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Abstract

Background: Biomedical extraction based on supervised machine learning still faces the problem that a limited
labeled dataset does not saturate the learning method. Many supervised learning algorithms for bio-event
extraction have been affected by the data sparseness.

Methods: In this study, a semi-supervised method for combining labeled data with large scale of unlabeled data is
presented to improve the performance of biomedical event extraction. We propose a set of rich feature vector,
including a variety of syntactic features and semantic features, such as N-gram features, walk subsequence features,
predicate argument structure (PAS) features, especially some new features derived from a strategy named Event
Feature Coupling Generalization (EFCG). The EFCG algorithm can create useful event recognition features by
making use of the correlation between two sorts of original features explored from the labeled data, while the
correlation is computed with the help of massive amounts of unlabeled data. This introduced EFCG approach aims
to solve the data sparse problem caused by limited tagging corpus, and enables the new features to cover much
more event related information with better generalization properties.

Results: The effectiveness of our event extraction system is evaluated on the datasets from the BioNLP Shared Task
2011 and PubMed. Experimental results demonstrate the state-of-the-art performance in the fine-grained
biomedical information extraction task.

Conclusions: Limited labeled data could be combined with unlabeled data to tackle the data sparseness problem
by means of our EFCG approach, and the classified capability of the model was enhanced through establishing a
rich feature set by both labeled and unlabeled datasets. So this semi-supervised learning approach could go far
towards improving the performance of the event extraction system. To the best of our knowledge, it was the first
attempt at combining labeled and unlabeled data for tasks related biomedical event extraction.

Background
Recently, some models of biomedical event extraction
have aroused substantial interest in bioinformatic
domain. The expressive event representation captures
extracted knowledge as structured, recursively nested,
typed associations of arbitrarily many participants in
specific roles [1]. In other words, event extraction refers
to tasks the purpose of which is extracting information
beyond the entity level. Commonly, a task of event

extraction contains identifying some actions and rela-
tions between entities [2]. There is a trigger which is
one or more tokens in every event. Different types of
events can share the same triggers and arguments [3].
The complexity of the task can be demonstrated in the
example as: “RFLAT-1: a new zinc finger transcription
factor that activates RANTES gene expression in T lym-
phocytes”. Table 1 shows that the participating system,
given the two proteins “RFLAT-1” and “RANTES”,
needs to generate three appropriately nested events.
At present, the proposed approaches to extract events

can be divided into 2 main groups: namely rule-based
and machine learning (ML)-based extraction methods.
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Rule-based event extraction systems consist of a set of
rules that is manually defined or generated from training
data. ConcordU System is an event extraction system
that is the best rule-based system in BioNLP ‘09 [4].
ML-based systems model event extraction tasks as a
classification problem. In these systems, pre-selected
candidate event triggers are classified as true event
triggers or not. Riedel et al. used the Markov Logic
approach, a statistical relational learning language, and
defined the global model declaratively [5]. UTurku sys-
tem is generic and capable of producing predictions for
every BioNLP Shared Task, during which process, ML
is used intensely, especially SVM (Support Vector
Machine), for entity recognition, entity typing and event
extraction [6]. Simultaneously, this system can separate
event extraction into multiple classification tasks, indivi-
dually detecting the trigger words defining events, and
the arguments that describe which proteins or genes
take part in these events [7,8]. In addition, the FAUST
system which is a variant of the model, exploits several
stacking models for combination using as base models
the UMass dual decomposition and Stanford event par-
sing approaches [9]. Its advantage stems from the fact
that it uses predictions of the Stanford system and
hence performs model combination [10]. David et al.
[11] attempted to combine the word sense disambigua-
tion (WSD) with a CRF approach for event trigger
recognition. As a result, they gain a high recall in the
detection of trigger words.
These aforementioned systems are all based on labeled

data and their supervised learning algorithms have been
developed and extensively studied. However, these
methods are affected by data sparseness, especially when
the size of training corpus is too small to find enough
information to assign proper weights to those low-fre-
quency or out-of-vocabulary (OOV) features [12]. For
example, multi-word expressions are seldom included in
the training feature set for their high sparseness, and
they probably should be ignored by experiment
designers, but in fact, these filtered features may have
strong classification ability in the global datasets. Fortu-
nately, there is a large pool of unlabeled data containing
much of potential information in the biomedical event
extraction domain, such as data in PubMed. We
recently proposed a biomedical event extraction method,
which generates new features by estimating proper

