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Abstract

Background: Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular
processes. The availability of interactome data has catalyzed the development of computational approaches to
elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a
significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been
adopted as a benchmark for protein function prediction on the genomic scale.

Results: We propose a computational approach, called M-Finder, for functional association pattern mining. This
method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an
interactive web application tool that visualizes a functional association network linked to a protein specified by a
user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-
throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess
two advanced semantic similarity metrics which quantify the functional association level of each interacting protein
pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement

to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs.
Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated
with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network
of the query protein. The output network size can be flexibly determined by parameters.

Conclusions: M-Finder provides a useful framework to investigate functional association patterns with any protein.
This software will also allow users to perform further systematic analysis of a set of proteins for any specific
function. It is available online at http://bionet.ecs.baylor.edu/mfinder

Background

PPI data have a central role in understanding functional
behavior of proteins. Recent high-throughput techniques
[1,2] have generated the interactome, an entire set of PPIs
on the genomic scale. The accumulative PPI data sets of
several model organisms are publicly available in a number
of open databases [3]. Availability of interactomes
has introduced a new paradigm towards functional
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characterization of proteins [4,5]. However, the high-
throughput experimental and computational methods
have also made their outcomes less reliable, causing the
presence of a large fraction of false-positive interactions.
Therefore, curation of current PPI data sets by integration
of other data sources has been strongly demanded [6,7].

In the last decade, a wide range of computational algo-
rithms have been introduced to predict protein complexes
or functional modules from genome-wide PPI networks
[8-12]. A functional module represents a set of proteins
which participate in the same biological processes. Because
of unreliability of the PPI data set, integrative approaches
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have also been applied to uncover functional organizations
and their structures which are hidden in the PPI networks
[13]. As one of the integrative approaches, the functional
association level (or functional consistency) between inter-
acting proteins can be quantified by a semantic similarity
measure which represents a model for measuring close-
ness in meaning between two or more ontological terms.
The semantic measures may be extended to proteins by
using the terms to which they are annotated [14]. The use
of GO and its annotations [15] has been commonly sug-
gested to compute the semantic similarity of each interact-
ing protein pair. Higher semantic similarity between two
sets of GO terms of two interacting proteins, respectively,
indicates that the proteins are more closely associated
with each other in terms of their functions. Although
there exist some unreliable sources on GO annotation
data (e.g., the results from high-throughput experimental
and computational methods), they are often adopted as a
benchmark for functional characterization of proteins
because of their wide coverage on the genomic scale over
various model organisms.

A previous study [16] proposed a computational
approach for functional association pattern mining. The
proposed method employs a two-step strategy. First, up-
to-date PPI data sets are extracted from the BioGRID
database [17] and weighted by two advanced semantic
similarity metrics, called simICNP and simICND. In this
article, we evaluate their performance by comparing to
other previous methods. We investigate whether each
interacting pair agrees on other biological features, such
as sequence similarity, the presence of common Pfam
domains, and core PPlIs.

Second, the core of functional association pattern
mining is an information flow-based algorithm that runs
on the weighted genome-wide PPI network. When a pro-
tein is given by a user, this algorithm generates a group of
proteins functionally associated with the protein and their
functional links by random walk simulation. Since this
algorithm has the advantage of being remarkably efficient,
it is well-applicable to web-based tools. In this article, we
introduce web application software, called M-Finder, that
reconstructs a functional association network from a pro-
tein specified by a user. This interactive web-based tool
takes a protein entered by a user in a query (using sys-
tematic names or gene symbols as protein identifiers) and
visualizes a network generated by dynamic information
propagation starting from the query protein. The visua-
lized network represents a functional linkage pattern asso-
ciated with the protein of interest. The output network
size can be flexibly determined by the parameters that a
user specifies. Moreover, M-Finder provides detailed onto-
logical and experimental information of each interactor
and each interaction, which can be obtained through the
hyperlinks on the visualized networks. M-Finder will allow
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users to characterize functional mechanisms of proteins
on the genomic scale in a systematic perspective.

Methods

Semantic similarity

Survey of semantic similarity methods

An ontology provides well-defined, structured and compu-
table semantics of domain knowledge [18]. Because of the
need for consistent description related to genes and gene
products across species, GO has been launched by a colla-
borative effort to build complete ontologies in the biologi-
cal domain [19]. Semantic similarity is a function to
measure closeness in meaning between ontological terms
[14]. Over the past few years, various methods to compute
semantic similarity using GO and its annotation data have
been proposed [20-22]. The semantic similarity scores
have been applied to quantify functional similarity
between proteins. According to the components used in
GO, we can group the existing methods into four broad
categories: edge-based methods (measuring path length
between two terms), node-based methods (counting
common ancestor terms between two terms), annotation-
based methods (measuring information contents of two
terms), and integrative methods.

