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Abstract

Background: The immune system must detect a wide variety of microbial pathogens, such as viruses, bacteria,
fungi and parasitic worms, to protect the host against disease. Antigenic peptides displayed by MHC II (class II
Major Histocompatibility Complex) molecules is a pivotal process to activate CD4+ TH cells (Helper T cells). The
activated TH cells can differentiate into effector cells which assist various cells in activating against pathogen
invasion. Each MHC locus encodes a great number of allele variants. Yet this limited number of MHC molecules are
required to display enormous number of antigenic peptides. Since the peptide binding measurements of MHC
molecules by biochemical experiments are expensive, only a few of the MHC molecules have suffecient measured
peptides. To perform accurate binding prediction for those MHC alleles without suffecient measured peptides, a
number of computational algorithms were proposed in the last decades.

Results: Here, we propose a new MHC II binding prediction approach, OWA-PSSM, which is a significantly
extended version of a well known method called TEPITOPE. The TEPITOPE method is able to perform prediction for
only 50 MHC alleles, while OWA-PSSM is able to perform prediction for much more, up to 879 HLA-DR molecules.
We evaluate the method on five benchmark datasets. The method is demonstrated to be the best one in
identifying binding cores compared with several other popular state-of-the-art approaches. Meanwhile, the method
performs comparably to the TEPITOPE and NetMHCIIpan2.0 approaches in identifying HLA-DR epitopes and ligands,
and it performs significantly better than TEPITOPEpan in the identification of HLA-DR ligands and MultiRTA in
identifying HLA-DR T cell epitopes.

Conclusions: The proposed approach OWA-PSSM is fast and robust in identifying ligands, epitopes and binding
cores for up to 879 MHC II molecules.

Introduction
The immune system must detect a wide variety of
microbial pathogens, such as viruses, bacteria, fungi and
parasitic worms, to protect the host against disease.
Antigenic peptides displayed by MHC II (class II Major
Histocompatibility Complex) molecules is a pivotal

process to activate CD4+ TH cells (Helper T cells). The
activated TH cells can differentiate into effector cells
which assist various cells in activating against pathogen
invasion [1]. MHC I and II are the two main classes of
MHC. MHC I molecules exist in all nucleated cells.
CD8+ T cytotoxic cells only recognize antigenic pep-
tides which are displayed by MHC I from cytosol to the
surface of cells and eliminate the infected cells. On the
other hand, MHC II molecules are normally found only
in antigen-presenting cells (APCs). TH cells only
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recognize those foreign peptides that are displayed by
MHC II from endocytosed proteins to the surface of
APCs and then produce a large number of cytokineses
to activate various cells to defend invasion [2,3].
The structures of MHC I and II are slightly different

on the binding grooves. MHC I molecules have conserved
residues which bind to the terminal residues of antigenic
peptides, so they form close grooves. On the other hand,
these kinds of conserved residues do not exist in the MHC
II molecules, which form open grooves. Hence MHC II
can accommodate longer peptides than MHC I, which
results in increased diffeculty in performing binding
prediction for MHC II [4-6].
The HLA (Human Leukocyte Antigen, MHC in

humans) II molecules are encoded by the DP, DQ and
DR loci. Each MHC locus encodes a great number of
allele variants. Yet this limited number of MHC molecules
are required to display enormous number of antigenic
peptides. Each specific MHC molecule can bind to a great
number of different peptides, and certain peptides can
bind to several MHC molecules. Since the peptide binding
measurements of MHC molecules by biochemical experi-
ments are expensive, only a few of the MHC molecules
have suffecient measured peptides. In [7], it is mentioned
that in order to accurately describe the binding motif of
MHC II, at least 100 to 200 measured peptides are
required. To perform accurate binding prediction for
those MHC alleles without suffecient measured peptides,
a number of computational algorithms (referred to as pan-
specific methods) were proposed in the last decade [8,9].
The TEPITOPE [10] method is the pioneering and

most popular pan-specific approach for MHC II binding
prediction. Its basic idea is if two HLA-DR alleles have
identical pseudo sequence (The pseudo sequence is
composed of several amino acids.) in the same pocket,
they will share the same quantitative profile (The pocket
profile measures the binding strength between a given
pocket with the twenty basic amino acids.). The MHCII-
Multi [11] method enables prediction of more than 500
HLA-DR molecules by using multiple instance learning.
The NetMHCIIpan [12] method first transforms each
DRB allele into a 21 amino acids pseudo-sequence, and
uses the SMM-align [7] method to identify the binding
cores and peptide flanking residues, next trains the
model using an artificial neural network learning algo-
rithm. The MultiRTA [13] method, which can perform
prediction for both HLA-DR and HLA-DP molecules,
calculates the binding affenity of a peptide by thermody-
namic averaging over the binding affenities of all regis-
ters, and introduces a regularization constraint to avoid
overfitting. The NetMHCIIpan-2.0 [14] method is a
synthesis of NN-align [15], NetMHCpan and NetMH-
CIIpan. MULTIPRED2 [16] can perform prediction for
1077 HLAI and HLA-II alleles and 26 HLA supertypes.