weights for low-frequency features from the labeled and
unlabeled data and solves the problem of data sparse-
ness [13]. This presented paper based on a semi-super-
vised learning strategy is an expansion upon [13].
Compared with [13], the expansions of this study are as
follows:
1) We made a more detailed analysis of the unlabeled

data, finding the fact that there is much noise in it.
Then we filtered the unlabeled data properly and
obtained a more specific corpus for biomedical event
extraction.
2) We utilized the deep parser Enju [14] to output the

predicate-argument structures, which contain lots of
useful information ignored in our previous study.
3) The framework of the new feature vector was

established by increasing the deep parsing features
explored by Enju.
As a result, the overall performance of our biomedical

event extraction method is improved: an improved
F-score from 66.3% to 67.6% is achieved in the stage of
the trigger detection. Meanwhile, the F-score (54.17%)
of our event extraction system have outperformed that
(53.30%) of the Uturku system, the state-of-the-art sys-
tem in biomedical event extraction.

Methods
Events can have an arbitrary number of participants
with specified roles, making it possible to capture asso-
ciations and statements where some participants occur
in varying roles or are only occasionally mentioned. Our
system extracts a 4-tuple representation of events that
includes a type, trigger, theme and cause (Table 1). This
representation was chosen to closely match the way
important events are typically mentioned in biomedical
events. An overview of the various components of our
system for extracting events is presented in Figure 1.
Given a raw stream of documents, our system extracts
named triggers in association with arguments and
nested event which are involved in the event. The study
follows the process of the UTurku system for the extrac-
tion of events, which contains trigger recognition, argu-
ment detection and post-processing steps [6,15].
We use the shallow and deep syntactic analysis tools

to analyze every sentence in the corpora, and on this
basis we make the three major processing steps: The
named triggers are recognized; the extracted events are
categorized into types; the arguments belonging to the
event are extracted.

Pre-processing
Firstly, we pre-process the corpora by making a full
dependency analysis with the GDep dependency parser
[16][17] and the deep parsing tool Enju[14]. The parsers
can output rich syntactic and semantic structure

Table 1 Example annotation

ID E1 E2

Type Gene_expression Positive_regulation

Trigger Expression Activates

Theme RANTES E1

Cause RFLAT-1
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information which can be treated as features for
machine learning. A dependency structure is a represen-
tation that denotes grammatical relations between words
in a sentence (Figure 2). A set of rules maps a parse tree
to a dependency structure. For example, subjects are
dependent on their verbs and adjectives are dependent
on the nouns they modify.

Trigger detection
Trigger word detection is put as a token labeling pro-
blem. It is different from argument detection: we treat
trigger detection as named trigger recognition, and
assigne an event class or a negative class to each token
at a time, so trigger detection can be seen as a multi-
class task which is resolved by support vector machine
(SVM) classifier. The classifier is trained from the
labeled and unlabeled data. We apply a wide array of
syntactic and semantic features in our experiment.
Among the large feature set, we call the types of fea-
tures derived from the parsers as basic features, such as
token features, N-gram features, walk subsequence

features, predicate argument structure (PAS) features.
Besides, we create some new features like triggerprotein
features (TPF) from unlabeled data. There is a corre-
sponding relationship between trigger and protein.
Hence, in trigger recognition, we simply need to find
the trigger in the sentence that contains the assigned
protein. Furthermore, a trigger can be seen as “belong-
ing” to an assigned protein. Given this kind of relation
information, a trigger can be detected by looking up a
corresponding protein in the sentence but without the
real corresponding pairs. Here we try to use the statis-
tics extracted from unlabeled data to estimate the distri-
bution of these pairs.
The training set of GE task in BioNLP Shared Task

2011 (BioNLP 2011, hereafter) is considered as labeled
data, while the PubMed abstracts (up to 2009) are unla-
beled data. The entity pairs are obtained from labeled
data while the statistics are extracted from both labeled
and unlabeled data. First of all, the scores of pairs in
labeled and unlabeled data should be separately com-
puted by a score equation which will be introduced in
the section of “Event Feature Coupling Generalization
Method”. The scores’ distribution tendency is shown in
Figure 3, from which we can see clearly that most pairs
have similar scores in labeled and unlabeled data in
spite of a small quantity of pairs not being in unlabeled
data. To obtain the high precision, we could set a
proper threshold to filtrate the low scores. But it might
lose some “special” pairs whose distribution in labeled
data is totally different from that in unlabeled data.
Therefore, instead of setting a threshold that can be
seen as a “hard” strategy, we present a “soft” one,
namely, adding the scores into feature space in order
that the high scores still have a strong impact, whereas
other features can help models to make up this bias.
To recognize the event triggers and arguments, we

choose the following 4 types of features as the basic
features (BFs) in our feature vector set:
1) Token features: Token features include the pre-

sence of words shown around the tokens, the presence
of tokens and POS tags, and the presence of stems ana-
lysed by GDep parser.

