the magnitude of each perturbation allows us
to directly control the distance between consecutively-
sampled local minima. We show that this local-minima
distance is directly related to the ability of the BH algo-
rithm to effectively explore the conformational space and
obtain conformations near the native protein structure.
We also explore the use of temperature when employing
Metropolis MC minimization and show that a shorter
greedy search is just as effective as a more intensive
Metropolis MC minimization.
Our BH algorithm is effective at rapidly sampling

large numbers of decoy conformations that represent
local minima in the protein energy surface. Here we
extend analysis of this decoy ensemble beyond simply
comparing the decoys with the lowest lRMSD to the
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experimentally-determined native structure. Realizing that
the true utility of a stochastic optimization technique is in
which subset of its conformations would be retained for
further refinement in a complete ab-initio protocol, we
pursue different reduction techniques and analyze how
each of those would retain near-native conformations
sampled by the BH algorithm.
We show, as expected, that ensemble reduction techni-

ques based on total energy miss many promising near-
native conformations. This is to be expected, as a method
with high sampling capability will uncover many low-
energy non-native conformations. Given the growing
knowledge that current energy functions, particularly
coarse-grained ones, are weakly funneled, displaying very
weak correlation between low energies and proximity to
the native structure, no energetic threshold will discard
non-native and retain near-native conformations. Our
analysis shows this on 15 diverse protein systems. On the
other hand, reduction techniques that discard energies
and instead cluster conformations by structural similarity
can be quite computationally demanding with large
ensemble sizes (106 conformations or more). Such tech-
niques would also not be viable if there is a need to possi-
bly apply them repeatedly during search.
We introduce here a novel energy-based ensemble

reduction technique that makes use of multi-objective
analysis to enhance retention near-native decoys. The
technique decomposes the energy of each conformation
into the various terms in the energy function and evalu-
ates conformations based on Pareto count and the Pareto
front. The analysis is particularly suited to finding a sub-
set of conformations that satisfy conflicting terms, as is
the case with terms added up in energy functions. We
show that our Pareto-based selection scheme significantly
reduces the size of the decoy ensemble, while retaining a
more diverse set of near-native conformations than
employing a total energy threshold. These results are
shown to be robust and valid when using two different
state-of-the-art coarse-grained energy functions com-
monly employed in a structure prediction setting. The
computational complexity of computing these multi-
objective metrics makes them practical, even on very
large ensembles of decoy conformations. Since the Pareto
front and Pareto count can be computed online, these
multi-objective energy metrics are also ideal to be
employed in online analyses used by tree-based and
population-based search algorithms to adaptively guide
search.
A preliminary investigation of this ensemble reduction

technique was presented in [33]. In this work, we extend
the BH framework to employ two different state-of-the-art
energy functions and analyze the effectiveness the of
ensemble reduction technique on the energy surface
sampled by both energy functions.

Methods
Obtaining a broad view of the energy surface for a pro-
tein sequence of interest in the coarse-grained stage relies
on a stochastic optimization algorithm to go through dif-
ferent conformations and an energy function to score
these conformations and guide the search towards low-
energy ones. As described in the Background section,
coarse graining in this stage refers to the employment of
a coarse-grained representation for the protein chain. As
in many state-of-the-art ab-initio protocols, we employ
an extended backbone representation in our BH-based
algorithm, sacrificing side chains. This representation is
detailed first below, in the Molecular representation sec-
tion. Given a coarse-grained representation, a coarse-
grained energy function scores conformations generated
by the search algorithm. We consider here two state-of-
the-art coarse-grained energy functions, the AMW and
the Rosetta energy functions, briefly described below in
the Coarse-grained energy function section. The BH-
based stochastic optimization algorithm that makes use
of the chosen representation and energy function(s) is
described next, followed by details on the different imple-
mentations considered and analyzed for its perturbation
and minimization components. The implementations for
the algorithmic components of the algorithm are ana-
lyzed in detail for how they affects the quality of the
(decoy) ensemble of local minima produced by the algo-
rithm. The Pareto-optimal filtering of this ensemble is
described last.

Molecular representation
The structural detail in the side chains of a protein is lar-
gely sacrificed in the interest of expediency. It is worth
noting that once the decoy ensemble is obtained and
reduced through selection techniques, the retained coarse-
grained conformations are added structural detail through
side-chain packing techniques [35,36]. The AMW and the
Rosetta coarse-grained energy functions considered here
and described below operate on slightly different extended
backbone representations. In both cases, the backbone
heavy atoms N , C, Ca, and O are explicitly modeled.
When using AMW, side-chains are reduced to only the
Cb atom (with exception of glycine, where there is no
such atom). When using Rosetta, a side chain is reduced
to a pseudo-atom centered at the side chain’s centroid.
Cartesian coordinates for the atoms modeled are

employed by the respective energy functions to associate a
potential energy value or score with a generated confor-
mation. Internally, the representation employed by the
algorithm to generate conformations maintains only three
backbone dihedral angles (j, ψ, ω) per amino acid. This
angular representation, also known as a kinematic model,
is based on the idealized geometry assumption, which
fixes bond lengths and angles to idealized (native) values
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(taken from CHARMM22 [37]) and limits variations to
backbone dihedral angles. Using this angular representa-
tion, the BH algorithm essentially generates conformations
by replacing values for an entire block of j, ψ, ω angles of
f consecutive amino acids at a time (f is often referred to
as the fragment length). New values for a block are
sampled from a fragment configuration library, which
essentially stores blocks of angles observed in known
native structures, as described in the Background section.
After a conformation is obtained in its angular representa-
tion, forward kinematics is employed to obtain cartesian
coordinates for the modeled atoms from the backbone
dihedral angles [38].