It can be regarded as a combination of the MULTI-
PRED, PEPVAC, NetMHCpan and NetMHCIIpan meth-
ods. The TEPITOPEpan [9] method, which builds on
the TEPITOPE and PickPocket [17] methods, enables
prediction for more than 700 HLA-DR molecules.
Here, we propose a new MHC II binding prediction

method, which we call OWA-PSSM. A preliminary study
of a special case of this framework was first conducted in
[18]. This method is a significantly extended version of the
TEPITOPE method. Through introducing the ordered
weighted averaging (OWA) weights [19,20], we develop a
novel weighting scheme for those pocket profiles gener-
ated by TEPITOPE. Specifically, the gamma probability
density function (PDF) [21] is employed to generate the
OWA weights. The gamma PDF is a generalization of the
exponential density function, and have close relationship
with a number of continuous distributions. In our experi-
ments, we will evaluate the performance of OWA-PSSM
through comparing with four other popular state-of-the-
art or recently proposed pan-specific methods, TEPI-
TOPE, MultiRTA, NetMHCIIpan2.0 and TEPITOPEpan.

Materials and methods
We retrieved all HLA-DRB (HLA-DR b chain) protein
sequences from the FTP site (ftp://ftp.ebi.ac.uk/pub/
databases/ipd/imgt/hla/) provided by the IMGT/HLA
database.
Five independent benchmark datasets are employed to

evaluate the performance of OWA-PSSM through com-
paring with the TEPITOPE, MultiRTA, NetMHCIIpan2.0
and TEPITOPEpan methods.

Data sets
Generation of 879 DRB alleles
A set D of 879 DRB alleles are prepared as follows. We
retrieved all DRB protein sequences from the FTP site
provided by the IMGT/HLA database. Each DRB allele
has an offecial name assigned by the WHO Nomenclature
Committee for Factors of the HLA System. The first four
digits coming after the gene name are used to distinguish
different alleles. Hence for those alleles without difference
until the fifth digit, we kept only the first one of them by
sorting their offecial names in ascending order. Mean-
while, for each allele, we only considered the residues
whose IMGT assigned residue indices range from 9 to 86
as they cover all pocket residues employed in TEPITOPE.
Those alleles with absent amino acids in this range are
omitted. The final step is to exclude non-expressed alleles
and those alleles whose amino acid at residue 86 is neither
glycine nor valine.

SMM-align DRB binding dataset
The substitution matrix and the parameters of the
gamma PDF are determined by using the same dataset
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[7] as the TEPITOPEpan method. Hence these two
methods will be compared in a more compatible way.

MHCBench DRB1*0401 binding dataset
The MHCBench server [22] provides eight benchmark
datasets to evaluate MHC binding prediction methods.
It is a popular benchmark to evaluate the performance
of new methods by comparing with previously developed
algorithms.

NetMHCIIpan-2.0 HLA-DR ligands
A large dataset studied in [14] consisting of 1164 HLA-DR
ligands and 28 DRB alleles is evaluated.

NetMHCIIpan-2.0 HLA-DR T cell epitopes
Another large dataset studied in [14] consisting of 42
DRB alleles and 1325 epitopes is adopted to perform
further evaluation.

X-ray crystallographic structures of pMHC II complex
The last dataset contains 41 X-ray crystallographic
structures of pMHC II complexes (see Table 1). These
41 X-ray structures were retrieved from the PDB database
[23]. For these 41 X-ray structures, each one contains an
HLA-DR/peptide binding complex. The binding cores
were directly obtained from the IMGT/3Dstructure data-
base [24]. To the best of our knowledge, this dataset is the
largest and most complete that has ever been studied for
the prediction of MHC II binding cores.

Methods
The proposed OWA-PSSM approach is introduced in
the following subsections. The OWA-PSSM method is
designed based on the PSSM (Position Specific Scoring
Matrix) which is a popular technique in the prediction
of MHC binding [9,10,17,25-28]. In general, the lengths
of MHC II binding cores are nine amino acids. Every
position at the binding core is related to a specific
pocket. The PSSM is employed to specify the binding
strengths between twenty basic amino acids with these
nine pockets, such that the binding specificities of HLA-
DR molecules could be quantified.
For MHC II molecules, there are five anchor sites

(sites 1, 4, 6, 7 and 9) at the binding core. These five
anchor sites govern the binding strength of peptides
with MHC II molecules [3]. The OWA weights are
employed to define profiles for anchor pockets 4, 6, 7
and 9. For the remaining pockets, including the anchor
pocket 1 and four non-anchor pockets 2, 3, 5 and 8, we
adopt the same strategy as TEPITOPE to specify their
quantitative profiles.

Generation of profiles for pockets 4 6 7 9
Here, the pocket pseudo-sequences and the associated
profiles generated by TEPITOPE are referred to as raw

pocket pseudo-sequences and raw pocket profiles,
respectively. These raw pseudo-sequences are composed
of several amino acids whose associated residue indices
are given in Table 2. Eleven representative HLA-DR
alleles are adopted by TEPITOPE to specify the different
profiles for anchor pockets 4, 6, 7 and 9. These eleven
alleles are DRB1*0101, DRB1*0301, DRB1*0401,
DRB1*0402, DRB1*0404, DRB1*0701, DRB1*0801,

Table 1 X-ray crystallographic structures of pMHC II
binding complexes.