Figure 1 Processing pipeline for extracting events from biomedical documents.

Figure 2 A dependency tree for the sentence “neutrophils
were activated by phenylalanine”.
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2) N-gram features: In trigger recognition, N-gram
features include the N-grams (n = 1, 2, 3, 4) of words in
4-word-window around candidate word. In edge detec-
tion, N-gram features include the N-gram (n = 2, 3) of
words (base form+ POS) and N-gram (n = 1, 2, 3, 4) of
words between 2 entities.
3) Walk subsequence features: Walk subsequence fea-

tures focus on different structure properties of vertex
walk (v-walk) and edge walk (e-walk). A labeled rela-
tionship from a head to its modifier is a v-walk. Thus, a
direct dependency relationship between two nodes is
related. On the other hand, an e-walk shows the
immediate dependency structure around a node. A word
vertex walk (wv-walk) means that the node in vertex
walks is a word, while a POS vertex walk (POSv-walk)
means that the node is POS.
4) Predicate-argument structure features: A deep par-

ser, like Enju, can usually produce sematic structure,
such as a predicate-argument structure (PAS). This kind
of structures is typically corresponding to events of
interest and their arguments. Since PAS represents syn-
tactic relations among tokens, we take the key word that
is connected with more than 3 tokens as a PAS feature.
As shown in Table 2, we obtain a result by basic fea-

tures and get another result by adding TPF. In particu-
lar, we improved optimal F-score by up to 67.6%. WSD
system is a word sense disambiguation system for event
trigger word detection [11]. Compared to WSD system,

we obtain an 11% improvement in F-score by using the
feature set including basic features and TPF.

Event argument detection
The present study addresses event argument detection
with the task of predicting, for each trigger-protein or
trigger-trigger pair, whether it corresponds to an actual
instantiation of an event argument. Like the trigger detec-
tion, event argument detection is based on a multi-class
SVM classifier. We generate examples, which are always
directed from a trigger to another trigger or from a trig-
ger to a named protein. We assign every example to
3 types of labels: theme, cause, or a negative denoting the
absence of the relation between the two nodes.
To construct the sufficient feature set for event argu-

ment detection, we add a subset of new features to the
feature set based on the basic features mentioned in
trigger detection. We name the new type features as
Coupling Generalization Features (CGFs), which are
produced by a strategy named Event Feature Coupling
Generalization (EFCG).

Event Feature Coupling Generalization Method
Event Feature Coupling Generalization (EFCG) is a fra-
mework that can produce new features (CGFs) base on
two types of original features: example-distinguishing fea-
tures (EDFs) and class-distinguishing features (CDFs)
[18,19]. EDFs are good at indicating the specific exam-
ples, while CDFs have the strong ability to distinguish the
different classes. Here, we view the new CGFs as impor-
tant features in the argument detection, whereas EDFs
and CDFs are treated as prior features since they need to
be generalized instead of being final representations of
instances. In unlabeled data (u), the degree of relatedness
between EDFs and CDFs is defined as the feature

Figure 3 The scores of the entity pairs in labeled and unlabeled data.

Table 2 Results of trigger detection

R(%) P(%) F(%)

Basic features 57.3 54.6 55.9

WSD system 70.2 52.6 60.1

Basic features +TPF 66.1 69.8 67.6
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coupling degree (FCD), denoted by FCDt(u, e, c), which
can be seen as a higher-level feature and that can
enhance the performance of classification. The aim of
EFCG method is the transformation of FCD into CGF,
and the process of EFCG algorithm can be described as
follows:
1) INPUT: the labeled data set D = {d1, d2, ..., dm}, the

feature vocabulary F = {f1, f2, ..., fn }, the vector of
labeled data set X = {x1, x2, ..., xm } ⊆Rn, unlabeled data
set U.
2) Select EDFs from F and the EDF set is denoted by E.
3) The EDFs in E will be mapped onto the higher-

level concept set R by the map equation root (e).
4) Select CDFs from F as CDFs set, which are denoted

by C.
5) Define the type T in FCD set to estimate the relat-

edness degree between EDFs and CDFs.
6) Based on unlabeled data U and FCD type T, the