Coarse-grained energy function
Our experiments in this paper consider two state-of-the-
art coarse-grained energy functions, the Associative
Memory Hamiltonian with Water (AMW), and the
Rosetta energy function, described below.
AMW energy function
This coarse-grained potential, originally proposed in [39],
has been used by us and others in the context of different
search procedures for the purpose of decoy sampling in
ab-initio structure prediction [12,19,20,40-42]. Briefly,
AMW sums 5 non-local terms (local interactions are kept
at ideal values under the idealized geometry assumption):
EAMW = ELennard-Jones + EH-Bond + Ecompaction + Eburial +
Ewater. The ELennard-Jones term is implemented after the 12-
6 Lennard-Jones potential in AMBER9 [43] allowing a soft
penetration of van der Waals spheres. The EH-Bond term
allows modeling hydrogen bonds and is implemented as in
[44]. The other terms, Ecompaction, Eburial, and Ewater, allow
formation of a hydrophobic core and water-mediated
interactions (See [12] for more details).
Rosetta energy function
The Rosetta energy function we use here corresponds to
the score3 setting in the suite of energy functions used in
the Rosetta ab-initio protocol [45]. The different energy
functions used in the Rosetta ab-initio protocol are scaled
versions of a full energy function that is a linear combina-
tion of 10 terms. These terms measure repulsion, amino-
acid propensities, residue environment, residue pair
interactions, interactions between secondary structure ele-
ments, density, and compactness. The different substages
used in the Rosetta ab-initio protocol use subsets of the
terms of the full energy function and modify weights in
the linear combination to promote certain interactions
over others. We use here the score3 setting, as this corre-
sponds to the full coarse-grained Rosetta energy function.

Probabilistic search algorithm based on basin hopping
framework
We first proposed the BH-based probabilistic search
algorithm that we analyze in detail in this paper in [25].

The algorithm iteratively hops between consecutive
minima Ci and Ci+1 by performing a perturbation fol-
lowed by a minimization. Conformation Ci is perturbed
to obtain a new higher-energy conformation Cperturb,i

which allows the search to escape from its current local
minimum. Cperturb,i is then minimized through a series
of small modifications until a new minimum Ci+1 is
reached. The Metropolis criterion is then employed to
determine whether or not the current state of the trajec-
tory is moved to Ci+1 based on the energetic difference
between Ci and Ci+1. This results in a trajectory of con-
formations representing local minima in the energy sur-
face. The Metropolis criterion guides the trajectory
towards lower-energy regions of the energy surface.
Thus, the ensemble of decoy conformations obtained
with BH consists of good-quality conformations that
represent local minima in the protein energy surface.
The two main components in the algorithm are the

perturbation and minimization. They both modify con-
formations using the molecular fragment replacement
technique described in the Background section. Briefly,
given a conformation, a trimer (three consecutive amino
acids) is selected at random over the target protein
sequence. A configuration for that trimer (consisting of 9
backbone dihedral angles - j, ψ, ω for each of the amino
acids in the trimer) is then obtained at random over the
available ones in a fragment configuration library. The
library is pre-compiled from configurations extracted
from known non-redundant native structures. The frag-
ment configuration library is constructed as in the proto-
col outlined in the Rosetta ab-initio package (for further
details, cf. to Ref [25]). While the perturbation replaces
one trimer configuration, the minimization consists of
repeated replacements until a certain preset number of
consecutive attempts fail to lower energy.
In this work we propose and analyze different imple-

mentations for the minimization and perturbation compo-
nents, paying attention to how they affects the quality of
the decoy ensemble. We do not explicitly analyze the effi-
cacy of different moves that one can employ in perturba-
tion. Comparative results between work in [23], which
applies small random perturbations to atomic coordinates,
and work in [25], which applies trimer configuration repla-
cements, suggests that the latter moves are more efficient
with growing sequence length and confer higher sampling
capability.

Perturbation
In order to effectively explore the conformational space,
the magnitude of the perturbation must be large enough
to escape the current local minimum, but not so large that
consecutively sampled local minima are too unrelated in
the conformational space. If the perturbation magnitude is
too small, the minimization step is likely to return to the
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previous local minima. Even if a new minima is reached, if
the average distance between Ci and Ci+1 is too small, then
the search will be too inefficient to cover the breadth of
the protein conformational space. If the perturbation mag-
nitude is too larger, however, then the search effectively
samples local minima at random over the entire energy
surface and cannot be effectively guided by the Metropolis
criterion towards lower-energy regions.
Perturbation is performed through a single trimer frag-

ment replacement on Ci to obtain Cperturb,i. Since the mag-
nitude of each perturbation (measured as the lRMSD
between Ci and Cperturb,i)) varies based on which fragment
configuration is selected from the fragment library, the fol-
lowing technique is employed to explicitly bias the magni-
tude of each perturbation to a configured value D. For
each perturbation, a target magnitude d is sampled from a
gaussian distribution centered at D with a standard devia-
tion of 1. New perturbed conformations are then sampled
through fragment replacement until a conformation
Cperturb,i is found which is d Å lRMSD from Ci (within a
tolerance t). If n attempts have been made without finding
a conformation which satisfies the target perturbation
magnitude, then the conformation which comes closest to
satisfying this target is used as Cperturb,i. The value of n is
set to 20, which is large enough that a conformation
Cperturb,i can be found within a tolerance of t = 0.5Å in
nearly every case. Since only the final conformation
selected for Cperturb,i is evaluated for energy, this process of
sampling multiple perturbation candidates does not add
significant computational time to the overall algorithm.