PDB ID DRB Allele Peptide Sequence Core

4E41 DRB1*0101 GELIGILNAAKVPAD IGILNAAKV

1A6A DRB1*0301 PVSKMRMATPLLMQA MRMATPLLM

1AQD DRB1*0101 VGSDWRFLRGYHQYA WRFLRGYHQ

1BX2 DRB1*1501 ENPVVHFFKNIVTPR VHFFKNIVT

1DLH DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1FV1 DRB5*0101 NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT

1FYT DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1H15 DRB5*0101 GGVYHFVKKHVHES YHFVKKHVH

1HQR DRB5*0101 VHFFKNIVTPRTP FKNIVTPRT

1HXY DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1J8H DRB1*0401 PKYVKQNTLKLAT YVKQNTLKL

1JWM DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1JWS DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1JWU DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1KG0 DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1KLG DRB1*0101 GELIGILNAAKVPAD IGILNAAKV

1KLU DRB1*0101 GELIGTLNAAKVPAD IGTLNAAKV

1LO5 DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1PYW DRB1*0101 XFVKQNAAAL FVKQNAAAL

1R5I DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

1SJE DRB1*0101 PEVIPMFSALSEGATP VIPMFSALS

1SJH DRB1*0101 PEVIPMFSALSEG VIPMFSALS

1T5W DRB1*0101 AAYSDQATPLLLSPR YSDQATPLL

1T5X DRB1*0101 AAYSDQATPLLLSPR YSDQATPLL

1YMM DRB1*1501 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT

1ZGL DRB5*0101 VHFFKNIVTPRTPGG FKNIVTPRT

2FSE DRB1*0101 AGFKGEQGPKGEPG FKGEQGPKG

2G9H DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

2IAM DRB1*0101 GELIGILNAAKVPAD IGILNAAKV

2IAN DRB1*0101 GELIGTLNAAKVPAD IGTLNAAKV

2ICW DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

2IPK DRB1*0101 XPKWVKQNTLKLAT WVKQNTLKL

2OJE DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

2Q6W DRB3*0101 AWRSDEALPLGS WRSDEALPL

2SEB DRB1*0401 AYMRADAAAGGA MRADAAAGG

3C5J DRB3*0301 QVIILNHPGQISA IILNHPGQI

3L6F DRB1*0101 APPAYEKLSAEQSPP YEKLSAEQS

3PDO DRB1*0101 KPVSKMRMATPLLMQALPM MRMATPLLM

3PGD DRB1*0101 KMRMATPLLMQALPM MRMATPLLM

3S4S DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL

3S5L DRB1*0101 PKYVKQNTLKLAT YVKQNTLKL
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DRB1*1101, DRB1*1302, DRB1*1501 and DRB5*0101. If
two alleles have identical pseudosequences in the same
pocket, they will have identical profiles. For a given
pocket (pocket 4, 6, 7 or 9), we collect all the different
raw pocket pseudo-sequences into a set Rx,
Rx = {r1, r2, . . . , rm}, |ri| = n, where i = 1, 2, ..., m, x Î
{4, 6, 7, 9}, m is the number of unique pseudo-
sequences, and n is the number of amino acids con-
tained in a pseudo-sequence. Meanwhile, we collect all
the different raw profiles into a set Px,
Px = {p1, p2, . . . , pm} and |pi| = 20, i = 1, 2, ..., m.
There is a one-to-one correspondence between pi and ri.
By using a substitution matrix, every raw pseudo-
sequence is represented as a 20n-dimensional real vector,
and is referred to as raw encoded pseudo-sequence
collected into a set V x, V x = {v1, v2, . . . , vm}.
Next the radial basis function (RBF) is employed to

measure the similarity between the encoded pseudo-
sequences of a predicted allele a and a raw encoded
pseudo-sequence.

K(va, vi) = exp(−1
2

‖va − vi‖2), vi ∈ V x, (1)

where va is the encoded pseudo-sequence for a pre-
dicted allele a. The pseudo-sequence for allele a is gener-
ated by using the pocket residue indices in Table 2.
Obviously, 0 < K(va, vi) ≤ 1 and K(va, vi) = 1 if and

only if va = vi.
After these similarity values are sorted in descending

order, a specific ordered position would be associated
with an OWA weight. A new pocket profile is generated
as a weighted average over m raw pocket profiles in Px.
A schematic illustration of the generation of a new profile
is shown in Figure 1[18].
Next we use the gamma distribution to generate OWA

weights. The PDF of a gamma distribution is defined by:

g(x; k, θ) =
1
θ k

1
�(k)

xk−1e−
x
θ

for x >0 and k, θ >0. Γ() denotes the gamma function.

The gamma distribution is specified by its shape and
scale parameters: k and θ. When k ≤ 1, the density func-
tion is decreasing while k >1, it is unimodal and the
mode occurs at (k - 1)θ. If k = 1 and θ = µ, then the
gamma distribution becomes the exponential distribution
X ~ exp(1/µ).
The OWA weight distribution is generated by discre-

tizing the gamma PDF as follows:

G(X = i) =
1
θ k

1
�(k)

ik−1e−
i
θ , i = 1, 2, . . . ,m. (2)

where m is the dimension of the OWA weights, k and
θ are the shape and scale parameters respectively.
After normalizing, the OWA weights are defined by:

P(X = i) =
G(X = i)∑m
k=1 G(X = k)

, i = 1, 2, . . . ,m. (3)

Let wi = P (X = i), and these weights satisfy the following
constraints:

∑m
i=1 wi = 1;wi ∈ (0, 1).