Suppose we measure the semantic similarity between
two GO terms t; and ¢, having the annotation of two pro-
teins of interest, respectively. First, edge-based methods
explore the paths between GO terms in a DAG (Directed
Acyclic Graph) structure of GO. For instance, we can
compute the shortest path length between ¢; and t,. Since
each ontology has a different scale, the shortest path
length between two terms can be normalized by the ontol-
ogy depth, i.e., the greatest length among the shortest
paths from the root to leaf terms. Another example in this
category is to measure the depth to the most specific com-
mon ancestor term (called SCA) of ¢; and £,. The greater
depth to SCA indicates higher semantic similarity between
t; and £,. This method can be normalized by the average
depth to the individual GO terms, ¢; and £,. However, it
has been observed that these methods are not appropriate
for assessing functional similarity of proteins because GO
has inherent complex relationships among GO terms and
it cannot be guaranteed that the edges in GO represent
the same quantity of specificity.

Second, node-based methods measure the overlap
between two sets of ancestor terms of ¢; and t,, respec-
tively [23]. The greater intersection of the two sets, the
higher semantic similarity between t; and t,. This
approach can be normalized by the union of two ancestor
term sets of ¢; and £, called simUI [24].

C(tl) N C(tz)

Simgimur (1, t2) = C(n)UC(t)’

where C(t;) is a set of all ancestor terms of £;.
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Third, annotation-based methods utilize the number of
annotating proteins on each GO term to infer the term
specificity. In Information Theory, information content of
a concept c is defined as the negative log likelihood of c. In
the same manner, information content of a GO term ¢; can
be described as - log P (¢;), where P (z;) is the proportion of
annotating proteins to ;. In order to make information
contents of any GO terms represent their specificity, if a
protein is annotated to f;, we should annotate the protein
to all ancestor terms of ¢; on the paths towards the root.
Then, the smaller number of annotating proteins a GO
term has (i.e., the greater information content it has), the
more specific it is. The root term of GO is the least speci-
fic because it has the maximum number of annotating
proteins. Resnik’s method [25] computes the semantic
similarity between ¢; and ¢, by the greatest information
content of common ancestor terms of ¢; and £,. In other
words, this method estimates the specificity of SCA.

max (—log P(tp)),

SimResnik(tl ’ tz) =
toeC(t1,12)

where C(¢, £,) is a set of all common ancestor terms of
t; and £,. Lin [26] proposed a normalized formula of
Resnik’s method by the average information content of ¢;
and .

2 x logP(to) >

impin(t1,6) =
simun(t, 1) = max <log P(t1) + log P(ts)

Jiang and Conrath [27] calculate differences of the infor-
mation contents between SCA and the individual GO
terms, ¢; and ¢, and measure the semantic similarity
between ¢; and ¢, by the inverse of the differences. The
smaller the differences of the information contents
between SCA and ¢, and between SCA and %, the more
similar ¢, and £,.

1

imy;, t1,t) = . .
simjiang (1, 12) ming ccg,m (2 % log P(to) — log P(t;) — log P(t2)) + 1

Schlicker et al. [28] proposed a combined method of
Resnik’s and Lin’s methods, which is called simRel. If
SCA is defined as the term where two paths towards the
root from t; and t, converge, multiple SCAs of ¢; and £,
generally occur in a DAG structure since each GO term
has multiple parent terms. Couto et al. [29] defined a set
of all SCAs of pairwise paths towards the root from ¢;
and t, as common disjunctive ancestors. They proposed
add-on semantic similarity methods, GraSM which
averages the information contents of common disjunctive
ancestor terms and DiShln which is a slight modification
of GraSM [30].

Finally, many integrative approaches of two different
categories have recently been proposed to achieve higher
accuracy in measuring functional similarity of proteins.
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Wang et al. [31] introduced a combination of the nor-
malized node-based method and the edge-based
method. Their semantic similarity measure, called
G-SESAME, scores a protein pair by the common GO
terms having the annotations of the proteins, but gives
different weights to the common GO terms according
to their depth. Pesquita et al. [32] proposed simGIC
which integrates the normalized node-based method
with information contents. Instead of counting the
common terms, simGIC sums the information contents
of the common terms.

