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Abstract

Independent of the approach used, the ability to correctly interpret tandem MS data depends on the quality of the
original spectra. Even in the case of the highest quality spectra, the majority of spectral peaks can not be reliably
interpreted. The accuracy of sequencing algorithms can be improved by filtering out such ‘noise’ peaks.
Preprocessing MS/MS spectra to select informative ion peaks increases accuracy and reduces the processing time.
Intuitively, the mix of informative versus non-informative peaks has a direct effect on the quality and size of the
resulting candidate peptide search space. As the number of selected peaks increases, the corresponding search
space increases exponentially. If we select too few peaks then the ion-ladder interpretation of the spectrum will
contain gaps that can only be explained by permutations of combinations of amino acids. This will result in a
larger candidate peptide search space and poorer quality candidates. The dependency that peptide sequencing
accuracy has on an initial peak selection regime makes this preprocessing step a crucial facet of any approach,
whether de novo or not, to MS/MS spectra interpretation.
We have developed a novel approach to address this problem. Our approach uses a staged neural network to
model ion fragmentation patterns and estimate the posterior probability of each ion type. Our method improves
upon other preprocessing techniques and shows a significant reduction in the search space for candidate peptides
without sacrificing candidate peptide quality.

Introduction
The leading tool for identifying and characterizing pro-
teins in high-throughput proteomics is mass spectrome-
try. In the case of peptide sequencing, tandem mass
spectrometry is the primary tool. When sequence data-
bases do not contain the relevant proteins, we cannot
use comparison methods to match experimental spectra
to theoretical spectra predicted for sequences in the
database. In this case we are constrained to use a de
novo approach to determining the sequence of amino
acids in the peptide. This requires that we sequence the
peptide using only information contained in the MS/MS
spectrum. We can roughly divide de novo peptide
sequencing approaches into three steps: peak selection/
classification, which is generally treated as a preproces-
sing step; generation of de novo candidate peptides; and

scoring/reranking of candidate peptides. The focus of
this research is peak selection. The objective of this step
is to identify informative peaks in the spectrum. We are
particulary interested in peaks that represent b-/y-ions.
An ideal MS/MS spectrum would be free of noise and
contain all of the prefix (N-terminal b-ion) and suffix
(C-terminal y-ion) fragments. In practice, the MS/MS
spectrum contains a complex mixture of peptide frag-
ments and uninterpretable ‘noise’ peaks. Different ion
types such as a-, c-, x-, or z-ions may be produced if the
peptide is not cleaved at an amide bond. Internal frag-
ments, which occur when an ion undergoes a second or
third fragmentation, may also be present in the spec-
trum. The b-/y-ions in an ideally fragmented peptide
will form two ladders. In the case of b-ions, the ladder
refers to the peaks corresponding to the prefix ions
observed sequentially in the spectrum (b1-ion, b2-ion, ...,
bn-ion) with each prefix offset from the previous by the
mass of an amino acid. Likewise, for the y-ion ladder we
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expect to see suffix ions sequentially in the spectrum
(y1-ion, y2-ion, ..., yn-ion). We can use this knowledge to
derive the peptide sequence. By concatenating the
amino acids corresponding to the sequential mass differ-
ences in the b-ion ladder we construct the peptide
sequence. Likewise, by concatenating the amino acids
corresponding to the sequential mass differences in the
y-ion ladder we construct the reverse peptide sequence.
Since we prefer to sequence the peptide using a b-/y-ion
ladder the objective of this initial step is to select the
‘signal’ peaks that likely represent to these ions in the
spectrum.
The peaks that are selected are used in the candidate

generation phase to propose peptides that are consitent
with the MS/MS spectrum. Finally, the candidate pep-
tides are scored and ranked, and the top ranking peptide
is taken as the the peptide that likely generated the
spectrum.
In general, other de novo approaches rely on peak

