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Abstract

suitable when unreliability is present.

Background: Many computational approaches have been developed to detect protein complexes from protein-
protein interaction (PPI) networks. However, these PPl networks are always built from high-throughput experiments.
The presence of unreliable interactions in PPl network makes this task very challenging.

Methods: In this study, we proposed a Genetic-Algorithm Fuzzy Naive Bayes (GAFNB) filter to classify the protein
complexes from candidate subgraphs. It takes unreliability into consideration and tackles the presence of unreliable
interactions in protein complex. We first got candidate protein complexes through existed popular methods. Each
candidate protein complex is represented by 29 graph features and 266 biological property based features. GAFNB
model is then applied to classify the candidate complexes into positive or negative.

Results: Our evaluation indicates that the protein complex identification algorithms using the GAFNB model
filtering outperform original ones. For evaluation of GAFNB model, we also compared the performance of GAFNB
with Naive Bayes (NB). Results show that GAFNB performed better than NB. It indicates that a fuzzy model is more

Conclusions: We conclude that filtering candidate protein complexes with GAFNB model can improve the
effectiveness of protein complex identification. It is necessary to consider the unreliability in this task.

Background

A protein complex is a group of two or more associated
polypeptide chains. Proteins in a protein complex are
linked by non-covalent protein-protein interactions
(PPIs) and together participate a certain biological process.
[1]. Protein complexes are a cornerstone of many biologi-
cal processes and together they perform a vast array of
biological functions [1]. So identifying protein complexes
is crucial to understand the principles of cellular organiza-
tion and predicting protein functions.

A number of computational methods can be used to
detect protein complexes from a PPI network[2], a gra-
phical map of an entire organism’s interactome which is
constructed from PPI knowledge base by considering
individual proteins as nodes, and the existence of a
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physical interaction between a pair of proteins as a link.
For example, CMC (clustering-based on maximal cli-
ques)[3] discovers complexes from the weighted PPI
network based on the maximal cliques. COACH[4] is a
core- attachment[5] based method to detect protein
complexes from PPI networks, where protein-complex
cores from the neighbourhood graphs are mined and
then formed protein complexes by including attachments
into cores. Many graph-clustering methods can obtain a
number of candidate protein complexes. However, the
precision of these existing methods are only nearly 0.4.
They got many false positive protein complexes in their
results. Hence, classifying the true protein complexes
from these results is a best way to improve the perfor-
mance of protein complex detection methods. L. Chen,
et al try to classify the protein complexes from candidate
subgraphs with enriched features[6], where each protein
complex is represented with a feature vector derived
from the corresponding complex graph and biological
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properties of the constituent proteins. However, the
current PPI knowledge base generally is built from high-
throughput techniques, such as mass spectrometry and
yeast two-hybrid assays. The PPI information gathered
can be unreliable and incomplete[7]. The common classi-
fiers may have limitedness due to the presence of noise
in PPI network. To address the noise issue, our previous
method [8] proposed a genetic algorithm fuzzy Naive
Bayes (GAFNB) model to do the classification. For
improving the performance of identifying protein com-
plexes, here we integrated GAFNB model as a filter in
the process of protein complexes detection. We first got
candidate protein complexes based on existed protein
complexes detection methods. Each candidate subgraph
is represented by a feature vector that includes 29 graph
features and 266 biological property based features [6].
Then the genetic algorithm fuzzy Naive Bayes (GAFNB)
model is trained to classify candidate protein complexes
into positive or negative using positive protein complexes
determined through experiments and negatives generated
randomly. After filtering the results of protein complexes
detection methods through GAFNB model, the precision
of existing methods are improved.

The rest of the paper is organized as follows: In the
method section, we present a general framework of
identifying protein complexes with our GAFNB filter.
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The experiment is described next. Experimental results
and discussion are presented at last.

Methods

For a given organism, the proposed protein complex
identification approach contains two steps (Figure 1).
First step is to detect candidate protein complexes
through some state-of-the-art protein complex detection
algorithms. Second step is to filter the candidate protein
complexes by GAFNB model. In the following, we first
introduce the two state-of-the-art protein complex
detection algorithms for identifying protein complexes.
Then detailed GAFNB model is presented.