Minimization
The minimization component maps a perturbed confor-
mation to a nearby local minima in the protein energy
surface through a series of small modifications. Since the
minimization step consumes the vast majority of the
computational resources in a BH algorithm, it is impor-
tant to balance the efficiency of a minimization technique
with its effectiveness at probing local minima. In this
work we compare the more computationally efficient
greedy search, summarized above and implemented ori-
ginally in [25], to a Metropolis MC (MMC) search for
minimization. While MMC is more computationally
intensive, it is able to probe deeper into local minima by
adjusting the effective temperature of the search. We do
not investigate gradient-based techniques, as they con-
verge very slowly to a local minimum [23].
In a greedy search only modifications (referred to here

as moves) are made which lower the energy of the confor-
mation. An MMC search, however, will occasionally
accept a move which raises the energy of the conformation
in order to cross over an energetic barrier. The height of
the energetic barrier which can be crossed is controlled by
the effective temperature, T , employed by the metropolis

criterion. By setting T to a small non-zero value, the
MMC search can effectively jump over low energy barriers
while remaining the in same local energy funnel. This
allows a MMC search to reach deeper local minima than a
greedy search which can get stuck on on these low ener-
getic barriers.
Probing down to true local minima in the protein

energy surface can be computationally intensive and ana-
lysis of the AMW energy surface in previous work shows
that experimentally-determined native structures are
found somewhere above their corresponding true minima
[25]. For this reason, each MMC minimization is run
until only k consecutive moves are rejected. For the pur-
poses of this study, the working definition of a local
minima is thus determined by the value of k. Based on
previous work, k is set to the length of the target protein
sequence which is sufficient to sampled near-native con-
formations [25].
The temperature parameter, T , effectively controls the

height of energy barriers which can be crossed by the
MMC minimization. A higher value of T makes it less
likely that the minimization will get stuck, and thus, on
average, more MMC moves will be made before reaching
the termination condition of k consecutive failed moves.
In the special case where T = 0, the MMC search is effec-
tively equivalent to the greedy search shown effective in
our previous work [25]. In the Results section, we compare
the effectiveness of greedy vs. MMC search in minimiza-
tion. Three different effective temperatures are studied in
the context of the MMC search. Temperatures, T0, T1,
and T2, correspond to a 0.1 probability of accepting energy
increases of 1.4, 1.7, and 2.6 kcal/mol, respectively.

Multi-objective ensemble reduction
The ensemble Ω of local minima that is obtained by the
BH-based algorithm under some chosen implementations
of the perturbation and minimization components can be
large. In a complete ab-initio structure prediction proto-
col, a few promising coarse-grained structures are selected
for refinement in greater structural detail. Therefore, the
ensemble Ω produced by the BH framework must be
reduced to a relevant subset of local minima conforma-
tions. Here a trade-off must be made between selecting a
small number of conformations and selecting a diverse
enough subset so as to increase the likelihood of retaining
near-native conformations.
A simple ensemble reduction technique which retains all

conformations with an energy below a given threshold is
problematic because there is no accepted method for
selecting an appropriate threshold for an arbitrary protein
system. Using the threshold method, it is likely that the
reduced ensemble will either be too large to make fine-
grained refinement practical or that many near-native con-
formations will be excluded due to noise in the energy
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function (recall that current energy functions are all
weakly funneled and thus global minimum may not corre-
spond to the native structure). By comparing energy terms
individually, however, a more nuanced energetic compari-
son can help remove some of the noise inherent in energy
functions which results from the weighted linear combina-
tion of unrelated energy terms [46]. This multi-objective
analysis is the foundation of the technique we propose and
analyze here to reduce Ω.
A conformation Ci is said to dominate a conformation

Cj when every energy term in Ci is lower than the corre-
sponding term in Cj . Cj is said to be non-dominated if
there is no conformation in Ω that dominates Cj . Confor-
mations in the non-dominated ensemble, referred to as
the Pareto front, are considered equivalent with respect to
a multi-objective analysis. Figure 1 illustrates the the Par-
eto front for a simplified energy function containing only
two terms.
When every term in Ci is less than every term in Cj , Ci

is said to strongly dominate Cj . If the requirement for
dominance is relaxed such that every term in Ci is less
than or equal to its corresponding term in Cj , this is
referred to as weak dominance. Typically, multi-objective
analysis employs strong dominance, however, in some
cases weak dominance may be more appropriate, particu-
larly if one of the energy terms has a very low variance.