intensity alone for initial filtering of the spectrum. Pep-
Novo uses a sliding window that spans a range of 56
Da. It retains the top three peaks in ranked by intensity
in each window [1]. ms2preproc uses the same sliding
window approach, in addition to other intensity based
methods [2]. MSNovo also uses a sliding window for
peak selection. It selects the 6 most intense peaks in
each 100 Da window [3]. In contrast, PILOT treats the
whole spectrum as a single window and selects the top
125 most intense peaks [4]. pNovo similarly treats the
entire sepctrum as a single window and selects the 100
most intense peaks [5]. This work improves upon our
previous ion classifier [6]. In particular, we improved
our modeling of the principal isotope and complemen-
tary peak features, described in greater detail below. We
also demonstrate the effectiveness of our approach on a
much larger dataset, and provide additional analysis.
Our research shows that reliance solely on relative

intensity-based filtering can discard a significant number
of the b-ions in the spectrum. We were able to outper-
form basic filtering techniques by incorporating peptide
fragmentation features in a model for classifying
peaks by ion-type. The Staged Neural Network (SNN)
approach described below implements a predictive
model that classifies peaks without requiring a compre-
hensive elaboration of peptide fragmentation processes.
We demonstrate an ability to select peaks more accu-
rately than other common approaches to peak filtering/
preprocessing. This is important because better peak
selection yields equally good (or better) candidate pep-
tides in the search space while constraining the search
space.
It is important to strike a good balance between preci-

sion and recall. An increase in recall will support the
generation of more accurate candidates. Holding recall

fixed and increasing precision will result in a reduced
search space while at the same time retaining the best
candidates. If recall is lowered there will have missing
peaks in the ion ladder. This will result in a much larger
candidate space since it will be necessary to consider all
permutations of residue sets that have a mass that
matches these gaps. If we lower the precision our search
space will grow since more candidate peptides will be
consistent with ion ladders generated from spurious
peaks in the spectrum. This can make the problem
intractable depending on the specific implementation of
the candidate generation step. Thus, it is obvious that
any de novo algorithm will benefit from an increase
precision and recall in the initial b-/y-ion selection step.

Methods
Our experiments were run on a comprehensive full fac-
torial LC-MS/MS benchmark dataset [7]. The dataset
consists of 59 LC-MS/MS analyses, in Mascot generic
peak list format, of 50 protein samples extracted indivi-
dually from Escherichia coli K12, yielding a total of 482
604 spectra. The dataset was filtered for doubly charged
peptides ranging from 8 to 20 residues. The dataset (D)
consists of 59 separate analyses (D = ∪59

i=1Di). The scans
in each Di were randomly divided into a training set
(DT

i ) and an evaluation set (DE
i ). Each DT

i was trained
separately, and each DE

i was classified using the classifier
yielded by DT

i . The classified scans in each DE
i were then

combined (DE = ∪59
i=1D

E
i ) for calculating statistics. The

same scans in DE were used to compute statistics for
PepNovo+, pNovo, and ms2preproc. The results of this
comparison are presented below.
In an initial preprocessing step we remove peaks that

have an intensity lower than 50, which was empirically
determined to remove roughly half of all of the noise in
the spectrum, while only removing a small number of
potential b-/y-ions. This initial filtering sped up the
neural network training without effecting performance
or accuracy. Before training the neural network we filter
the training dataset DT

i based on each peak’s known ion
type. For each peak in DT

i we create a target vector by
labeling the peak with its ion type, either b-ion (1,0,0),
y-ion (0,1,0), or u-ion (unknown ion) (0,0,1), each of
which is a binary vector of length three. A virtual spec-
trum is constructed based on known CID fragmentation
[8,9] of doubly charged peptides, giving the expected b-/
y-ion masses for the peptide. A peak within 0.2 Da of
the expected mass for a b-/y-ion is labeled accordingly
and assumed to be ground truth. For each of the peak
in Di we generate a feature vector (training instance)
that is fed to the input layer of the neural network for
training and classification. The topology of the first
neural network is shown in Figure 1. We describe the
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features in Table 1 and the following section. DT
i is

randomized and divided so that 95% of the spectra
makes up the backpropagation dataset (DTB

i ) and 5%
makes up the validation dataset (stopping criteria)

(DTV
i ). The backpropogagion dataset DTB

i is filtered again
to yeild an equivalent count of b, y, and u ions. Note
that if we vary the ratio of b-/y-ions to u-ions in the
training dataset we can manipulate the precision and
recall of our ion classifier. For example, more u ions
will result in a higher precision and a lower recall.
As part of the neural network training protocol we

define an objective error function. The output layer (o)
of the neural network corresponds to a posterior prob-
ability estimate that the input training instance is a
member of the respective class defined by the target
vector (t). It has been shown that the appropriate objec-
tive error function for such an interpretation of the out-
put layer is the cross entropy error function [10].

network error = −
2∑
i=0

[tilog(oi) + (1 − ti)log(1 − oi)]

The neural network is trained using the training
instances in the backpropagation training set (DTB)

Figure 1 Topology of net1.