Candidate protein complexes identification algorithms
We implement two of the state-of-the-art protein complex
identification algorithms here: COACH and CMC. The
results of these existing computational methods provide
candidate protein complexes for filtering.

COACH]I4] is a core-attachment[5] based method to
detect protein complexes from PPI networks, where pro-
tein-complex cores from the neighbourhood graphs are
mined and then formed protein complexes by including
attachments into cores. Proteins within the same protein-
complex core detected by this method have high func-
tional similarity and tend to be co-localized.

Protein complex detection methods
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Figure 1 Flowchart of our method. First step is to detect candidate protein complexes through some state-of-the-art protein complex
detection algorithms. Second step is to filter the candidate protein complexes by GAFNB model.
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CMC[3] discovers complexes from the weighted PPI
network based on the maximal cliques. It first uses an
iterative scoring method (AdjustCD) to assign weight to
protein pairs, and the weight of a protein pair indicates
the reliability of the interaction between the two proteins.
Then generates all the maximal cliques from the
weighted PPI networks. Finally removes or merges highly
overlapped clusters based on their interconnectivity to
get protein complexes.

GAFNB model

After obtaining the candidate protein complexes, we need
a filter to classify the candidates into positive or negative.
However, the feature values in candidates are unreliable
because PPIs are generally obtained from high-throughput
experiments. The traditional classifier may not be suitable
for this task. Our previous work has shown GAFNB
can handle unreliable information in features[8-11]. Hence
we applied GAFNB model to filter the candidates for
improving performance of protein complexes detection.

A. Fuzzy Certain Feature Membership (FCFM)

Because PPI data has some false positives and false
negatives, the features value of protein complexes based
on the PPI data can be uncertain. For example, the density
of candidate protein complexes is calculated by edges
(PPI) in the subgraph. So the density value is not certain.
We call such features as Fuzzy Features. In contrast the
reliable features are Certain Features. The uncertainty
about the values for a feature can be represented as a
matrix, wherein an element is the membership of a
Certain feature value in a Fuzzy value (Table 1). As shown
in Table 1, X;; is the membership of Certain feature value
of density (<0.5) in Fuzzy feature value (<0.5). The
matrices for all features are orthogonal. We refer to such
matrices as Fuzzy Certain Feature Membership (FCFM).

B. GAFNB model

Let P = {p,} be a set of candidate protein complexes with
features A = {o;} and D = {d,} a set of classes for candi-
date protein complexes. Let I be a subset of S represents
some candidate protein complexes. The model is trained
in the following steps using positive protein complexes
determined through experiments and negatives generated
randomly.

1) Compute probabilities of certain feature values We
define the conditional probability of o; = v;; for class dj
using Laplace correction [12] as follow:

flvinde)+1
f(di) + lai]

where {v;} is the set of values for feature a;, fiv;; N dy)
is the frequency count of instances in class d; having o;
= v; , fldi) is the number of instances in the dataset
belonging to class dy, and |o;| is the number of values
possible for feature ¢;.

p(ai = vjldy) = 1)
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Table 1 Fuzzy certain feature membership

Certain feature value (Graph

density)
Fuzzy feature value (Graph density) <0.5 >0.5
<0.5 Xi X1z
=20.5 X1 X2

2) Compute optimal FCFM using Genetic Algorithm
(GA) FCFM is a set of matrices that represent the fea-
tures as mentioned above [11]. Each feature has one cor-
responding matrix, and an element in the matrix is the
membership of a Certain feature value in a Fuzzy value.
We first create a set of FCFMs. Such FCFMs are referred
to as the population. The matrix of corresponding FCFM
is initialized to an identity one in the population.