> e C(u)n C(i) log P(t;)

Simg; t1,1) = /
sszIC( 1 2) Z be C()U Clo) lOg P(tj)

where C(t;) is a set of all ancestor terms of #;. IntelliGO
[33] integrates the edge-based method with information
contents as weight. Jain and Bader [34] proposed an inte-
grative approach, called TCSS, which integrates a cluster-
ing technique with a semantic similarity measure.
Clustering of GO terms yields a set of subgraphs of GO.
Semantic similarity is weighted to allow for inclusion of
two terms in the same subgraph.

Previous experiments [32,34] have shown that Resnik’s
method (an annotation-based method), simUI (a node-
based method), and simGIC as a combination of Resnik’s
and simUI have relatively good performance. We listed all
methods in the four categories in Table 1.

Our aim is to quantify functional similarity between two
proteins using semantic similarity scores of GO terms.
Since each protein is typically annotated to multiple GO
terms, a single semantic similarity score between two
proteins, p; and p,, should be derived from multiple
semantic similarity scores between two sets of GO terms,
S1 and S,. Three different ways are commonly used for
aggregating semantic similarity scores between pairwise
combinations of the GO terms having the annotation of
p1 and p,: averaging, maximum, and the best-match
averaging (BMA). The averaging method is to compute
the average semantic similarity score of all possible pair-
wise combinations of the terms in S; and S,.

Ztl €81,6€8; Sim(tl ’ tz)

Simavg(pll pZ) = |Sl| « |Sz|

The maximum method is to select the maximal
semantic similarity score out of them.

max

sim(tl, tz).
€51, €S,

Simmax(pll Pz) =
Finally, we can compute the average of all pairwise
best-matches [35] such as:

_ 2 nes MaXpes,sim(ty, ) + - pes, maxy es, sim(1, t2) (1)

simppa(p1, p2) 1S1] + 1821
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Table 1 Summary of semantic similarity methods in four categories.

Method Description
Edge-based

Path-length Path-length between two GO terms

Depth Depth to SCA divided by average depth to two GO terms
Node-based

TO The number of common ancestors of two GO terms

simUl Common ancestors divided by union of ancestor sets of two GO terms

Annotation-based

Resnik IC of SCA of two GO terms
Lin IC of SCA divided by average IC of two GO terms
Jiang Sum of differences of ICs between SCA and two GO terms
GraSM Average IC of all disjunctive common ancestors of two GO terms
simRel Combination of Resnik's and Lin's methods
simICND Combination of Resnik's and Jiang's methods
Integrative
G-SESAME Combination of common ancestor terms and their depth
SimGIC Combination of simUl and ICs of ancestor terms
IntelliGO Combination of depth to two GO terms and ICs of ancestor terms
TCSS Combination of Resnik's method and a clustering technique
simICNP Combination of Resnik's method and path-length between two GO terms

We group the existing semantic similarity methods and two proposed measures (simICND and simICNP) into four broad categories according to the components
used in GO. SCA denotes the most specific common ancestor term of two GO terms that have the annotation of two proteins of interest, respectively. IC denotes

the information content of a GO term.

Previous studies have also observed that the BMA
approach is the best for estimating functional similarity
between two proteins which perform multiple functions.
Improvement of semantic similarity
Additional improvements of semantic similarity measure-
ment by integrating two orthogonal features have been
proposed. Resnik’s method focuses on the commonality of
two GO terms t; and £,, not a difference between them.
In contrast, Lin’s and Jiang’s methods measure their differ-
ence only. In particular, Lin’s model reflects a significant
bias towards higher scores when the set of annotating
proteins on SCA is similar to those on #; and £,. This case
commonly occurs in GO because of the shallow annota-
tion problem [22]. To enhance the performance of these
annotation-based methods, Resnik’s semantic similarity of
t; and t, can be normalized by their distance. Two integra-
tive approaches, simICNP and simICND, presented in
[16], use the distance between t; and ¢, as the normaliza-
tion factor.

; —log P(to)
t ,t = , 9
simrenp (1, £2) len(ty, 1) + 1 ©
and
—log P
simienp(t, t2) = og P(to) 3)

2 -log P(to) — log P(t1) — log P(tx) + 1’

where £y is SCA of ¢; and ¢, which has the greatest
information content among their common ancestor
terms. The normalization factor of simICNP is the path
length between ¢, and ¢, in the ontology, whereas that of
simICND is the difference of information contents of #;
and £,. simICNP works better when the ontology has
precise information of relationships between specific
terms. In contrast, simICND has a better performance
when specific terms in the ontology have a sufficient
amount of annotations. Therefore, simICND and other
annotation-based semantic similarities such as Resnik’s
method and Lin’s method have high accuracy of measur-
ing functional consistency between two proteins for well-
studied model organisms. However, their weakness is low
accuracy for rarely-studied organisms.