Table 1 Pattern features for net1 and net2
net1 pattern features net2 pattern features

feature value feature value

intensity N, D intensity N, D

strong peak B strong peak B

local intensity rank N local intensity rank N

global intensity rank N global intensity rank N

relative cleavage position N, D relative cleavage position N, D

random peak hypothesis P random peak hypothesis P

principal isotope H principal isotope H

isotopologue B isotopologue B

complement N complement Pnet1
H2O neutral loss N, D H2O neutral loss N, D

NH3 neutral loss N, D NH3 neutral loss N, D

H2O-H2O neutral loss N, D H2O-H2O neutral loss N, D

H2O-NH3 neutral loss N, D H2O-NH3 neutral loss N, D

CO neutral loss (a-ion) N, D CO neutral loss (a-ion) N, D

N-term flanking ion Pnet1
C-term flanking ion Pnet1

N specifies a normalized quantity, D specifies a discretized quantity, B
indicates a binary value, H indicates a histogram value, N indicates a value
sampled from a normal distribution, and P indicates a probability. All peaks
are processed first by net1 and and then by net2. net2 features are influenced
by the preceding characterization of peaks by net1.
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repeatedly-for several epochs-until the classification per-
formance stops improving. To achieve this, after each
training epoch we classify the peaks in DTV. Once the
classification error for DTV increases compared to the
previous epoch we stop training the network.
Our classifier uses two neural networks to classify

peaks in a spectrum. This architecture resembles a
staged neural network. Each of the neural networks is
trained as described above, with differing construction
of the feature vector. The structure of each neural net-
work consists of an input layer, a single hidden layer,
and an output layer. The dimension of the input layer
is identical to the number of features in the training
instance. The hidden layer has roughly twice as many
nodes as the input layer. The output layer has three
nodes that correspond to the three ion type classes.
Algorithm 1 gives an overview of the training and clas-
sification protocol. In the first neural network, net1, a
peak’s feature vector is computed using data in the
spectrum alone as described below and in Table 1. In
the second neural network, net2, the classification
results yielded by net1 for each peak are leveraged as
additional and modified features in net2. The comple-
mentary ion feature in net2 differs from the same fea-
ture in net1 by replacing the normalized relative
intensity of the complementary peak with the maxi-
mum of the b-/y-ion probability estimates in the out-
put from net1 for the complementary peak. In other
words, a hypothesised complementary peak, for which
net1 has yielded a high probability of being a b-/y-ion,
should serve as reinforced positive evidence that the
current peak is also a b-/y-ion. We also add two new
features to the net2 feature vector corresponding to
flanking residues on the N and C terminal sides of the
current peak. The justification for these ‘leveraged’ fea-
tures is due to the fact that the correct peptide forms
an ion ladder. Hereafter we use the term “current
peak” to refer the peak for which the feature vector is
being computed. The presence of flanking residues or
complementary peaks serves as positive evidence that
the current peak is part of an ion ladder. Our experi-
ments demonstrate that using the outputs from net1 to
modify and add features to to net2 results in higher
recall compared to only using net1.
Algorithm 1 Staged Neural Network Training and

Classification
net1 ← train(DTB , DTV )

DT ¬ classify(DT, net1) {assigns b-/y-/u-ion probabil-
ity estimates for peaks in DT}

net2 ← train(DTB , DTV )

DE ← classify(DE, net1)
DE ← classify(DE, net2)

Description of features
The features listed in Table 1 take advantage of known
fragmentation characteristics of ions produced by CID
peptide fragmentation. In the following exposition, let pI
denote the parent ion mass, and let −→