Given a predicted DRB allele a, let Ka = (ka1, ka2, ...,
kam), where kai = K(va, vi), vi ∈ V x, and the associated raw
pocket profiles arePx = {p1, p2, . . . , pm}. The elements
of Ka are sorted in descending order, and the re-ordered
vector of Ka is denoted as K̃a = (K̃a1, K̃a2, . . . , K̃am). The
corresponding OWA weighting vector is denoted as W,
W = (w1, w2, ..., wm). We denote the pocket profiles
associated with the re-ordered vector K̃a as P̃x,
P̃x = {p̃1, p̃2, . . . , p̃m}. Hence we define the pocket profile
for allele a by:

p̄xa = w1p̃1 + w2p̃2 + . . . + wmp̃m, (4)

where x Î {4, 6, 7, 9}.
In particular,

p̄xa =
{
w1p̃1 + w2p̃2 + . . . + w11p̃11, x = 4, 7,
w1p̃1 + w2p̃2 + . . . + w6p̃6, x = 6, 9.

(5)

Essentially, through measuring the similarity between
the encoded pseudo-sequence of a with m raw encoded
pseudo-sequences in the same pocket x, the smaller the
kai the higher weight assigned to pi, pi ∈ Px.
The new profile weighting approach developed in this

work is inspired by the OWA operator [19]. We generate
profiles of pockets 4, 6, 7 and 9 for any allele in the setD
by using the OWA weights derived from the gamma
PDF.

Generation of profiles for pockets 1 2 3 5 8
For the remaining pockets, including the anchor pocket
1 and four non-anchor pockets 2, 3, 5 and 8, we adopt
the same strategy as TEPITOPE to specify quantitative
profiles. Accurately quantifying pocket 1 is essential for
the identification of binding cores, and this pocket is

Table 2 DRB Pocket Residue Indices.

Pocket Pocket residue indices

P1 86

P2 -

P3 -

P4 13, 70, 71, 74, 78

P5 -

P6 11

P7 28, 30, 47, 61, 67, 71

P8 -

P9 9, 37, 57, 60, 61
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mainly characterized by the 86th residue of DRB protein
sequences. For all the alleles in the set D , the amino
acid at the 86th residue is either glycine or valine. For
the alleles with glycine at the 86th residue, the profile of
pocket 1 is assigned to be -1 for aliphatic amino acids
(Ile, Leu, Met, Val) and 0 for aromatic amino acids
(Phe, Trp, Tyr). However, if this residue is valine, the
profile is set to 0 for aliphatic and -1 for aromatic.
Other amino acids are set to -999 [29]. This reflects
that the binding cores of MHC II prefer aliphatic and
aromatic amino acids at position 1. For the non-anchor
pockets 2, 3, 5 and 8, their contributions to the pMHC
binding is minimal. Hence we assign identical profiles to
all alleles for pockets 2 and 3 and zero vectors for pockets
5 and 8 [29], respectively. Given an allele a ∈ D , the
pocket profiles are denoted as p̄xa, x = 1, 2, 3, 5, 8.

Position specific scoring matrices
For a given allele a ∈ D , the quantitative profiles for
nine pockets are defined by P̃a = {p̃1a , p̃2a , . . . , p̃9a } Then
the PSSM is defined by assembling nine pocket profiles
together as

PSSMa = [p̃1a , p̃
2
a , . . . , p̃

9
a ].

The PSSM is a 20 by 9 matrix whose columns corre-
spond to nine pockets and rows correspond to twenty
basic amino acids.

Prediction measure and statistical tests
The AUC (Area Under the receiver operating character-
istic Curve) is employed to measure the prediction perfor-
mance, which is 1 for perfect prediction and 0.5 for
random prediction.
A paired t test is used for statistical comparison, and

the AUC score comparison result is considered to be
statistically significant if p is less than 0.05.

Results
The substitution matrix and the parameters k and θ of
the gamma PDF are determined by using the dataset
described in [7], which contains 14 HLA-DR alleles. The
MHCBench, NetMHCIIpan-2.0 HLA-DR ligand and T
cell epitope datasets were then used to extensively evaluate
the performance of OWA-PSSM through comparing with
TEPITOPE, MultiRTA, NetMHCIIpan2.0 and TEPITO-
PEpan. Furthermore, 41 X-ray crystallographic structures
of pMHC II complexes were employed to evaluate the
prediction quality of OWA-PSSM on identifying binding
cores.