In this study, we make a complete evaluation of
simICNP, simICND and other competing semantic simi-
larity methods in a biological perspective, as shown in the
next section. For both simICNP and simICND, we use the
BMA approach in Formula 1 to achieve functional similar-
ity scores of all interacting protein pairs.

Discovering functional associations

To discover the functional associations (or functional link-
age) of a given protein, we apply the information flow
algorithm, presented in [36], to the weighted PPI network.
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The algorithm is based on the path strength model defined
as the product of edge weights divided by node degrees on
the path. This model describes that a path, i.e. a series of
proteins directly connected, generally has high strength
with high edge weights and low node degrees on the path.
Starting from a protein that a user specifies, information
flow traverses a genome-wide PPI network through all
links and updates repeatedly the functional influence score
on each protein using the path strength model. The major
strength of this approach is high efficiency in scoring func-
tional influence of the user-specified protein on any other
proteins in a PPI network with complex connectivity.
Recursive random walk computation in this algorithm
runs extremely faster than enumerating all possible paths
from the user-specified protein to other proteins.

This approach allows to set a parameter to terminate
the information flow on a path. As information flows
continuously through the links, the algorithm generates
monotonically decreasing functional influence scores
according to the path strength model. When the score is
lower than a user-specified threshold, the flow stops on
the specific path. The algorithm finally terminates when
any link does not have a flow. The lower the threshold,
the longer the algorithm runs.

This approach requires additional parameter to return a
functional association network which represents a
subgraph of the genome-wide PPI network. When the
information flow terminates, the algorithm collects the
proteins and their links whose functional influence scores
are greater than a user-specified threshold. This threshold
thus determines the size of the generated network. As
the threshold decreases, the algorithm returns a larger
functional association network.

Results and discussion

Assessment of semantic similarity

CESSM test

Following the underlying idea that functionally related
proteins present common physical attributes, semantic
similarity measures are usually assessed by evaluating
their agreement to other biological features, such as
sequence similarity, the presence of common domains,
and protein-protein interactions [22]. We employed
CESSM to compare the proposed semantic similarity
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measures, simICND and simICNP, to other state-of-the-
art methods with respect to their performance of scoring
functional similarity between proteins.

CESSM [37] is a ready-to-use online tool that evaluates
the relationship between semantic measures and other
similarities based on sequence, Pfam family [38], and EC
(Enzyme Commission) classification [39] on a predefined
set of 13,430 protein pairs of S. cerevisiae. The selected
protein pairs are annotated not only to GO terms but
also in Pfam and KEGG databases. For each feature, a
quantitative similarity score is calculated for each protein
pair. The Pearson correlation is then used to evaluate the
agreement between semantic similarity and the other fea-
tures on the whole data set. The higher the correlation,
the better the tested measure. It has been pointed out
that, in general, the relationship between sequence and
semantic similarity is not linear, and therefore Pearson
correlation might not be the best measure to assess their
agreement. Indeed, in the comparison with sequence
similarity, CESSM also considers resolution as a quality
measure [32]. Intuitively, the resolution measures the
intensity with which variations in sequence similarity
have effects on semantic similarity. A measure with a
higher resolution is likely to yield a greater variation, in
terms of semantic similarity, between protein pairs with
low and high sequence similarity.

To score the semantic similarities of selected protein
pairs, we used two ontologies in GO, biological process
(BP) and molecular function (MF), separately. GO annota-
tion data have been collected by published results from
various high-throughput approaches including both
experimental and computational analysis. GO provides
evidence codes to indicate the types of methods that create
the annotation. All evidence codes have been curated
manually with the exception of Inferred from Electronic
Annotation (IEA). We thus tested two different sets of
semantic similarity scores measured with and without IEA
annotations, respectively.

Table 2, 3, 4, 5 show the CESSM test results of eight
different semantic similarity methods. They include six
previous methods: Resnik’s, Lin’s and Jiang’s methods,
simUI, simGIC and G-SESAME. The first three methods
are in the annotation-based group, simUI is a node-based
method, and the last two are integrative approaches.

Table 2 CESSM results of semantic similarities in BP ontology with IEA annotations.