I = 〈I0, I1, . . . Ik〉
denote a spectrum. For peak Ii, the ion mass is defined
as xi = mass(Ii), and the ion intensity/abundance is
defined as yi = intensity(Ii).
The intensity feature is computed by normalizing and

then discretizing the relative peak intensity of the cur-
rent peak Ii. Given n discrete intensity bins, the normal-
ized discretized feature is defined as

Fintensity(Ii) =
⌊
n(yi/ymax)

⌋
/n

where the ymax is the most intense peak in the spec-
trum, and yi/ymax is the normalized intensity for Ii.
The strong peak feature is a binary value that indi-

cates whether or not the current peak is considered
‘strong’ within a window around the current peak. To
be called a strong peak the current peak must be one of
the three most intense peaks within a window of 56 Da
around the current peak. The optimal window width
and the number of peaks to label as strong within the
window were empirically determined.
The local and global intensity ranks are computed by

normalizing the intensity rank of the current peak
within a window around the current peak, or globally
(the complete spectrum). The intensity-based features
described so far are useful since b-/y-ions tend to have
greater intensity when compared to unknown ion types.
The relative cleavage position is a categorical set of fea-

tures defined as Fposition(Ii). These categories reflect
equally sized regions of the spectrum based on the mass of
the current peak relative to the parent ion mass (pI). For
example, if we assume the number of regions n = 5, the
lowest mass peak in the spectrum would have the feature
value Fposition(I0) = 〈1, 0, 0, 0, 0〉 , and the highest mass
peak would have the value Fposition(Ik) = 〈0, 0, 0, 0, 1〉. The
relative cleavage position features capture the variation in
peak intensity across the mass range of the instrument.
Typically, peaks tend to be more intense near the center
of the peptide and less intense or missing near the term-
inal ends. Fragmentation characteristics can also vary
based on the relative cleavage position. The input layer of
the neural network has a node corresponding to each of
the categorical features, c = 0, 1, ..., n - 1, which are
assigned either 0 or 1 as follows:

Fposition(Ii)c =
{
1 if c

n ≤ xi/pI < c+1
n

0 otherwise

where xi is the mass of Ii, and pI is the mass of the
parent ion.
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When a cleavage occurs between two amino acids,
there are several other peaks that are observed with
high frequency. These peaks correspond to isotopolo-
gues, neutral losses, doubly charged ions, and comple-
mentary ions. The remaining features use relative
intensity and mass offsets to compute feature values.
Given the current peak Ii, an expected offset δ, and a
mass tolerance ε; the offset peak Ij is the maximum
intensity peak in the range [xi + δ - ε, xi + δ + ε]. The
experimental offset is then defined as δ’ = xi - xj + δ.
For a given offset peak Ij the relative intensity is defined
as y′j = yj/yi.
The principal isotope feature is taken from a two

dimensional histogram that models the relative intensity
and mass offset of the first isotopologue. This histo-
gram, shown in Figure 2, was computed by summing
the frequency of mass offset and relative intensity within
bins of size 0.05 and 0.1, respectively, for b-/y-ions in
the dataset. The presence of a lower intensity isotopolo-
gue at offset δ = 1 serves as positive evidence that the
current peak is a b-/y-ion. This can be demonstrated by
building a histogram for peaks that are labeled u-ions,
and then computing the log-odds ratio between these
two distributions, as shown in Figure 2. The principal
isotope feature value is sampled from this histogram
based on the δ’ and y’ values of a candidate isotopologue
of Ii. The isotopologue feature indicates the current peak
is an isotopologue of the peak at offset -1 Da. If the cur-
rent peak has been labeled as an isotopologue, then the
isotopologue feature value will be 1, and 0 otherwise.
Adding this feature increases precision without affecting
recall. This is due to the observation that, if a peak’s iso-
topologue feature is 1, it will most likely be classified as
a u-ion by the neural network.
If the current peak is a b-ion then we will often see

the complimentary y-ion peak, and likewise for the con-
verse. It is tempting to use a 2D histogram to model
this feature. However performance degrades if we con-
sider relative intensity since we do not want to penalize
a candidate complementary peak for having a non-

average relative intensity. The complement feature in
the net1 pattern is taken from a normal distribution cen-
tered at the offset where a complementary ion is
expected to be if the current peak is a b-/y-ion. By con-
structing a one dimensional histogram of the comple-
mentary ion mass offset, it was observed that the offset
frequency is approximately Gaussian and can be mod-
eled as X ∼ N (0, 0.1), where the 0 mean is centered
around the expected complementary ion mass xj = pI -
xi + 1. The feature value is then defined as