Determination of the substitution matrix and the gamma
distribution parameters
A substitution matrix is used to encode an amino acid
into a 20-dimensional real-valued vector. We could then
apply the Gaussian kernel to compute similarities
between encoded pseudo-sequences. The BLOSUM50
and BLOSUM62 [30] matrices are two important substi-
tution matrices for MHC/peptide binding prediction
[9,12,17]. Here, 59 symmetric substitution matrices are
tested.
The gamma probability density function is discretized

to generate OWA weights, with those values controlled
by the shape and scale parameters.
Experiments were performed to explore the effect on

MHC II prediction through varying the substitution
matrix and gamma distribution parameters k and θ. We
used the SMM-align dataset consisting of 14 HLADR
alleles and 4603 peptides to determine the parameters.
We tested 59 symmetric substitution matrices obtained
from the AAindex database [31] whose data are collected
from published literature. Optimal shape and scale para-
meters were chosen from set {0.1, 0.2, ..., 0.9} ∪ {1, 2,
..., 30}. We find that the chemical similarity substitution

Figure 1 Schematic illustration of profile generation for pocket 4/6/7/9.
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matrix [32] with shape parameter k = 0.2, θ = 0.6 performs
best. The experiment results show that the shape para-
meter k ≤ 1 performs better than k > 1. The scale para-
meter measures the steepness of the OWA distribution,
and the OWA distribution becomes steeper when θ is
smaller. And thus in the following the chemical similarity
matrix is used to encode the pocket pseudo-sequences,
and the OWA weights applied to define profiles for 879
DRB alleles in the set D are determined by the discreti-
zation of the gamma distribution with shape parameter
0.2 and scale parameter 0.6.
The prediction performance for the SMM-align dataset

is shown in Table 3. The performance of OWAPSSM is
better than TEPITOPE and TEPITOPEpan. The average
AUC scores over these 14 DRB alleles are 0.747 and
0.732 for the OWA-PSSM and TEPITOPEpan, respec-
tively. The performance of OWA-PSSM, TEPITOPE and
TEPITOPEpan are comparable for the alleles predictable
by TEPITOPE. However, for those alleles not predictable
by TEPITOPE, the average AUC scores are 0.776 and
0.711 for OWA-PSSM and TEPITOPEpan, respectively.
OWA-PSSM outperforms TEPITOPEpan in all alleles
not predictable by TEPITOPE.

Performance on the MHCBench dataset
In order to evaluate the performance of OWA-PSSM
compared with TEPITOPE, MultiRTA, NetMHCI-Ipan2.0
and TEPITOPEpan, eight datasets consisting of binders

and non-binders for DRB1*0401 were retrieved from the
MHCBench database. As shown in Table 4 the perfor-
mance of OWA-PSSM is similar to those of TEPITOPE
and NetMHCIIpan2.0. It can also be observed that OWA-
PSSM performs best in all eight datasets, and significantly
outperforms TEPITOPEpan (p <0.01, paired t-test) and
MultiRTA (p <0.01, paired t-test).

Performance on the HLA-DR ligand dataset
Here, we evaluate the OWA-PSSM method on a large-
scale MHC II ligand dataset. This dataset covers 1164
HLA-DR ligands restricted to 28 HLA-DR alleles [5,14].
We applied a similar approach as NetMHCIIpan-2.0, in
which each ligand source protein was divided into overlap-
ping k-mers with lengths equal to the annotated ligand,
and all k-mers without the annotated ligand were labeled
as negatives. The results are shown in Table 5. The predic-
tion performance of OWA-PSSM is significantly better
than that of TEPITOPEpan (p <0.05, paired t-test). Speci-
fically, the OWA-PSSM method outperforms TEPITO-
PEpan in 16 out of 28 alleles. Comparing the prediction
accuracy of OWA-PSSM with those of MultiRTA and
NetMHCIIpan2.0 on this ligand dataset, we find that their
AUC score distributions are not significantly different
(p >0.05, paired t-test). For the 17 alleles predictable by
TEPITOPE, TEPITOPE performs best for 11 alleles and
OWA-PSSM performs best for 6 alleles. However, these
differences are not statistically significant (p >0.05, paired
t-test).

Performance on the HLA-DR T cell epitope dataset
A T cell epitope is an antigen fragment that is recognized
by T cells. Identifying T cell epitopes is vital for vaccine
design. A large-scale T-cell epitopes dataset used in [14]
is tested here. The prediction performance is showed in
Table 6. The OWA-PSSM method performs significantly
better than MultiRTA (p <0.01, paired t-test) in identify-
ing T cell epitopes. Comparing the prediction accuracy of
OWA-PSSM with those of TEPITOPEpan and NetMH-
CIIpan2.0 on this T cell epitope dataset, we find that
their AUC score distributions are not significantly differ-
ent (p >0.05, paired t-test). TEPITOPE is one of the best
approaches in identifying T cell epitopes. Compared with
this approach, OWA-PSSM performs best for 12 of the
20 alleles predictable by TEPITOPE, while TEPITOPE
performs best on 8 alleles (the difference is not signifi-
cant, p >0.05, paired t-test).

Identification of the peptide binding cores
The lengths of the peptides which bind to MHC II
range from 9 to 25 amino acids. However, only a segment
of the peptide plays a significant role in binding to a
MHC II molecule which is referred to as a binding core.
Identifying the binding core correctly is very important

Table 3 The performance of OWA-PSSM, TEPITOPE and
TEPITOPEpan on the SMM-align dataset in terms of AUC.