FCD value between every EDF and CDF is computed.
7) Create a new feature set G: G=R*C*T, and every

CGF is corresponding to a tuple (r, c, t), where r Î R,
cÎ C, tÎT.
8) For every instance d Î D, × Î × is converted to

CGF vector v, in which every vi Î v is computed by the
following equation:

vi = v(r,c,t) =
∑

root(e)=r

band(e, d) ∗ FCDt(U, e, c) (1)

where i is index of CGF, which corressponds to the
every tuple (r, c, t) in G. The function band (e,d) is 1 if
the feature e apprears in the feature vector of instance
d. 9) OUTPUT: CGF set G, where every CGF vector v =
{ v1, ..., vm } Rdim(R)*dim(C)*dim(T).
An example shows how FCG generates new features in

Figure 4. Here, the transformed feature set instead of f
generates EDFs and CDFs. For simplicity, in above algo-
rithm, we suppose that all the possible unions of features
are included in the F so that all EDFs and CDFs are
restricted to be chose from this set. Often, however, only
the subset of F can be used in supervised learning. Some
features that have shown poor classification performance
are ignored or assigned a little weight by algorithm
designer. In EFCG framework, we also choose a subset of
F as CDFs and EDFs set with extremely different evalua-
tion criterion. Here, “good” features mean the strong clas-
sification performance of CGF that is generated by these
features instead of the features themselves. In other
words, “bad” features in unlabeled data may become
“good” EDFs or CDFs, so that EFCG can make full use of
the features unnoticed by supervised learning.
Here, CGF aims to find the relations between two tar-

get tokens (i.e. trigger-protein and trigger-trigger). In an
example, given that words are shown by the under

sequence: (0, ..., t1, ..., t2, ..., END), where t1 indicates
the target token “target1”, t2 indicates target token
“target2”, and END indicates the end of the sentence.
1) Words dictionary: LWD = {tokens of labeled data},

and UWD = {tokens of unlabeled data}.
2) word-level N-grams dictionary: LND = {2-3 grams

of labeled data}, and UND = {2-3 grams of unlabeled
data}.
3) General Region: GR = {Left_region, Inner_region,

Right_region } = {[0, t1 -1], [t1 +1, t2-1], [t2+1, LAST]}.
4) Surrounding Region: SR = {T1_Left, T1_Right,

T2_Left, T2_Right} = {[ t1 -4, t1 -1], [t1 +1, t1 +4], [t2-4,
t2-1], [t2+1, t2+4]} - string surrounding “target1” or “tar-
get2” within a 4-token window.
5) Specific Location: SL = {m_From_T1, n_From_T2 |

m = y - t1, n = y - t2, × Î [t1 - 5, t1 +5] ∪ [t2-5, t2+5]} -
tokens or N-grams which show in specific location in SL
with the 5-word window, and y is the index of the pre-
sent string. Note that SL is slightly unlike from other
features.
6) Conjunct Location: CL = {T1_orientation

^ T2_orientation ^ space | orientation Î {Left, Right},
space = orientation(t2- t1) Î {0,1, 2, 3, 4, (5~6), (7~9),
(10~14), (15~19), (20~29), (30~39), (40~) } - union of
local elements (2 locations near each targets) in SL and
the token calculation between the 2 targets.
7) GL-BOW: Bag-of-words features extracted from

LWD ×GL, for example, “Token_In_Left_Location=-
gene”. These features neglect token location in the pre-
sent string.
8) GL-bag-of-N-grams: features from LND × GL. It

merely fertilizes the bag-of-tokens statement by bigrams
and trigrams.
9) SL-N-grams environmental targets: features from

LND × SL, for example, “Tar_Right=due to”. N-grams
are emphasized in the “indicating location”.
10) SL-N-grams with particular offsets from 2 targets:

features from LND × SL, which provides the knowledge
of particular distances from the N-grams in SL. For
example, “...pro due to tri...”, some of SL-N-grams can
be “1_From_Tar= deal”, “2_From_Tar=to”,"1_From_-
Tar=to” and “2_From_Tar=due to”. This feature pro-
vides more particular information than SL.
11) Conjunct Location N-grams: features from LND ×