Fcomplement(Ii) = X(δc)

where δc is the difference between the expected and
the experimental complementary ion mass. In the case
of the net2 pattern, the complement feature value is the
maximum b-/y-ion probability estimate produced by
net1 for any peak found at the expected complement
mass offset.
The H2O, NH3, H2O-H2O, H2O-NH3, and CO neutral

loss features are computed by summing the relative
intensity and the Gaussian estimate of the offset fre-
quency, as described above. For example, given the neu-
tral loss peak Ij at the offset δ = -18.015, the feature
value is defined as

F−H2O(Ii) = y′j + X(δ′)

The N-term and C-term flanking ion features are part
of the net2 feature vector that rely on b-/y-ion probabil-
ity estimates computed by net1. To compute the
N-terminal flanking residue feature we take the maxi-
mum b-/y-ion probability, as estimated by net1, of any
peak with a negative mass offset (lower mass) from the
current peak that is equivalent to the mass of one of the
twenty amino acids ±0.25 Da. The C-terminal flanking
residue feature is computed similarly but with a positive
mass offset (higher mass). Note that the feature value
corresponds to the flanking peak’s net1 probability esti-
mate, not the mass difference, and therefore does not
capture any sequence information.

Figure 2 Isotopologue histograms. (a) The experimental mass offset (δ’) and relative intensity (y’) for the first isotopologue of a b-/y-ion.
(b) The experimental mass offset and relative intensity for the first isotopologue of an unknown ion (not b-/y-ion). (c) The log-odds ration
between (a) and (b)
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Results
We compared the performance of the staged neural net-
work (SNN) peak selection method with that of two
other well-known de novo peptide sequencing algo-
rithms: PepNovo+ and pNovo. We evaluated the accu-
racy of the staged neural network (SNN) in correctly
identifying informative peaks and compared it to that of
PepNovo+ and pNovo. The results of this comparison
are shown in Figures 3 and 4. Figure 3 shows the preci-
sion attained by the competing meathods. Figure 4
shows the corresponding recall. In addition, we included
the window method described by Frank in the early
PepNovo paper [1]. In the case of the window method,
a sliding window of 56 Da is used. Within the sliding win-
dow, the three largest peaks are selected. For the purpose
of comparison, we implemented a version of the window
method using ms2preproc. As is evident in Figure 4, the
performance of PepNovo+ is substantially better than that
of the window method. Note: since PepNovo+ does not
directly output the peaks that it selects for subsequent
construction of the spectrum graph, we modified the
source code in order to output these peaks.
Figure 3 shows that the SNN method outperforms the

precision of the window method for all peptide lengths
except length 12, in which case there is a tie. In this
figure we also see that the precision of the SNN method
is consistently greater than that of PepNovo+ and
pNovo for all peptide lengths in this data set. This is a
significant result since it follows that the number of
retained peaks directly impacts the size of the candidate
space. While precision is very important, recall is no
less important. The results of recall comparison are
shown in Figure 4. The recall of the SNN method is
higher than that of all of the other approaches for all
peptide lengths in this data set.

Figure 5, which depicts the peptide candidate space,
demonstrates the relation between peaks/edges and can-
didate search space. In order to get an estimate of the
search space implied by the peaks selected by PepNovo+
and SNN, we programmed a simple candidate generat-
ing algorithm based on the method of Lu and Chen
[11]. As can be seen in Figure 5, the candidate space is
exponential in the size of the spectrum graph. Thus
Figure 5 is limited to peptides of maximal length 12.
We caution the reader to bear in mind that PepNovo+
and other de novo programs are more efficient in
searching the candidate space and take a more sophisti-
cated approach to generating candidate peptides, avoid-
ing an exhaustive search. Nonetheless, this comparison

Figure 3 Precision. Cross validation comparison of precision in b-/
y-ion identification for the PNNL data set. The parameter setting for
the ms2preproc window method was X = 3, Y = 0, Z = 56.