Allele # peptides TEPITOPE TEPITOPEpan OWA-PSSM

DRB1*0101 1203 0.647 0.648 0.645

DRB1*0301 474 0.733 0.739 0.731

DRB1*0401 457 0.754 0.770 0.756

DRB1*0404 168 0.829 0.832 0.830

DRB1*0405 171 0.789 0.785 0.789

DRB1*0701 310 0.768 0.768 0.771

DRB1*0802 174 0.769 0.774 0.784

DRB1*0901 117 0.686 0.731

DRB1*1101 359 0.709 0.700 0.715

DRB1*1302 179 0.721 0.728 0.727

DRB1*1501 365 0.725 0.727 0.731

DRB3*0101 102 0.724 0.869

DRB4*0101 181 0.722 0.729

DRB5*0101 343 0.654 0.652 0.646

Average 0.732 0.747

Average I 0.736 0.738 0.739

Average II 0.711 0.776

“Average” is the average over 14 alleles. “Average I” is the average over 11
alleles predictable by TEPITOPE. “Average II” is the average over 3 alleles not
predictable by TEPITOPE. We obtain the PSSMs of TEPITOPE and TEPITOPEpan
from their public servers ProPred (http://www.imtech.res.in/raghava/propred/
page4.html) and TEPITOPEpan (http://www.biokdd.fudan.edu.cn/Service/
TEPITOPEpan/TEPITOPEpan.html), respectively.
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Table 4 The performance on the MHCBench dataset in terms of AUC.

Dataset # peptides OWA-PSSM TEPITOPE TEPITOPEpan MultiRTA NetMHCIIpan-2.0

Set 1 1017 0.768 0.766 0.764 0.713 0.765

Set 2 673 0.735 0.734 0.727 0.685 0.739

Set 3a 590 0.739 0.736 0.734 0.701 0.710

Set 3b 495 0.756 0.753 0.748 0.715 0.753

Set 4a 646 0.753 0.750 0.748 0.699 0.759

Set 4b 584 0.746 0.745 0.738 0.706 0.751

Set 5a 117 0.655 0.668 0.640 0.599 0.649

Set 5b 85 0.664 0.689 0.646 0.597 0.640

Average 0.727 0.730 0.718 0.677 0.721

The PSSMs of TEPITOPE, TEPITOPEpan and the results of MultiRTA were obtained from their respective web servers. The prediction of NetMHCIIpan-2.0 were
computed by its stand-alone software package.

Table 5 Prediction performance on the HLA-DR ligand dataset.

Allele # ligands OWA-PSSM TEPITOPE TEPITOPEpan MultiRTA NetMHCIIpan-2.0

DRB1*0101 53 0.827 0.833 0.834 0.833 0.835

DRB1*0102 5 0.889 0.895 0.892 0.935 0.927

DRB1*0301 88 0.667 0.673 0.671 0.652 0.789

DRB1*0401 468 0.831 0.833 0.826 0.771 0.875

DRB1*0402 36 0.882 0.885 0.880 0.768 0.667

DRB1*0403 1 0.954 0.954 1.000 0.845

DRB1*0404 42 0.779 0.775 0.797 0.711 0.765

DRB1*0405 36 0.804 0.809 0.778 0.729 0.856

DRB1*0701 47 0.698 0.697 0.696 0.720 0.744

DRB1*0801 39 0.694 0.697 0.656 0.541 0.643

DRB1*0802 1 0.930 0.916 0.923 0.532 0.978

DRB1*0803 1 0.229 0.149 0.383 0.292

DRB1*0901 6 0.750 0.659 0.842 0.957

DRB1*1001 183 0.783 0.770 0.827 0.866

DRB1*1101 35 0.828 0.835 0.831 0.838 0.896

DRB1*1104 8 0.868 0.870 0.856 0.811 0.911

DRB1*1201 11 0.801 0.828 0.847 0.863

DRB1*1301 16 0.819 0.824 0.813 0.745 0.724

DRB1*1302 19 0.743 0.742 0.735 0.720 0.561

DRB1*1401 9 0.712 0.730 0.704 0.810

DRB1*1501 22 0.720 0.718 0.717 0.663 0.671

DRB1*1502 3 0.773 0.767 0.774 0.706 0.665

DRB1*1601 2 0.621 0.630 0.918 0.849

DRB3*0101 2 0.888 0.918 0.953 0.971

DRB3*0301 5 0.907 0.783 0.939 0.948

DRB4*0101 6 0.500 0.491 0.515 0.726

DRB4*0103 2 0.941 0.753 0.745 0.827

DRB5*0101 18 0.823 0.842 0.835 0.777 0.847

Average 1164 0.774 0.756 0.754 0.797

Average I 0.799 0.801 0.795 0.732 0.786

Average II 0.735 0.697 0.789 0.814

“Average” is the average over 28 alleles. “Average I” is the average over 17 alleles predictable by TEPITOPE.

“Average II” is the average over 11 alleles not predictable by TEPITOPE. The PSSMs of TEPITOPE, TEPITOPEpan and the results of MultiRTA were obtained from
their respective web servers. The prediction of NetMHCIIpan-2.0 were obtained directly from its publication.
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Table 6 Prediction performance on the HLA-DR T-cell epitope dataset.