Similarity Resnik Lin Jiang simUI simGIC G-SESAME simICNP simICND

Sequence 0.740 0.637 0.586 0.730 0.773 0.684 0.719 0.710
Pfam 0459 0373 0.332 0451 0455 0482 0.506 0.509
ECC 0.444 0435 0371 0402 0.398 0430 0.458 0.472

Resolution 0.900 0933 0335 0.863 0.837 0.945 0.973 0.992

The semantic similarities in BP ontology from eight different methods were compared in terms of correlations with the similarities of other functional features. To

measure semantic similarity, IEA annotations were included.
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Table 3 CESSM results of semantic similarities in BP ontology without IEA annotations.

Similarity Resnik Lin Jiang simUIl simGIC G-SESAME simICNP simICND

Sequence 0.727 0.627 0533 0.695 0.736 0618 0.696 0.695
Pfam 0451 0.381 0.274 0425 0438 0371 0.452 0.453
ECC 0.426 0422 0411 0382 0.389 0377 0417 0.424

Resolution 0.893 0912 0.357 0.883 0.870 0.899 0.961 0.978

The semantic similarities in BP ontology from eight different methods were compared in terms of correlations with the similarities of other functional features. To

measure semantic similarity, IEA annotations were excluded.

Previous studies [21,32,34] have observed that these
methods have relatively good performance in terms of
assessing functional similarity between proteins. The tables
also incorporate the results of two proposed methods,
simICNP and simICND.

The results of semantic similarities measured in BP
ontology with and without IEA annotations are shown in
Table 2 and 3. Top two semantic similarity methods for
each reference feature (sequence, Pfam, Enzyme Commis-
sion classification, or resolution) are shown in bold. When
compared to sequence similarity, Resnik’s method and
simGIC have slightly higher correlations than simICNP
and simICND. However, for the other features, the two
proposed methods outperform the others. When we com-
pare Table 2 and 3, the similarities measured including
IEA annotations have higher correlations than those with-
out IEA annotations over all semantic similarity methods
and features.

The results of semantic similarities measured in MF
ontology with and without IEA annotations are shown in
Table 4 and 5. Among previous methods, simGIC has
relatively high correlations. However, when all features are
considered, simICNP and simICND clearly show better
results than simGIC. Similar to the results in BP ontology,
the similarities measured including IEA annotations have
higher correlations than those without IEA annotations
over almost all semantic similarity methods and features.
When we compare the results between BP and MF ontol-
ogies, the semantic similarities in BP ontology have higher
correlations with sequence similarities, whereas the
semantic similarities in MF ontology have higher correla-
tions with Pfam domain and Enzyme Commission class
similarities. Overall, the two new semantic similarity
measures by merging well-performing previous methods
yielded sensible improvements in the CESSM test.

PPI test

It has been verified that semantic similarity is also a good
predictor of PPIs. The rationale behind this is that
interacting protein pairs are likely to be involved in similar
biological processes or molecular functions, and therefore
should present higher values of semantic similarity than
non-interacting protein pairs. Thus, given a positive set P
of interacting protein pairs and a negative set N of non-
interacting protein pairs, semantic similarity measures can
be compared in terms of their ability to divide interacting
and non-interacting protein pairs.

We validated simICND and simICNP on two PPI data
sets of S. cerevisiae with different characteristics. First, a
small, high quality positive set P; of 11,936 interactions has
been extracted from Hint [40], a database of manually
reviewed PPIs. For the second data set, instead, the larger
and more complete 12D [41] network was used as a posi-
tive set Py. I2D is a collection of interactions derived from
several databases, and currently counts 147k interactions.
The negative sets N; and N, were built by randomly select-
ing |P;| and |P,| protein pairs, respectively, not present in
the iRefIndex [42] data set. iRefIndex is an index of 303k
known, experimental or predicted PPIs that appear in a
number of primary interaction databases. If a pair of pro-
teins is not listed in iRefIndex, they are unlikely to be inter-
acting with each other. Thus, selecting the negative set as
pairs not present in iRefIndex should guarantee a low rate
of false negatives. Given a cut-off threshold &, a linear
separator predicts as interacting () all the protein pairs in
P and N with the semantic similarity scores above &, and
labels all the other protein pairs as non-interacting (x1).

Two significant indicators to compare the performance
of different semantic similarity measures are sensitivity
(|P n 1|/|P |) and specificity (|N n nI|/|N |). The former,
also called a true-positive rate, is the fraction of protein

Table 4 CESSM results of semantic similarities in MF ontology with IEA annotations.