Membership in the Pareto front is a binary state. It is
often desirable to employ multi-objective analysis to rank
conformations whether or not they lie in the Pareto
front. One such metric is the Pareto count of a confor-
mation. The Pareto count of Ci measures the number of
other conformations Ci dominates. Pareto count is illu-
strated in Figure 1.
This work employs employs multi-objective analysis as

a method for filtering the Ω ensemble of conformations
representing local minima. The ensemble ΩPF corre-
sponds to conformations that lie in the Pareto front and
ΩPC(n) corresponds to conformations with a Pareto count
above a given threshold value. The variable n is set to a
particular percentage of Ω and a Pareto count threshold
is chosen such that | ΩPC(n)| = n * | Ω |. For example,
ΩPC(5%) represents the 5% of conformations in Ω with
the highest values for Pareto count.

Results and discussion
Experimental setup The analysis is conducted over 15
target protein systems listed in Table 1 which range from
61-123 amino acids in length and cover the a, b, and a/b
folds. Experiments are run for a fixed budget of 10,000,000
energy function evaluations. Since over 90% of CPU time
is spent on such evaluations, the limit ensures a fair com-
parison between different parameter selections on a
diverse set of proteins. Computing 10,000,000 energy
function evaluations takes 1-4 days of CPU time on a
2.4Ghz Core i7 processor, depending on protein length.
The perturbation and minimization components are ana-
lyzed first in the Analysis of BH framework section with
respect to the AMW energy function. Lastly, the Multi-
objective ensemble reduction section presents results for
Ω ensembles obtained by running the BH framework with
both the AMW and Rosetta energy functions.

Analysis of BH framework
Analysis is performed on the effect of biasing perturba-
tion distance and varying the temperature of the local
search in the BH framework.
Biasing perturbation distance
Our previous work shows a direct correlation between the
mean lRMSD between consecutive local minima (referred
to from now on as μ|MM |) and the ability of the BH frame-
work to sample near-native conformations [25]. Figure 2
shows that μ|MM | can be effectively controlled by biasing
the magnitude of the perturbation jump through a target
perturbation distance D; as D is increased, there is a corre-
sponding increase in μ|MM |. Tuning D does not signifi-
cantly effect the single lowest lRMSD conformation
sampled (lRMSD measures the proximity of a conformation
to the experimental native structure and computed over the
heavy backbone atoms). However, in cases where unbiased

Figure 1 Conformations are plotted with respect to two
energy terms E1 and E2. Conformations represented by empty
blue circles are non-dominated and form the Pareto front. C2
strongly dominates 4 conformations and weakly dominates 1
additional conformation, thus the Pareto count of C2 is 4 for strong
Pareto dominance and 5 for weak Pareto dominance.
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perturbation results in large μ|MM | values, changing D does
effect how frequently near-native conformations are
sampled (that is, the distribution of sampled minima).
Figure 3 illustrates this for two representative systems by
plotting, for different values of D, the distribution of μ|MM |

values and the resulting distribution of lRMSD values.
These results show that there is a distinct advantage to
biasing the perturbation distance to D = 1Å or D = 2Å.
Figures 3(a) and Figure 3(c) show that the frequency of
small μ|MM | is larger when D Î {1, 2}Å vs. an unbiased per-
turbation. Figures 3(b) and Figure 3(d) show that the result-
ing ensembles contain more low-lRMSD conformations
than the unbiased approach.

The effect of controlling D shown in Figure 3 is stron-
gest on more heavily b-sheet proteins (those with native
PDB ids 1dtdB, 1isuA, 1wapA, and 1hhp). On these
proteins, an unbiased perturbation results in few small
consecutive local minima distances. More near-native con-
formations are also obtained (though to a lesser extent)
when D Î {1, 2} for other proteins (with native PDB ids
1ail, 1sap, and 2h5nD). On these proteins, unbiased per-
turbation results in larger numbers of small consecutive
local minima distances, but these proteins still benefit
from enhanced sampling of neighboring local minima.
This enhanced sampling of near-native conformations

can correspond to the BH search remaining in the same

Table 1 local search.

Native PDB id Size fold % a % b Lowest Energy (kcal/mol) Lowest lRMSD (Å)