Allele # epitopes OWA-PSSM TEPITOPE TEPITOPEpan MultiRTA NetMHCIIpan-2.0

DRB1*0101 125 0.807 0.795 0.808 0.786 0.810

DRB1*0102 4 0.790 0.761 0.792 0.822 0.879

DRB1*0103 5 0.837 0.719 0.528 0.667

DRB1*0301 173 0.632 0.637 0.640 0.655 0.683

DRB1*0401 342 0.747 0.741 0.743 0.707 0.775

DRB1*0402 33 0.575 0.574 0.571 0.521 0.570

DRB1*0403 14 0.904 0.905 0.848 0.896

DRB1*0404 46 0.732 0.732 0.738 0.715 0.744

DRB1*0405 21 0.745 0.746 0.722 0.579 0.626

DRB1*0406 6 0.766 0.753 0.869 0.741

DRB1*0407 4 0.808 0.824 0.749 0.668

DRB1*0408 2 0.930 0.930 0.930 0.999 0.986

DRB1*0701 56 0.737 0.720 0.736 0.736 0.742

DRB1*0703 1 0.905 0.911 0.915 0.707 0.896

DRB1*0801 4 0.586 0.554 0.640 0.716 0.663

DRB1*0802 2 0.848 0.866 0.850 0.685 0.754

DRB1*0803 2 0.548 0.516 0.707 0.852

DRB1*0901 13 0.729 0.697 0.636 0.738

DRB1*1001 4 0.870 0.835 0.789 0.875

DRB1*1101 88 0.752 0.745 0.751 0.703 0.815

DRB1*1102 1 0.843 0.828 0.822 0.503 0.493

DRB1*1103 3 0.333 0.328 0.480 0.510

DRB1*1104 6 0.793 0.810 0.805 0.666 0.807

DRB1*1201 3 0.876 0.887 0.862 0.970

DRB1*1301 15 0.767 0.783 0.756 0.642 0.632

DRB1*1302 10 0.832 0.809 0.813 0.781 0.860

DRB1*1303 3 0.482 0.562 0.515 0.604

DRB1*1401 16 0.718 0.781 0.697 0.789

DRB1*1404 1 0.930 0.949 0.938 0.956

DRB1*1405 2 0.861 0.807 0.848 0.839

DRB1*1501 193 0.688 0.681 0.690 0.665 0.722

DRB1*1502 20 0.611 0.605 0.608 0.570 0.681

DRB1*1503 2 0.802 0.829 0.531 0.874

DRB1*1601 5 0.684 0.699 0.721 0.724

DRB1*1602 3 0.885 0.912 0.886 0.984

DRB3*0101 12 0.875 0.833 0.883 0.895

DRB3*0202 10 0.588 0.613 0.466 0.539

DRB3*0301 1 0.988 0.885 0.906 0.966

DRB4*0101 17 0.663 0.560 0.583 0.789

DRB4*0103 1 0.990 0.990 0.992 0.991

DRB5*0101 55 0.746 0.738 0.747 0.752 0.802

DRB5*0102 1 0.909 0.870 0.752 0.987

Average 0.764 0.748 0.758 0.717 0.781

Average I 0.753 0.748 0.754 0.696 0.747

Average II 0.775 0.761 0.736 0.812

“Average” is the average over 42 alleles. “Average I” is the average over 20 alleles predictable by TEPITOPE.

“Average II” is the average over 22 alleles not predictable by TEPITOPE. The PSSMs of TEPITOPE, TEPITOPEpan and the results of MultiRTA were obtained
from their respective web servers. The prediction of NetMHCIIpan-2.0 were obtained directly from its publication.
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for the MHC II/peptide binding study. A dataset contain-
ing 41 X-ray crystallographic structures is employed to
evaluate the prediction of OWA-PSSM in identifying
binding cores. As showed in Table 7, OWA-PSSM is the

only method that correctly identifies the binding cores
for all complexes. TEPITOPEpan, MultiRTA and
NetMHCIIpan2.0 misidentify 2, 5 and 9 complexes,
respectively. For the 39 MHC II/peptide complexes

Table 7 Comparison of OWA-PSSM with four pan-specific methods in identifying MHC II-peptide binding cores.

PDB ID OWA-PSSM TEPITOPE TEPITOPEpan MultiRTA NetMHCIIpan-2.0

4E41 IGILNAAKV IGILNAAKV IGILNAAKV IGILNAAKV LIGILNAAK

1A6A MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM

1AQD WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ

1BX2 VHFFKNIVT VHFFKNIVT VHFFKNIVT VHFFKNIVT VVHFFKNIV

1DLH YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1FV1 FKNIVTPRT FKNIVTPRT FKNIVTPRT VHFFKNIVT FFKNIVTPR

1FYT YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1H15 YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH

1HQR FKNIVTPRT FKNIVTPRT FKNIVTPRT VHFFKNIVT FFKNIVTPR

1HXY YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1J8H YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1JWM YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1JWS YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1JWU YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1KG0 YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1KLG IGILNAAKV IGILNAAKV IGILNAAKV IGILNAAKV LIGILNAAK

1KLU IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV

1LO5 YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1PYW FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL

1R5I YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

1SJE VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS

1SJH VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS

1T5W YSDQATPLL YSDQATPLL YSDQATPLL SDQATPLLL YSDQATPLL

1T5X YSDQATPLL YSDQATPLL YSDQATPLL SDQATPLLL YSDQATPLL

1YMM VHFFKNIVT VHFFKNIVT VHFFKNIVT VHFFKNIVT VHFFKNIVT

1ZGL FKNIVTPRT FKNIVTPRT FKNIVTPRT VHFFKNIVT FFKNIVTPR

2FSE FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG

2G9H YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

2IAM IGILNAAKV IGILNAAKV IGILNAAKV IGILNAAKV LIGILNAAK

2IAN IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV

2ICW YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

2IPK WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL

2OJE YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

2Q6W WRSDEALPL - WRSDEALPL WRSDEALPL WRSDEALPL

2SEB MRADAAAGG MRADAAAGG YMRADAAAG MRADAAAGG YMRADAAAG

3C5J IILNHPGQI - VIILNHPGQ IILNHPGQI IILNHPGQI

3L6F YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS

3PDO MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM

3PGD MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM KMRMATPLL

3S4S YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

3S5L YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL

Correct 41/41 39/41 36/41 32/41

Correct I 39/39 39/39 38/39 34/39 30/39

Correct II 2/2 1/2 2/2 2/2

Incorrectly predicted binding cores are highlighted in bold. “Correct” gives the number of correctly identified cores over 41 X-ray structures. “Correct I” gives the
number of correctly identified cores over 39 X-ray structures whose DRB alleles are predictable by TEPITOPE. “Correct II” gives the number of correctly identified
cores over 2 X-ray structures whose DRB alleles are not predictable by TEPITOPE. The PSSMs of TEPITOPE, TEPITOPEpan and the results of MultiRTA,
NetMHCIIpan-2.0 were obtained from their respective web servers.
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whose MHC II molecules are predictable by TEPITOPE,
both TEPITOPE and OWA-PSSM can correctly predict
the binding cores. However, OWAPSSM is able to iden-
tify the binding cores of all 41 complexes correctly
regardless of whether the MHC II alleles are predictable
by TEPITOPE or not.

Discussion and conclusion
The PSSM based approaches have been demonstrated to
be a powerful technique for MHC/peptide binding pre-
diction [26,33,34]. A PSSM is a motif matrix which can
succinctly describe a MHC/peptide binding motif. The
TEPITOPE method is the best known PSSM based pan-
specific approach for MHC II binding prediction. It
determines 35 distinct pocket profiles in vitro based on
11 HLA-DR alleles. Although TEPITOPE can solely per-
form prediction for 50 HLA-DR alleles, it has been
shown to be one of the best performing approaches in
HLA-DR ligand/epitope prediction. Furthermore, it is
the best method in identifying HLA-DR binging cores.
The TEPITOPEpan method is also a PSSM based
method whose PSSMs are generated based on those 35
pocket profiles determined by TEPITOPE. TEPITOPE-
pan uses the same approach as PickPocket to compute
the similarity score between two pocket pseudo-
sequences and the weights over pocket profiles by using
BLOSUM62. Based on this approach, the similarity
score is likely to be negative, and while setting the negative
score to zero, it is probable that the similarity scores
among all pocket profiles are zero, and the weights cannot
be computed. On the other hand, OWA-PSSM does not
encounter this problem since its similarity scores and
weights associated with pocket profiles are positive.
The performance of OWA-PSSM and TEPITOPE is

similar for the alleles predictable by TEPITOPE. While
OWA-PSSM can make prediction for a much higher
number of HLA-DR molecules then TEPITOPE. In
addition, the method is extensively evaluated on five
benchmark datasets, and is shown to be the best
approach in identifying binding cores compared with
four state-of-the-art or recently proposed pan-specific
MHC II prediction approaches, TEPITOPE, MultiRTA,
NetMHCIIpan2.0 and TEPITOPEpan. Additionally, the
method performs comparably to TEPITOPE and
NetMHCIIpan2.0 in identifying HLA-DR epitopes and
ligands, and it significantly outperforms TEPITOPEpan
in identifying HLA-DR ligands and MultiRTA in the
identification of HLA-DR T cell epitopes.
Here, we develop a new MHC II binding prediction

approach, which we call OWA-PSSM. This method is a
significantly extended version of the TEPITOPE method.
In particular, we preserve the advantage of TEPITOPE.
Positions 1, 4, 6, 7 and 9 in a binding core of a MHC II
molecule are estimated to be anchor positions which

determine the peptide binding affenity. Identifying the
P1 position of the binding core is an essential step for
MHC II ligand/epitope prediction, and the TEPITOPE
method clearly reveals the MHC II molecules’ preferred
amino acids at the P1 position. As a result, OWA-PSSM
is also successful in predicting MHC II/ligands, epitopes
and binding cores by using a similar approach. For pocket
4, 6, 7 and 9, the MHC II molecules are highly poly-
morphic and the pseudo sequences in the same pocket are
highly diverse, hence the TEPITOPE method is unable to
predict those DRB alleles with pseudo sequences different
from its original 35 pseudo sequences. In this work,
through introducing a new weighting scheme that is
inspired by the OWA operator, we can make prediction
for up to 879 MHC II molecules. In addition, this method
is fast and robust in identifying HLA-DR ligands, epitopes
and binding cores.
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