Similarity Resnik Lin Jiang simUI simGIC G-SESAME simICNP simICND

Sequence 0.668 0.606 0.546 0.592 0.717 0.398 0.674 0.710
Pfam 0.572 0.564 0491 0618 0.638 0498 0.660 0.673
ECC 0.603 0.642 0.561 0.637 0.622 0714 0.752 0.744

Resolution 0.958 0.571 0.241 0.967 0.956 0334 0931 0.963

The semantic similarities in MF ontology from eight different methods were compared in terms of correlations with the similarities of other functional features.

To measure semantic similarity, IEA annotations were included.
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Table 5 CESSM results of semantic similarities in MF ontology without IEA annotations.
Similarity Resnik Lin Jiang simUl simGIC G-SESAME simICNP simICND
Sequence 0.651 0.598 0.522 0.591 0.666 0439 0.679 0.708

Pfam 0.522 0.515 0450 0.550 0.582 0416 0.605 0.587

ECC 0484 0516 0519 0578 0.587 0.564 0.598 0.567
Resolution 0.934 0.938 0.364 0.930 0.936 0.595 0.830 0.982

The semantic similarities in MF ontology from eight different methods were compared in terms of correlations with the similarities of other functional features.

To measure semantic similarity, IEA annotations were excluded.

pairs in P whose scores are above the threshold. The latter,
also called a true-negative rate, measures the fraction of
proteins pairs in N whose scores are below the threshold.
A false-positive rate is then calculated by 1-specificity. The
true-positive and false-positive rates at different cut-off
thresholds are collected and incorporated into a receiver
operating characteristics (ROC) curve which is frequently
used to evaluate prediction performance on a broad range
of cut-off thresholds.

Figure 1 and 2 show the results of plotting ROC curves
from eight different semantic similarity methods, which
were also used in the CESSM test. The results of semantic
similarities measured in BP ontology with and without
IEA annotations are shown in Figure 1 (a) and 1(b). In
Figure 1 (a), simICND, simICNP and Jiang’s method
showed the best performance in predicting PPIs. More
precisely, simICNP has higher true-positive rates than
Jiang’s method when the false-positive rate is less than 0.2.
Moreover, simICND has higher true-positive rates than
Jiang’s method when the false-positive rate is less than 0.3.
Same to the CESSM results, the similarities measured
including IEA annotations have better performance than
those without IEA annotations over all semantic similarity
methods. In Figure 1 (b), although all methods resulted in
very similar plots, simICND and simICNP have slightly
better performance than the others.

The results of semantic similarities measured in MF
ontology with and without IEA annotations are shown in
Figure 2 (a) and 2(b). In Figure 2 (a), simICND, simICNP
and G-SESAME showed the best performance in predict-
ing PPIs. G-SESAME works the best when the false-
positive rate is greater than 0.4, whereas simICND and
simICNP have better performance than G-SESAME when
the false-positive rate is less than 0.1. Same to the test
with BP ontology, the similarities measured including IEA
annotations have better performance than those without
IEA annotations over all semantic similarity methods. In
Figure 2 (b), most methods resulted in similar plots of
increasing true-positive rates. However, simICND and
simICNP have slightly better performance when the false-
positive rate is less than 0.1. Overall, the two new semantic
similarity measures perform the best in predicting PPIs
with strict threshold values.

Performance evaluation of functional association mining

The performance of our functional association mining
approach can be validated by comparing the outcome to
functional modules. The genome-wide PPI data of several
model organisms are publicly available from many open
databases such as BioGRID [17], IntAct [43], MINT [44]
and STRING [45]. In this performance test, we used the
most recent version of the genome-wide PPI data set of S.
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Figure 1 PPI prediction test results of semantic similarities in BP ontology with and without IEA annotations. Eight different methods
were tested for PPl prediction by gradually decreasing the threshold of semantic similarity scores. The semantic similarities were measured in BP
ontology (a) with IEA annotations and (b) without IEA annotations. In (a), sSimICND, simICNP and Jiang's method perform the best. In particular,
simICND outperforms the others when the false-positive rate is less than 0.3.
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Figure 2 PPI prediction test results of semantic similarities in MF ontology with and without IEA annotations. Eight different methods
were tested for PPl prediction by gradually decreasing the threshold of semantic similarity scores. The semantic similarities were measured in MF
ontology (a) with IEA annotations and (b) without IEA annotations. In (a), SImICNP and G-SESAME perform the best, and simICND, Jiang’s method
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cerevisiae from BioGRID, which includes 4,998 distinct
proteins and 161,866 interactions. The first step is to
weight PPIs. We used simICND since it has the best
performance overall from the experiment shown in the
previous section. Using a linear function, we transformed
all simICND scores into the range between 0 and 1. Next,
after selecting 1,000 proteins randomly for a query, we
implemented our algorithm with each protein selected. In
the information flow simulation, we assigned the initial
score 1 to the query protein, and used 0.01 for the thresh-
old to stop the flow on each linked path. As described
earlier, we need additional parameter to select proteins
and their links for a functional association network. (It will
be called the minimum association threshold.) We made
this threshold value variable, and examined how accuracy
of our approach changes as the threshold changes.