T = 0 T0 T1 T2 T = 0 T0 T1 T2

1 1dtdB 61 a/b 15 46 -128.2 -132.1 -131.6 -127.9 6.9 6.6 6.9 7.0

2 1isuA 62 a/b 15 19 -127.8 -130.3 -130.7 -130.2 6.3 6.0 6.4 6.0

3 1c8cA 64 a/b 22 48 -133.5 -134.8 -130.8 -129.6 6.5 6.6 7.4 7.3

4 1sap 66 a/b 30 44 -132.8 -132.3 -133.6 -127.3 6.5 6.0 6.8 6.9

5 1hz6A 67 a/b 31 42 -143.5 -144.7 -142.1 -138.9 5.7 5.9 6.0 6.0

6 1wapA 68 b 0 62 -118.4 -127.2 -133.9 -127.9 7.4 7.6 7.4 7.5

7 1fwp 69 a/b 30 26 -152.8 -152.0 -143.5 -143.2 6.3 6.7 6.5 6.1

8 1ail 70 a 84 0 -170.6 -171.0 -167.3 -168.4 3.2 3.2 3.4 3.3

9 1aoy 78 a/b 41 10 -183.9 -181.2 -180.8 -184.1 5.7 6.4 6.0 6.4

10 1cc5 83 a 47 4 -170.9 -171.5 -179.1 -173.8 5.8 5.7 5.8 5.8

11 2ezk 93 a 68 0 -217.3 -218.6 -224.4 -216.0 4.3 4.6 4.2 4.4

12 1hhp 99 b 7 48 -168.7 -175.4 -179.0 -175.9 10.4 10.4 10.0 10.5

13 2hg6 106 a/b 34 21 -233.6 -236.8 -239.5 -235.1 8.8 9.0 8.8 9.2

14 3gwl 106 a 70 0 -264.6 -270.4 -273.9 -267.3 4.9 4.9 4.4 5.2

15 2h5nD 123 a 71 2 -307.8 -313.0 -316.5 -313.2 7.5 7.9 7.4 8.1

Columns 2-4 show the native PDB id, size and fold topology for each of the 15 target protein systems. Columns 5 and 6 break the fold topology down as the
percentage of amino acids which are part of ↵-helices and (3-sheets. Columns 7-10 report the minimum energy achieved for each temperature T of the
minimization component of the BH framework. Columns 11-14 then report the corresponding lowest lRMSD to the native structure achieved for each T .

Figure 2 The mean μ|MM | is shown for a given target perturbation distance D, where μ|MM | refers to the distance between two
consecutively sampled local minima.
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near-native region of the space; low D values could poten-
tially cause the minimization to return to the previous
minimum. In practice, this does occur for D = 1Å; how-
ever, when D >1Å, the search returns to previous local
minima the same or less frequently than the unbiased
approach.
MMC versus greedy search in minimization
Table 1 compares the greedy search (T = 0) to MMC
searches with temperatures T0, T1, and T2. The lowest
energies achieved under each setting are shown in columns
7-10. Results show that employing MMC as the minimiza-
tion step achieves lower energy conformations than
employing greedy search. In general, MMC with T = 0
achieves the lowest energy values for proteins less than 80
amino acids in length, while the lowest energies are
achieved by the slightly higher temperature of T1 for longer
proteins. This is possibly because in more complex rugged
surfaces, small uphill moves allow reaching deeper minima.
The energy surface sampled by the BH framework for

each given value of T is illustrated in Figure 4. The × and
y-axes represent geometric projections of the conforma-
tions based on interatomic distances, and the z-axis
represents the energy of each sampled local minimum.

The Geometric projections are based on the mean intera-
tomic distances between selected atoms (see [19] for more
details). A large white “x” represents the location of the
experimentally-determined native structure. Figure 4 illus-
trates that coarse-grained energy functions are noisy and
result in surfaces that can deviate from the true protein
energy surface. Columns 11-14 in Table 1 show, for each
value of T , the lowest lRMSD to the native structure over
Ω. The lowest lRMSD values obtained are comparable
whether greedy or MMC search is employed in the mini-
mization. This suggests that MMC minimization’s ability
to probe deeper into minima does not necessarily bring
the BH search closer to the native structure.
The higher computational cost of each MMC minimi-

zation results in fewer sampled minima (total number of
energy evaluations is fixed). Employing MMC in place of
greedy search thus reduces the total number of hops in
the BH trajectory by 50 to 70%, resulting in correspond-
ingly fewer sampled minima. Columns 11-14 in Table 1,
however, show that a lower number of sampled minima
does not necessarily correlate with worse proximity to
the native state. Focusing on a smaller ensemble of
“interesting” local minima allows more computationally

Figure 3 The frequencies of μ|MM | sampled during the search for proteins with native structure PDB ids 1ail and 1isuA are shown in
(a) and (c), respectively. Frequency of lRMSDs to the native structure for each protein are given in (b) and (d), respectively. The solid red line
represents BH employing the unbiased perturbation method. The dashed lines represent BH with median perturbation distances D = 1Å to D = 5Å.
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intensive refinement steps to focus resources more
effectively.

Multi-objective ensemble reduction
Multi-objective ensemble reduction proposed in the Meth-
ods section is evaluated by comparing its ability to retain
near-native conformations to that of employing a thresh-
old based on total energy. The use of the Pareto front and
the Pareto count as metrics for ensemble reduction are
evaluated in the “Pareto front reduction technique” and
“Pareto count reduction technique” sections, respectively.
To further evaluate the effectiveness of the multi-objective
reduction technique, results are given for both the AMW
energy function and the Rosetta coarse-grained energy
function with “score3” weights. The ensembles ΩAMW and
ΩRosetta are generated for each target protein with the BH
framework described in Methods employing unbiased per-
turbation and T = 0 for minimization.
The total energy for each conformation Ω is decom-

posed into individual energy terms described in Methods.
Since multi-objective analysis is highly sensitive to the
number of energy terms, the Rosetta energy terms are
then combined into 5 groups so the number of terms is
consistent between ΩAM W and ΩRosetta in the multi-objec-
tive analysis. Grouping is done based on correlation
between energy terms; more highly correlated terms are
combined. In this work, the following energy term group-
ings are employed: {env, pair, cbeta, rg}, {vdw}, {cenpack},
{hs_pair}, {ss_pair, rsigma, sheet}. Since the terms ss_pair,
rsigma, and sheet are primarily employed in the evaluation