The Genetic Algorithm is applied on the FCFM popula-
tion for calculating the membership of fuzzy feature value
in the certain feature value. Three basic steps of GA are
performed in several iterations (see Figure 2).We consider
each iteration as a generation. The basic steps of selection,
crossover and mutation are described below:

a. Selection. Each FCFM gets a score from a fitness
function. The high ranking ones are selected (see Figure 3).
The detailed of fitness function is defined in our previous
paper [11].We performed n-fold cross validation to obtain
a set of n accuracy measures from Naive Bayesian model.
The probability of Fuzzy feature is calculated by the prob-
ability of Certain feature combining with the given FCFM.
The mean and standard deviation of the classification
accuracies is computed for calculating the score of FCFM
as follow:

score = mean — standard deviations (2)

b. Crossover. The selected FCFMs are referred to as par-
ents. The corresponding matrices are randomly combined
from two parents to generate new members (children).

| Initialization |
Mutation

| Selection

| Termination

Figure 2 Genetic Algorithm. Tree Basic steps of GA: selection,
crossover and mutation.
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Figure 3 Computation of Fitness score. Steps of calculating
Fitness score.

Then the FCFMs who were not selected are replaced by
child FCFMs. The instance of crossover operations of
FCEM is shown in Figure 4. Two attributes density and
mean degree of candidate protein complexes have Fuzzy
feature value in this task.

c. Mutation. An element of FCFM matrix is randomly
selected and altered to a random value in the interval
[0, 1]. The other elements in the same row also need to
change by calculating for maintaining the orthogonality
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of the matrix. The number of mutations performed is
determined by a parametric study. Also take the feature
density and mean degree for examples, Figure 5 illus-
trates the mutation operations on the FCFM.

In summary, new population members are generated

after each iteration. Figure 6 described the instances
generated new population in the second iteration of GA.
Finally, the scores of the population members converge
to a constant value after some iterations. The FCFM
with the highest score is selected for computing prob-
abilities of fuzzy events.
3) Compute probabilities of fuzzy events The member-
ship value of Certain feature values v;, in Fuzzy feature
value is denoted as p, j; vix[9,10]. Conditional probabil-
ities of fuzzy-feature values (y;) for particular classes
(dy), are calculated as,

p <a4 = U_lldk> = pr(ai = Uixldk)ﬂuv_vix (3)
1 1

Y

Marginal probability of fuzzy feature value vj; is,

P (v) =D PWiuy vi @)
U] ij
4) Inference When the feature of instances (candidate

protein complexes) is fuzzy (I), the posterior probability
for a class of this instance (dy) is calculated using,

I—[ u_velp(y_,ldk) 5)
P(dell) = P(dy) "7
(drlI) = P(dy) P(I)
Since the denominator P(I), is common for all candi-
date protein complexes, it is dropped. Note that the

Subgraph density
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Figure 4 Crossover operation for the example FCFM.
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Figure 5 Mutation operation for the example FCFM. This has been implemented as a two steps process. In the first step a), a parameter is
randomly selected and its value is randomly changed to a value in the interval [0, 1]. In the second step b), the parameters in the row of the
parameter changed in the previous step, are divided by their row sum, in order to maintain their sum as equal to 1.

posterior probability is directly proportional to the label

score.

P(dell) o P(de) | o P )

Experiments

We plug in the GAFNB model as a filter in the process
of protein complexes detection for improving the per-
formances. For evaluating ability of dealing with fuzzy
feature value, we first compared GAFNB model with
Naive Bayes on two datasets. One ten-fold cross valida-
tion run was performed for both models on each of the

(6)

datasets. The framework of our study is illustrated in
Figure 7. Next, we combined GAFNB model with the
state-of-the-art methods of protein complexes detection
(CMC and COACH) to illustrate the utility of GAFNB
filter.

Experimental data

We downloaded yeast protein interaction data from DIP
[13] with a total of 17,201 PPI pairs. The protein com-
plex data was downloaded from a public repository
located at http://www.cs.cmu.edu/~qyj/SuperComplex.
It consists of 493 protein complexes from MIPS [14]
and TAP-MS [15] (size >2).