CL. The feature set is the union of a subset of features
in SL and the space of 2 targets. It can provide the lexi-
cal knowledge around both targets. However, it is more
particular than SL. Thus, data sparseness is more likely
in these features.
We select features as CDF by the following equation:

score(feature) =
(t ∗ k − m ∗ n)2

(t +m)(k + n)
(2)
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where t, k, m, n are the counts of 4 kinds of instances
in the labeled data as shown in Table 3.
We select some features with high scores as CDF, the

number selection of which will
be discussed in the section of results. Then we con-

sider one type of measure:

score(e, c) =
log10(co(e, c) + b)

log10(count(e) + b ∗ log10(count(c) + b)
(3)

where e is an EDF, c is a CDF, and co(e, c) is the co-
occurrence count of e and c. After a cross validation, we
assign 1 to the smoothing factor b. We log the compu-
tation to avoid high score in a huge large data. This
measure can be treated as a modification of Pointwise
Mutual Information (PMI for short).

BioNLP 2011 task dataset
Similarly to LLL(Learning Language in Logic) and Bio-
Creative, the BioNLP 2011 also addresses bio-IE, but
uses a decisive step further toward finer-grained IE. The
BioNLP 2011 task focuses on the detailed movement of
molecules, specialty on biomolecular events. It includes
4 main tracks representing fine-grained bio-IE. Genia
task, as one of them, preserves the task definition of
BioNLP 2009, which was arranged based on the Genia
corpus. Therefore, the provided data are composed of
two collections: the abstract collection, identical to the

BioNLP 2009 data, and the new full paper collection. In
the following description, BioNLP 2011 mentioned all
means Genia task in BioNLP 2011.
The BioNLP 2011 task data were generated from the

GENIA event corpus, in which training data is derived
from the publicly available event corpus. Event types
mentioned in the task are show in Table 4. Considering
given to their value and the count of labeled instance in
the GENIA corpus, 9 event types are chosen from the
GENIA ontology. For each event type, the primary and
secondary arguments to be extracted with an event are
defined. For example, a phosphorylation event is primar-
ily extracted with the protein to be phosphorylated. As
secondary information, the specific site to be phosphory-
lated may be extracted. From the perspective of calcula-
tion, the 9 types stand for several levels of complexity.
From a view of primary arguments, the first 5 event
types in Table 4 are classified as simple event types,
requiring only one argument. The binding and regula-
tion types are more complex: Binding requires detection

Figure 4 An example of showing how EFCG generates new features.

Table 3 Representative of variable

Positive Negative

Containing feature t m

Containing no feature n k

Table 4 List of trigger types

Event Type Primary Argument

Gene expression Theme(Protein)

Transcription Theme(Protein)

Protein catabolism Theme(Protein)

Phosphorylation Theme(Protein)

Localization Theme(Protein)

Binding Theme(Protein)+

Regulation Theme(Protein/Event), Cause(Protein/Event)

Positive regulation Theme(Protein/Event), Cause(Protein/Event)

Negative regulation Theme(Protein/Event), Cause(Protein/Event)
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of more than one number of arguments, while regula-
tion requires detection of recursive event structure.

LibSVM tool
An SVM multi-class classifier, which proved to have
ability of good classification, is used for the experiment.
The LibSVM tool [20] which is one of the best multi-
class SVM tools presently available is used. The goal of
SVMs is to find a hyperplane that separates the positive
examples from the negative examples. With SVMs,
rather than defining some underlying event space, we
must instead define a set of feature functions that take
examples as input and produce what is known as a fea-
ture value. Notice that different feature functions will
result in different embeddings. Since SVMs find a
hyperplane that separates the data according to classes,
it is important to choose feature functions that will help
discriminate between the different classes. In order to
avoid overfitting, SVMs choose the hyperplane that
maximizes the separation between the positive and
negative data points. This selection criterion makes
sense intuitively, and is backed up by strong theoretical
results as well. As shown in Figure 5, the optimal hyper-
plane with maximum margin can be obtained by solving
the following quadratic programming.

min
1
2

‖ w ‖ +C
len∑

j

ξ j (4)

s.t. yj(w · xj + b) ≥ 1 − ξj
ξj ≥ 0

Here, C is the constant while ζj is called a slack vari-
able. Then, the optimal hyperplane is showed as follows:

f (x) = sign(
len∑

j

αjyjK(xj, x) + b) (5)

where aj is the lagrange multiplier corresponding, and
K(xj ,x) is called a kernel function.
Multi-class SVM works by training K (K>2) classifiers.