of beta sheets, their values often remain fixed for proteins
without beta sheets or for proteins in which beta sheets
are not accurately modeled. If one term remains fixed,
then it is impossible for one conformation to dominate
another using strong Pareto dominance as described in
the Multi-objective ensemble reduction section. Therefore
weak dominance is employed when performing multi-
objective analysis on ΩRosetta.
Tables 2 and 3 compare the ensemble reduced through

a total energy threshold, ΩTE(n), to the ensembles reduced
by employing the Pareto front, ΩPF , and the Pareto count,
ΩPC(n), for the AMW and Rosetta energy functions. The
ensemble ΩTE(n) is achieved by selecting a total energy
threshold and removing all conformations with total
energy greater than the threshold. The variable n is set to
a particular percentage of Ω and a total energy threshold
is chosen such that | ΩTE(n)| = n * | Ω |. Recall that the
ensemble ΩPC(n) is constructed similarly to ΩTE(n), how-
ever, the Pareto count is employed in place of total energy
to rank conformations. For ΩPF only conformations in the
non-dominated Pareto front are retained. For ΩPC(n) and
ΩTE(n), n can be set to any percentage of Ω, while the size
of ΩPF is dictated by the size of the Pareto front for a
given Ω.
Pareto front reduction technique
Column 3 in Tables 2 and 3 shows that, when consider-
ing only conformations in the Pareto front, ΩPF , the size
of Ω is reduced by over 90% across all target proteins
and at least 95% for the majority of proteins. This shows
that the Pareto front filter is a highly effective method for

Figure 4 The energy surface sampled for the protein with native PDB id 1fwpis shown for each temperature T . The × and y-axes
represent projection coordinates based on interatomic distances within each conformation, and the z-axis represents the energy of each
sampled local minimum. The white “x” indicates the location of the native structure in the energy surface.
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efficiently reducing the size of a large ensemble of decoy
conformations. The difference between the average size
of ΩPF employing AMW and ΩPF employing Rosetta is
due to the the use of strong dominance for AMW and
weak dominance Rosetta.

Columns 4-6 in Tables 2 and 3 show the minimum
lRMSD to the native structure of all conformations in Ω,
ΩTE(n=r), and ΩPF , respectively. Here r is chosen such that
| ΩTE(n=r)| = | ΩPF |, so a fair comparison can be made.
While neither ensemble reduction technique is able to

Table 2 AMW multi-objective reduction technique.

AMW Energy Function

Native PDB Id ΩPF reduction Minimum lRMSD (Å)

(r = |ΩPF |/|Ω|) Ω ΩTE(r) ΩPF ΩTE(5%) ΩTE(10%) ΩPC(5%) ΩPC(10%)

1 1dtdB 4% 7.2 7.9 7.7 7.9 7.7 7.7 7.7

2 1isuA 7% 6.0 6.2 6.5 6.4 6.2 6.2 6.2

3 1c8cA 4% 7.4 7.5 7.5 7.5 7.5 7.5 7.5

4 1sap 2% 6.5 7.6 7.5 7.4 7.2 7.4 7.2

5 1hz6A 2% 5.9 6.7 6.3 6.7 6.7 6.7 6.6

6 1wapA 2% 7.7 8.7 8.7 8.7 8.7 8.7 8.7

7 1fwp 7% 6.4 8.1 7.3 8.1 8.1 8.1 8.1

8 1ail 2% 3.4 6.8 5.9 5.8 4.2 4.7 4.4

9 1aoy 6% 5.7 6.9 6.6 6.9 6.5 6.8 6.5

10 1cc5 7% 5.6 8.6 7.0 8.7 8.6 8.6 8.1

11 2ezk 3% 4.4 8.0 7.3 7.7 7.1 7.2 7.1

12 1hhp 1% 10.7 12.0 12.0 11.6 11.6 11.6 10.8

13 2hg6 6% 8.6 10.8 10.5 11.6 10.8 10.9 10.8

14 3gwl 5% 4.2 4.7 5.2 4.7 4.7 4.7 4.7

15 2h5nD 7% 7.9 10.7 10.0 10.8 10.4 10.4 10.4

The minimum lRMSD to the native structure retained by each of the proposed multi-objective ensemble reduction techniques is given for the Ω generated with
the AMW energy function. Column 3 gives the size of the Pareto front as a percentage of the size of Ω. Column 4 gives the minimum lRMSD to the native
structure of any conformation in the Ω. Columns 5 and 6 give minimum lRMSD retained by ΩTE(r) and ΩPF , respectively, where r is the corresponding value from
Column 3. Columns 7-10 compare the minimum lRMSD retained by ΩTE(n) and ΩPC(n) for thresholds of n = 5% and n = 10%.

Table 3 Rosetta multi-objective reduction technique.