\

id FCFM Score Whether
selected
Subgraph density Mean degree
<0.5 20.5 <5 25
1 <05 1 0 < 0 0.57 NO
205 0 0 25 0 1
Subgraph density Mean degree
<0.5 20.5 <5 25
: <0.5 0.9 01 | <5 0.6 0.4 0:04 A
20.5 0 1 25 0 1
Subgraph density Mean degree
<0.5 20.5 <5 25
3 <0.5 0.7 03 |<5 0.9 0.1 0.45 NO
20.5 0 1 25 0 1
Subgraph density Mean degree
<0.5 20.5 <5 25
4 <0.5 1 0 < 1 0 0.58 YES
20.5 0.5 0.5 25 0 1
Figure 6 Population of FCFM in second iteration of Genetic algorithm. Member 1 has escaped mutation in the first iteration. Since
members 2 and 5 have high scores they have been selected. 1 and 3 will be deleted and they will be replaced by progeny generated by
crossover and mutation.
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Figure 7 Flowchart of GAFNB evaluation.

Evaluation matrix

Since the benchmark of protein complexes is not com-
plete and lots of negative protein complexes in the real
world, we prefer to get more true protein complexes as
fast as possible. The Lift [16] measure is a good choice
for evaluating this task. When ranking the prediction
score of a classifier, the ratio of known positives in top n
is called estimated precision (EP). The baseline precision
(BP) is the ratio of the known positives over the total
number of samples in the data set. The Lift is defined as
follows,

Lift = EP/BP 7)

which shows how fast the classifier obtains positives.

Besides the Lift value, we also chose the Receiver
operating characteristic (ROC) curve and the area under
the ROC curve (AUC) values for evaluating our model
[17]. ROC curve is a graphical plot which illustrates the
performance of a binary classifier system as its discrimi-
nation threshold is varied.

We followed existing approaches [4,18,19] to evaluate
the experimental performance of protein complexes
identification. Equation 8 calculates the neighborhood
affinity score NA(p,b) between a predicted cluster pe P
and a real complex be B, where P is the set of predicted
complexes by a computational method and B is the set
of real ones in the benchmark.

Vo NV

A(p, =
NA(p, b) V| x 1Vl

(8)

In equation 2, |V,| is the number of proteins in the
predicted complexes and |V},| is the number of proteins
in the real complex. If NA(p,b)>w, a real complex and a
predicted complex are considered to be matching (o is
usually set as 0.20 or 0.25) [2].

After all real complexes and predicted clusters have
their best match calculated according to their NA
scores, precision, recall, and F-measure are applied to
assess the methods:

N = |{plp € p.3b € B,NA(p, b) > o} 9)

N = |{blb € B,3p € P,NA(p, b) > o} (10)
N N

Precision = ", Recall = b (11)
|P| B

F =2 x Precision x Recall/(Precision + Recall) (12)

N, is the number of predicted complexes that match
at least 1 real complex, and N, is the number of real
complexes that match at least 1 predicted complex [2].

GAFNB performance evaluation

For training our model, we need the negative data. How-
ever, it is rare to find a confirmed report of non-protein
complexes. Hence, we randomly selected proteins in the
PPI network for generating negative protein complexes.
We evaluate our model on two datasets: a balance data-
set, containing 493 positive and 493 negative protein
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complexes, and an unbalance dataset having 493 positive
and 9,878 negative protein complexes. The ratio of posi-
tives to negatives is 20:1. It represents the real life sce-
nario where positive protein complexes are very rare.

Following a previous study [6], each protein complex is
represented by a 295- dimensional feature vector. These
include 29 graph features and 266 biological property
based features. The graph features are extracted from the
subgraph which formed by constituent proteins in the
sample. The biological properties include biochemical
properties, protein length and physicochemical proper-
ties. Biochemical properties include amino acid composi-
tions and secondary structure, while physicochemical
properties include hydrophobicity, normalized van der
Weaals volume, polarity, polarizability and solvent accessi-
bility(for details, please see ref [6]). Let a complex con-
sists of n proteins, the mean and maximum biological
feature values of n proteins are taken as corresponding
complex feature values.