Finally, 1,000 resultant functional association sub-
networks were compared to functional modules. We used
FunCat data from MIPS [46] as the functional modules of
reference. Since this data set has been manually created,
we assumed that it has the highest precision (also known
as a positive predictive value). In other words, we assume
that this data set rarely contains false positive proteins -
the proteins that are included in the same functional
module but do not perform the same functions. However,
because this data set is not comprehensive and has not
been updated recently, it is not guaranteed that it has the
highest recall (also known as sensitivity). In other words,
this data set might have many false negative proteins - the
proteins that perform the same functions but are not
included in the same functional module. In this perfor-
mance test, we therefore measured precision only when
the FunCat data set is used as gold-standard.

Figure 3 exhibits the average precision of detecting func-
tionally associated proteins by 1,000 runs. The average
precision increases as the minimum association threshold

increases since the algorithm generates a smaller
subgraph. High precision in a small subgraph means that
most proteins in the subgraph strongly associated with the
protein selected for a query. However, the precision
increasing rate gradually declines when the threshold
is greater than 20. And, when the threshold is greater
than 60, subgraphs with a single node were generated in
most runs.

[
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Figure 3 Functional association mining results by M-Finder. We
weighted the yeast PPI network from BioGRID by simICND, and
implemented the information flow-based algorithm using 1,000
random proteins in a query. For each output sub-network, we
found the best match to functional modules in terms of precision
(the ratio of the proteins in the output sub-network, which occur in
the functional module). We finally calculated the average precision
of all outputs and plotted it by altering the minimum association
threshold. The reference functional modules on three different
levels of functional hierarchy were obtained from MIPS. The
modules with the most general descriptions are located on level-1,
whereas those with the most specific functional descriptions are on

level-3.
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The functional modules in FunCat are organized in a
hierarchical tree structures. The first-level (i.e., top-level)
modules indicate the most general descriptions of cellular
functions whereas the bottom-level includes the most spe-
cific descriptions of cellular functions. We extracted the
modules from the top three levels of the tree structure.
The average precision of the results comparing to the
functional modules on the three different levels is also
shown in Figure 3. Although the three plots have a very
similar increasing pattern, the highest precision can be
achieved when the output subgraphs are compared to the
largest modules with the most general functional descrip-
tions because there is a higher chance that the output sub-
graphs include the proteins in the modules. Overall, the
minimum association threshold between 15 and 20 is
recommended to have high precision with relatively large
sub-networks as output.

Functional association mining software

We introduce the interactive web application software,
called M-Finder, to analyze functional associations (func-
tional linkage) from any protein of interest. This web-
based tool is designed as an interactive system which
enables a user to enter any protein in a query, choose a
semantic similarity method, and specify the minimum
association threshold as a parameter. Then the informa-
tion flow algorithm, embedded in this tool, runs with the
user inputs on the up-to-date genome-scale PPI network
with edge weights, and the generated functional sub-
network associated with the query protein is visualized.

The PPI data set is regularly updated with the most
recent version from BioGRID [17]. The PPI weights are
pre-computed by the semantic similarity methods and
stored in our database. Since this large-scale PPI data set
is likely to contain a large number of putative false positive
interactions, we filter out the PPIs which have the seman-
tic similarity score less than 0.1. This tool currently works
for S. cerevisiae only, but it will be extended to C. elegans,
D. melanogaster and H. sapiens in near future.

Since the information flow algorithm has a very quick
response time (usually less than 10 seconds in our server)
even on a large-scale network with complex connectivity,
it is suitable for this interactive web-based tool. The
threshold to halt the information flow was hard-coded as
0.01 in this tool because we observed this threshold is not
sensitive to the result. However, the threshold to select the
proteins and their links for a final functional association
network should be a parameter that users can enter. The
default of this threshold is 20, but it should decrease if a
larger functional association network is needed.