Rosetta Energy Function

Native PDB Id ΩPF reduction Minimum lRMSD (Å)

(r = | Ω PF |/| Ω |) Ω ΩTE(r) ΩPF ΩTE(5%) ΩTE(10%) ΩPC(5%) ΩPC(10%)

1 1dtdB 1% 6.7 10.8 9.1 10.6 10.2 10.2 8.6

2 1isuA 2% 6.5 8.9 8.6 8.9 8.6 8.0 7.5

3 1c8cA 2% 5.6 7.9 7.1 7.8 7.0 7.1 6.8

4 1sap 3% 6.1 7.4 7.1 7.4 6.8 6.8 6.6

5 1hz6A 3% 2.5 2.8 2.8 2.8 2.6 2.7 2.6

6 1wapA 1% 7.4 8.8 8.8 8.5 8.5 8.8 8.1

7 1fwp 3% 6.1 7.2 7.0 7.1 7.1 7.2 6.9

8 1ail >1% 4.8 8.2 6.2 7.6 7.5 7.5 6.9

9 1aoy 2% 6.2 10.1 9.1 9.2 9.2 9.3 9.2

10 1cc5 1% 5.0 6.3 6.3 5.7 5.7 5.5 5.4

11 2ezk 1% 3.9 9.1 6.2 5.2 5.1 5.1 4.9

12 1hhp 3% 10.8 13.9 12.6 13.9 13.6 13.0 12.9

13 2hg6 2% 10.6 12.2 11.5 12.0 12.0 12.0 11.7

14 3gwl 1% 7.1 8.9 8.5 8.7 8.4 8.0 7.8

15 2h5nD 1% 8.9 13.0 10.4 12.3 12.1 12.2 11.4

The minimum lRMSD to the native structure retained by each of the proposed multi-objective ensemble reduction techniques is given for the Ω generated with
the Rosetta energy function. Column 3 gives the size of the Pareto front as a percentage of the size of Ω. Column 4 gives the minimum lRMSD to the native
structure of any conformation in the Ω. Columns 5 and 6 give minimum lRMSD retained by ΩTE(r) and ΩPF , respectively, where r is the corresponding value from
Column 3. Columns 7-10 compare the minimum lRMSD retained by ΩTE(n) and ΩPC(n) for thresholds of n = 5% and n = 10%.
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retain the lowest lRMSD to native conformations from Ω,
comparison of columns 5 and 6 reveals that ΩPF retains
conformations with lRMSDs to native not higher than
ΩTE(r) for all but two proteins when employing the AMW
energy function (Table and for all proteins when employ-
ing the Rosetta energy function (Table 3). This difference
in lRMSD is significant (0.5Å or greater) for proteins with
native PDB ids 1fwp, 1ail, 1cc5, 2ezk, 2h5nD for AMW
and 1dtdB, 1c8cA, 1ail, 1aoy, 2ezk, 1hhp, 2hg6, 2h5nD for
Rosetta.
Merely looking at the minimum lRMSD to native struc-

ture retained does not tell the entire story. Figures 5(d)
and 6(d) plot the energy versus lRMSD to native for each
conformation in Ω for the AMW and Rosetta energy func-
tions, respectively, for a representative protein with native
PDB id 1sap. Conformations in ΩPF are highlighted in
dark blue and a dashed line represents the energy cutoff
for ΩTE(n=r). For both energy functions, ΩPF retains lower
lRMSD to native conformations than ΩTE(n=r) and ΩTE

(n=r) loses significantly more of these near-native confor-
mations. These results show that there is a clear advantage
to employing the Pareto front over a total energy thresh-
old to select conformations from Ω, and these results hold
whether employing AMW or Rosetta.
Figure 6(e) represents an unusual case (illustrated by the

protein with native PDB id 1hz6A) where the correlation
between total energy and lRMSD to native is very high.
High correlation is rarely the case for coarse-grained
energy functions. We have specifically chosen to show
1hz6A here because Rosetta seems to capture well the
true energy surface for this protein. For 1hz6A, a total
energy threshold alone is sufficient for selecting decoy
conformations with low lRMSDs, given this high correla-
tion. In a blind prediction, the native structure is unknown
and thus lRMSDs are not available. Thus, such cases are
difficult to identify and the the Pareto front is still just as
effective as a total energy threshold.
Pareto count reduction technique
Unlike ΩPF , the size of ΩPC(n) can be set for any desired
value of n. Figures 5(a)-(c) (AMW energy function) and
6(a)-(c) (Rosetta energy function) show the minimum
lRMSD to native for ΩPC(n) (dashed red line) and ΩTE(n)

(solid black line) for n Î {1, 2, 3...100} on three selected
proteins with PDB ids 1sap, 1hz6A, and 2ezk. The mini-
mum lRMSD and size of ΩPF is also given for reference as
a blue “X”. Examination reveals that ΩPC(n) retains confor-
mations with lRMSDs to the native structure as low or
lower than ΩTE(n) for values of n <= 10% for all three pro-
teins. This result is representative of all 15 target proteins
investigated in this study. Columns 7-10 of Tables 2 and 3
give the minimum lRMSD for ΩTE(n) and ΩPC(n) for n =
5% and n = 10% for all 15 target proteins.
Figures 5(g)-(i) and Figure 6(g)-(i) plot the energy versus

lRMSD to native for each conformation in Ω for the

AMW and Rosetta energy functions, respectively, for same
three representative proteins (PDB ids 1sap, 1hz6A, and
2ezk). Conformations in ΩPC(5%) and ΩPC(10%) are high-
lighted in blue and red, respectively. The dashed blue and
red lines represent the total energy cutoffs for ΩTE(5%) and
ΩTE(10%), respectively. Examination of the common case of
1sap reveals that ΩPC(n) retains significantly more low-
lRMSD conformations than ΩTE(n) for a given value of n.
In the unusual case of 1hz6A, for which total energy is
highly correlated with lRMSD, ΩPC(n) retains a similar
range of low-lRMSD structures as ΩTE(n) does.
The protein with PDB id 2ezk represents a case where