Feature selection is the process of selecting a subset of
relevant features for use in model construction. It can
improve model interpretability, shorten training time
and enhance generalisation by reducing overfitting.
There are two common categories of feature selection
algorithms: filters and wrapper. Filter methods produce
a feature set which is not specific type of predictive
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model, such as information gain, chi-square test. It eval-
uates each feature individually. While Wrapper methods
usually provide the best performing feature set for that
particular type of model. Since the model is fixed in our
study, we chose wrapper method to select features.
However, it is very computationally intensive. If the
number of features is n, the number of possible feature
sets is 2". Hence many popular search approaches use
greedy hill climbing and best first, which iteratively eval-
uates a candidate subset of features, then modifies the
subset and evaluates if the new subset is an improvement
over the old [20]. In our study, we used WEKA’s Wrap-
per selection [21] to find a proper feature subset for
Naive Bayes model. It started from the empty set of
features and used a forward best first search with a stop-
ping criterion as five consecutive fully expanded non-
improving.

Protein complexes identification

We chose 2 different state-of-the-art methods to get
candidate protein complexes for GAENB filtering. CMC
and COACH are implemented on DIP network. For
COACH, the argument was set to 0.225, as mentioned
in their paper as mentioned in their paper[4]. CMC is
implemented on a revised and weighted network by
AdjustCD, the top 10000 PPI pairs are selected and the
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Figure 8 Overlap of selected features subset in balance dataset.
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Figure 9 Overlap of selected features subset in unbalance dataset.

two arguments were both set to 0.25. We chose a balance
dataset, containing 493 positive and 493 negative protein
complexes for our experiment. We selected One five-fold
cross validation run was carried out for GAFNB model.
Each time four-fold is for training model and one fold is
for testing final performance of protein complexes. In the
evaluation of protein complexes identification, we first
filtered out complexes whose NA score are above 0.5 in
matching the four fold complexes, then calculate the
performance of the 1 fold data. The average performance
is calculated for comparison.

Results and discussion

GAFNB performance evaluation

A. Feature selection

The dataset is randomly split into 10-sets. Each set is
selected in turn as the test set and the remaining sets
are combined to form the training set for WEKA Wrapper
algorithm. Hence, we had ten optimal features sets based
on Naive Bayes classifiers for each dataset (balance dataset
and unbalance dataset). Figure 8 shows the overlap of ten
optimal feature subsets based on balance dataset. Only the
feature weight edge variance with missing edge is selected
for 10 times. The similar results in unbalance data as
shown in Figure 9. Three Features (weight edge mean with
missing edge, topological change 0.3 0.4 and degree max)
are selected for 10 times. All this features that selected for

ten times are graph topological features. While biological
property features are different in each run. This is prob-
ably because some of them are correlated and sensitive to
training data.

B. Evaluation results

Ten-fold cross validation was run for evaluating the per-
formance of GAFNB model. Table 2 show the Lift values
of NB, GAFNB with 10, 30 and 50 generations on balance
dataset. The Lift value of GAFNB with 50 generations is
always higher than that for NB on balance dataset.
GAFNB-50 got 2.01 Lift value in top 20, it significantly
improved than NB. The more trained generations, the
larger Lift value is. The reason is probably that the models
given more generations are more optimized. The similar
results are also obtained in unbalance dataset (Table 3).
When the number of generations is above 10, the per-
formance of GAFNB is always better than NB. We also

Table 2 Lift value of GAFNB and NB in small balance
data

NB GAFNB GE = 10 GAFNB GE = 30 GAFNB GE = 50

Top 10 196 1.94 1.96 1.98
Top 20 192 1.92 1.92 1.95
Top 30 187 1.85 1.87 1.87
Top 40 1.77 1.77 1.78 1.795
Top 50 1676 1.68 1.7 1.704
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Table 3 Lift value of GAFNB and NB in large unbalance
data
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Table 4 AUC of NB and GAFNB in balance data and
unbalance data

NB  GAFNB GE = 10 GAFNB GE = 30 GAFNB GE = 50

Top 10 1563 16.23 16.63 16.63
Top 20 1423 1423 14.73 14.73
Top 30 1189 1202 12.69 13.36
Top 40 1072 11.22 1142 11.62
Top 50 966 1022 10.54 10.5
Top 60 888 912 9.55 9.39
Top70 816 833 85 8.65
Top 80 754 752 7.79 797
Top 90 704 0692 7.19 7.28
Top 100 647 6.53 6.77 6.93

evaluated our model using AUC measure (Table 4). The
AUC of GAFNB is also better than that of NB both
in balance and unbalance data. Increasing with the num-
ber of generations, the AUC of GAFNB gets better in
balance data. While it is different for unbalance data,
the AUC of GAFNB-30 is greater than that of GAFNB-50.
It is possibly because the model was over fitted or a
particular cross-validation set might have been localized
to a local minimum. The ROC curve also reflected the
better performance of GAFNB as shown in Figure 10.
In the unbalance data, ROC curve of GAFNB is always
higher than NB. While in the balance data, the true
positive rate (TPR) of GAFNB is above that of NB