Figure 4 Recall. Cross validation comparison of recall in b-/y-ion
identification for the PNNL data set. The parameter setting for the
ms2preproc window method was X = 3, Y = 0, Z = 56.

Figure 5 Effect on candidate peptide search space. The top pair
of curves compares the median number of candidate peptides
enumerated for a given peptide length. The bottom pair of curves
compares the median number of edges in a spectrum graph for a
peptide of a given length. This figure demonstrates the exponential
relation between the number of edges in the spectrum graph and
the number of candidate peptides.
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depicts the extent of the basic candidate space implied
by the selected peaks. It demonstrates that the extent of
the implied SNN search space is smaller than that of
PepNovo+.
As noted above, the extent of the search space is

exponentially proportional to the size of the spectrum
graph. We therefore use the number of selected edges
in the spectrum graph as a representative measure of
candidate space. This allows us to extend the compari-
son between SNN and PepNovo+ to longer peptides
without having to exhaustively generate the implied can-
didates. Figure 6 depicts this comparison between the
search space of SNN and PepNovo+ for peptides up to
length 18. In this figure we see that the b-/y-ion recall
of the SNN method is superior to that of PepNovo+ for
all peptide lengths in this data set. Consequently, the
best candidates from the SNN candidate space could rea-
sonably be expected to be superior to those of the Pep-
Novo+ candidate space. Analysis of the results depicted
in Figure 6 indicate that on average there are approxi-
mately 200 fewer edges in SNN spectrum graphs than
those of the corresponding PepNovo+ spectrum graphs.
The results depicted in Figures 3, 4, 5, and 6 are con-

sistent with those that were generated from a smaller
data set [6]. That data set from PNNL consisted of 3373
spectra of unique peptides from Salmonella Typhimur-
ium. The peptides that we selected from the PNNL data
set had a mass that ranged from 600 to 3000 Da and an
Xcorr score of at least 2.5. We may conclude that
together these two sets of results accurately depict the
relative improvement in performance of the SNN peak
selection method over that of PepNovo+ and pNovo.

Discussion and conclusion
De novo peptide sequencing addresses the ill-posed pro-
blem of deriving the correct peptide sequence corre-
sponding to a tandem MS spectrum. The first critical
step in this problem is that of identifying those peaks
representing b-/y-ions. It is of great importance that
spectral peaks be filtered as agressively as possible while
retaining informative peaks. Accomplishing this goal
results in two very practical benefits: First, the smaller
spectrum graphs that result from reducing the number
of peaks under consideration allow spectra to be pro-
cessed at a faster rate. Second, reducing the number of
peaks makes it possible to process larger peptides. As
discussed in the previous section, the SNN method con-
sistently selects fewer peaks than do PepNovo+ and
pNovo. The corresponding candidate search space is sig-
nificantly smaller. SNN spectrum graphs on average
contain 200 fewer edges than do corresponding Pep-
Novo+ spectrum graphs. A comparison of candidate
search spaces shows that the median SNN search space
is consistently smaller than that of PepNovo+. As
demonstrated in an earlier publication, the median SNN
candidate space for peptides of 20 residues is smaller
than that of PepNovo+’s median space for 15 residues
[6]. In principle, all other things being equal, one could
expect to be able to process longer peptides with the
SNN approach. As important as it is to reduce the num-
ber of peaks under consideration, it is just as important
to retain those peaks representing actual b-/y-ions.
Otherwise, the resulting peptide candidate search space
may not contain the correct peptide. In the preceding
section we presented results that demonstrate that the
SNN peak selection accuracy exceeds that of pNovo and
PepNovo+ for all peptide lengths represented in the
data set (Figures 3 and 4). On average, the SNN method
selects significanly fewer peaks than do pNovo and Pep-
Novo+. At the same time, on average the SNN method
retains more peaks that correspond to b-/y-ions than do
pNovo and PepNovo+.
The Staged Neural Network method for peak selection

exhibits an improvement of accuracy in b-/y-ion peak
identification over current state-of-the-art approaches.
This results in a reduced, better focused candidate
space. In turn, this will allow de novo sequencing pro-
grams to evaluate spectra more rapidly as well as handle
longer peptides.
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