ΩPF is not effective at retaining low lRMSD structures.
Figures 5(f) and Figure 6f show that the low-lRMSD con-
formations retained by ΩPF are outliers, particularly for
the Rosetta energy function. Examination of Figures 5(i)
and Figure 6(i) reveals that, for this difficult case, ΩPC(n) is
still effective at sampling a range of low-lRMSD conforma-
tions. A similar results is seen for the protein with PDB id
1ail (data not shown here).
Taken together, these results show that employing

multi-objective analysis to filter the output ensemble pro-
vides a distinct advantage over a total energy criterion.
The ensemble size reduction is dramatic, yet non-outlier
low-lRMSD conformations are still retained. In difficult
cases the Pareto count metric retains low-lRMSD confor-
mations even when the Pareto front does not.

Conclusions
This work shows that careful realizations of the BH fra-
mework can provide both rapid sampling and enhanced
sampling of the protein conformational space. In addition
to previous work, where a simple realization of the BH
framework was shown competitive in terms of obtaining
lowest lRMSDs to the native structure comparable to
state-of-the-art MC-based methods [25], this work shows
the high sampling capability and the diversity of the
decoy ensemble obtained by BH-based algorithms. We
draw attention to the ability of the algorithm to obtain
many non-native conformations of low energies, which is
a hallmark of algorithms with high sampling capability
[47,48].
This work provides a deeper understanding of the BH

framework and its premise for obtaining an effective
decoy ensemble. The two algorithmic components of the
framework, perturbation and minimization, are analyzed
in detail, and effective implementations are offered to
control the exploration for the purpose of obtaining a
diverse decoy ensemble. Results show that the distance
between consecutively-sampled local minima is directly
affected by the perturbation distance. Our experiments
demonstrate that by biasing perturbation distance, one
can enhance sampling of near-native decoys in the BH
framework. Moreover, a simple greedy search was shown
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just as effective at sampling near-native conformations as
a more computationally intensive MMC trajectory.
Employing short greedy searches for minimization is

appealing, as it allows sampling a significantly larger num-
ber of local minima than longer MMC trajectories. This

larger ensemble provides a broad view of low-energy local
minima in the coarse-grained energy surface, but inaccura-
cies in the energy function do not allow relating near-
native conformations with the lowest-energy minima. To
deal with this issue, we present an ensemble reduction

Figure 5 Results for each of the proposed multi-objective ensemble filtering methods are shown for the AMW energy function on three
representative proteins with native PDB ids 1sap, 1hz6A and 2ezk. (a)-(c) show the minimum lRMSD to the native structure retained from the
full ensemble Ω in the reduced ensembles ΩPC(n) (dashed red line) and ΩTE(n) (solid black line), for a given percentage n of the conformations in Ω. The
minimum lRMSD retained by ΩPF is marked with a blue “X”. (d)-(f) show the total energy versus lRMSD to the native structure for each conformation in
the ensemble Ω. Conformations corresponding the the Pareto front, ΩPF , are colored in dark blue. The dashed line represents the energy cutoff such
that |ΩTE(n)| = |ΩPF |. In (g)-(i), conformations are colored according to their Pareto count. Conformations in ΩPC(n) are colored in blue and red for n =
5% and n = 10%, respectively. The dashed lines represents the total energy cutoff for conformations in ΩTE(n).
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technique based on multi-objective analysis. Metrics based
on the Pareto front and Pareto count are proposed, and
analysis is performed on the decoy ensemble generated by
our BH framework employing either the AMW or the
Rosetta coarse-grained energy functions.

For all of proteins investigated in this work, the Pareto-
based reduction technique is highly effective at reducing
the ensemble while still maintaining non-outlier near-
native conformations. Multi-objective metrics based on
Pareto dominance are an ideal choice because they can

Figure 6 Results for each of the proposed multi-objective ensemble filtering methods is shown for the Rosetta coarse-grained energy
function on three representative proteins with native PDB ids 1sap, 1hz6A and 2ezk. (a)-(c) show the minimum lRMSD to the
experimentally determined native structure retained from the full ensemble Ω in the reduced ensembles ΩPC(n) (dashed red line) and ΩTE(n) (solid
black line), for a given percentage n of the conformations in Ω. The minimum lRMSD retained by ΩPF is marked with a blue “X”. (d)-(f) show the
total energy versus lRMSD to the native structure for each conformation in the ensemble Ω. Conformations corresponding the the Pareto front,
ΩPF , are colored in dark blue. The dashed line represents the energy cutoff such that |ΩTE(n)| = |ΩPF |. In (g)-(i), conformations are colored
according to their Pareto count. Conformations in ΩPC(n) are colored in blue and red for n = 5% and n = 10%, respectively. The dashed lines
represents the total energy cutoff for conformations in ΩTE(n).
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be computed online and have lower computational com-
plexity than structure-based clustering algorithms. Future
work will investigate this setting to further enhance
sampling capability while retaining an informative con-
formational ensemble.
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