AUC NB GAFNB GAFNB GAFNB

GE =10 GE = 30 GE = 50

Balance data 09131 09165 09192 0.9202
Unbalance data 0.8998 0.9057 09127 09120

when false positive rate (FPR) > 0.1.In summarize, all
this indicates that performance of GAFNB is better
than NB. A fuzzy model is more suitable when unrelia-
bility is present.

Protein complex identification

The comparison results show that the precision and
F-value for COACH increased from 0.3387 to 0.4852
and 0.4465 to 0.5574, respectively, when filtering its
results with GAFNB model over original ones (Table 5,
Figure 11). However, there was a slight decrease in the
recall (from 0.6551 to 0.6548). The generation value is
chose 30 here. The feature subset was selected by
WEKA based on balance data as mentioned in Figure 8.
After filtering results of CMC with GAFNB model, the
precision and F-value of CMC increased from 0.4055 to
0.496 and 0.4984 to 0.5611, respectively. There was also
a slight decrease in the recall (from 0.6466 to 0.6459)
when using GAFNB filtering (Table 5, Figure 12).
Generally, the Precision and F- measure increased when
filtering them with GAFNB model. It indicates that

dataset=balance data

TPR

GAFNB GE=10
GAFNB GE=30
— GAFNB GE=50
Mavie Bayes

03 L L m n
0 02 0.4 06 08 1

FPR

Figure 10 The ROC of NB and GAFNB in balance and unbalance data.

dataset=unbalance data

TPR

03 -
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Table 5 Performance Comparison CMC, CMC+GAFNB,
COACH and COACH+GAFNB

Precision Recall F-measure
COACH 0.338688 0655172 044654
COACH+GAFNB 048524 0.654792 0.557408
CMC 0405479 0.646552 0498395
CMC+GAFNB 0495997 0.645936 0561122

GAFNB model can filter out some false positives. Since
existing protein complexes identification methods only
consider graph structure of PPI network, GAFNB model
incorporate many biology features to filter out false
positives. While CMC predicted only 365 candidate pro-
tein complexes, filtering out some complexes can harm
the recall. The more candidate protein complexes from
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existed identification methods, the better performance
of GAFNB filter has.

Evaluation of the contribution of each type feature
toward protein complex identification will be done in
the future. Some of our predicted complexes do not
match any complex in the benchmark complex set. We
found that the predicted complexes have high biologi-
cal significance, as computed using P value, and high
local density, as shown in Figure 13. They may be true
complexes that are as yet undiscovered. The P values
were calculated with the SGD’s GO::TermFinder [22].
A low P value of a predicted complex generally indi-
cates that the collective occurrence of these proteins in
a complex does not occur merely by chance, and thus
the predicted complex has a high statistical probability
of being real.

Recall

Precision

0.7
0.6
u COACH
m COACH+GAFNB
Precision Recall F-measure
Figure 11 The performance comparison of COACH and COACH with GAFNB filter.
A\
N
0.7
uCMC
m CMC+GAFNB

F-measure

Figure 12 The performance comparison of CMC and CMC with GAFNB filter.
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Figure 13 Some false positive complexes with low P-Value.

Conclusions

In this paper, we plug a GAFNB model in the process of
protein complexes detection. The candidate protein
complexes from existed methods are filtered by our
GAFNB model. Results show that the performance of
protein complexes identification methods are improved
using our GAFNB filter and the GAFNB model is more
suitable when unreliability is present. In the future, we
will apply our genetic algorithm fuzzy Naive Bayes model
to deal with the other task with fuzzy features.
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