When training the Kth classifier, the Kth class is treated
as the positive class and all of other classes are treated
as the negative class. That is, each classifier treats the
instances of a single class as the positive class, and the
remaining instances are the negative class. We use the
linear kernel and set the parameters of shrinking and
probability estimates both to 1 in our method, while
other parameters are set to default.

Results
CDF number selection
In the experiment, we first scrutinize and adjust para-
meters in our method. To observe how CDFs affect the
result, we set the number of CDFs from 0 to 500 by
increment of 50 every time. The precision, recall and F-
score influenced by different number of CDFs are
shown in Figure 6. With the increase in the number of
CDFs, the F-score rises in general, indicating that a high
number of CDFs contain rich potential classification
information. However, above 250, the F-score changes
little. Here, we choose 400 CDFs for our experiment.

Effectiveness of unlabeled data
Another experiment is presented to find the optimal size of
unlabeled data. As shown in Figure 7, the larger the size of
unlabeled data, the higher the F-scores. However, we argue
that it more significant to find which kind of features from
unlabeled data can contribute more useful information.
The features extracted from labeled data are consid-

ered as basic features (BF). As shown in Figure 8, CGF
and TPF are added to the experiment one by one. Stated
broadly, the results show that both CGF and TPF can
help to improve the performance significantly. However,
in complex events (regulation, positive regulation and
negative regulation event), either CGF or TPF is useless.
Specifically, adding CGF makes performance worse in
negative regulation events. This mainly because regula-
tion (including positive and negative regulation) is a
directed relation and the roles of the participants are
different. Therefore, their information is complex and it
is difficult to explore these features accurately by way of
unlabeled data. Finding more effective features for the
regulation event is our future work. According to Figure
8, we find out that the performance in binding event
improves significantly. We argue that the rich informa-
tion of binding event that labeled data lacks is explored
from unlabeled data by our method.

Performance compared with other approaches
As shown in Table 5, there are evaluation results of dif-
ferent system in dataset. Some notable figures are

Figure 5 Overview of Support Vector Machine.
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Figure 6 The performance of different number of EDF.

Figure 7 The performance of different size of unlabeled data.

Figure 8 The F-score with different features.
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emphasized in bold. We reach the 3th place in BioNLP
2011, which indicates that our system is still among
state-of-the-art systems for bio-event extraction.
As we mention above, we follow the pipeline of the

Uturku system and explore the new features from unla-
beled data by our semi- supervised method. The F-score
of our system is higher than that of the Uturku system.
That is, based on the Uturku system, our system
explores more information from unlabeled data to solve
the sparseness problem. The improvement of perfor-
mance indicates that combining labeled and unlabeled
data is useful for biomedical event extraction.
From a comparative perspective, the F-score of our sys-

tem is lower than that of the FAUST system, which
obtained the best performance in BioNLP 2011. Since the
two systems utilize different method, the semi-supervised
method still has lots of room for improvement.

Conclusions
Supervised methods for biomedical event extraction are
often affected by data sparseness. In this paper, we
firstly combined labeled with unlabeled ones to solve
the problem effectively. From unlabeled data, we could
explore the information that labeled data lacks. Through
the Event Feature Coupling Generalization (EFCG)
strategy, the classified capability of the model was
enhanced to improve the performance of biomedical
event extraction.
The major contributions of this study can be written

as follows:
1) By our method, many opportunities for generating

new features is created for this task, since the results
indicate that a lot of sparse features filtered by super-
vised learning can perform well in our system.
2) We are the first to use semi- supervised method to

resolve the task of biomedical event extraction. We
explored several useful types of features and get state-
of-the-art performance in BioNLP 2011 datasets.
3) By taking analyze for the different features in semi-

supervised learning we find some interesting results.
4) Our results indicate that our method based on

semi-supervised learning can performance well on
biomedical event extraction.
For future work, it is extremely important to identify

which kinds of unlabeled data
are more suitable to biomedical event extraction and

contribute more to the performance. Finally, the tradeoff

between recall and precision is also a topic for future
research.
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