Cytoscape Web [47] is used for visualization of the
functional association networks generated by our
approach. This is a commonly used open-source platform
to visualize networks. Its advantage is that it is easy to be
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adapted to our analysis and visualization by using the
plug-in framework. Users can change flexibly the shape
of resultant networks on Cytoscape Web and obtain dif-
ferent scales of the networks by increasing or decreasing
the parameter value. Figure 4 shows the user interface of
M-Finder. The functional linkage of the protein
“YMRO001C” is displayed when the weighting scheme of
simICND and the parameterized threshold value of 20
are applied. It is known that “YMRO001C” is involved in
DNA synthesis, mitotic cell cycle and protein modifica-
tion. The displayed functional association network shows
that the protein in a query is mostly associated with the
proteins having the functions of mitotic cell cycle and
protein modification and forms a densely connected func-
tional module with 7 proteins. In particular, “YMR001C”
is strongly associated with the proteins for the G2/M
transition of mitotic cell cycle, such as “YPR119W”,
“YJL187C”, “YBR160W”, “YGR108W” and “YJLO74C”.

M-Finder has further special features. Users can down-
load the output functional association networks to any
image files. Users can also search additional information
of proteins and interactions on the output functional
association network through hyperlinks. For example,
ontological information related to the visualized proteins
is provided.

Conclusion

This article presented a novel computational method to
analyze functional association patterns related to a user-
specified protein in a query. This approach adopts the
integration of interactome data and GO annotations, and
the information flow algorithm reconstructs a functional
association network linked to the query protein, which is
a small subgraph of the genome-wide PPI network. As
discussed in Introduction, a variety of graph clustering
algorithms have been applied to detect functional mod-
ules from PPI networks. These graph clustering algo-
rithms mostly search densely connected subgraphs
assuming that proteins interact to perform a cellular
function. However, listing all the clusters, i.e. the sets of
proteins, in the genomic scale is not meaningful for
genetic studies to characterize a specific gene or a specific
function. The proposed approach is thus unique in that it
investigates the patterns of potential functional linkage
associated with a specific protein of interest. The intro-
duced web application software to analyze and visualize
functional association networks would be geared specifi-
cally to the needs of systematic and quantitative results
in genetic studies.

This study has two significant contributions to current
bioinformatics. First, biological data integration is increas-
ingly demanding as an early stage of current data-intensive
bioinformatics research. The automated high-throughput
technologies have made rapid generation of large-scale
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Figure 4 The user interface of M-Finder. On the top frame, a user can select the species and a weighting method (a semantic similarity
measure), and enter a protein and a parameter value for the minimum association threshold in a query. The functional association network of
the selected protein, which is represented as an undirected subgraph of the genome-wide PPI network, is visualized on the left frame. This tool
also provides on the right frame the details of each interactor (protein) and each interaction in the visualized sub-network.

data. However, as a downside, they decrease reliability of
the data sets. It has been observed that the interactome
data currently available in open databases include a large
number of false positives, i.e., the spurious interactions
which do not occur within a living cell. Although the
high-throughput methods have produced interaction data
over the entire genome scale, it is expected that there still
exist an extremely large amount of false negatives across
several model organisms, i.e., the actual interactions that
have not been determined yet. The reliability of interaction
data can be assessed by inspecting other resources which
enable us to judge the feasibility of functional association
between genes, such as gene expression profiles. We
suggested, in this study, the integration of ontological data

for filtering the interactome. We made a complete evalua-
tion of recently proposed two integrative methods of
semantic similarity, simICNP and simICND. The CESSM
test and PPI test results demonstrated that the proposed
approaches outperform the previous methods in terms
of measuring functional closeness of two proteins. Our
ontological data integration model would provide an effec-
tive framework for curation of genome, transcriptome,
proteome and interactome data.

Second, efficiency and scalability are key issues on the
large-scale, complex interactome data mining. A single
protein influences multiple phenotypes in different envir-
onmental conditions, known as the pleiotropic effect.
When separating the conditions is disregarded, interaction
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networks are typically structured by complex connectivity.
Moreover, the scale of the interactome data increases
remarkably for higher-level organisms in evolution. The
proposed approach is formulated based off a data-mining
technique which is implemented efficiently on large-scale
networks with complex connectivity. Our heuristic model
enables us to search functional associations very efficiently
by simulating random walks. This efficient and scalable
approach would be generalized to any integrative analysis
of complex systems. This would also be the best fit to be
embedded into a web application tool introduced in this
article. For further improvement of the tool MFinder
in terms of efficiency and accuracy, we can explore the
inherent topological properties of the genome-wide PPI
networks. It might be feasible to predict and suggest the
best parameter value for a specific species by analyzing the
properties.
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