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Abstract

native structure of a protein assembly in silico.

Background: Elucidating the three-dimensional structure of a higher-order molecular assembly formed by
interacting molecular units, a problem commonly known as docking, is central to unraveling the molecular basis of
cellular activities. Though protein assemblies are ubiquitous in the cell, it is currently challenging to predict the

Methods: This work proposes HopDock, a novel search algorithm for protein-protein docking. HopDock efficiently
obtains an ensemble of low-energy dimeric configurations, also known as decoys, that can be effectively used by
ab-initio docking protocols. HopDock is based on the Basin Hopping (BH) framework which perturbs the structure
of a dimeric configuration and then follows it up with an energy minimization to explicitly sample a local

minimum of a chosen energy function. This process is repeated in order to sample consecutive energy minima in
a trajectory-like fashion. HopDock employs both geometry and evolutionary conservation analysis to narrow down

structural detail in ab-initio docking protocols.

the interaction search space of interest for the purpose of efficiently obtaining a diverse decoy ensemble.

Results and conclusions: A detailed analysis and a comparative study on seventeen different dimers shows
HopDock obtains a broad view of the energy surface near the native dimeric structure and samples many near-
native configurations. The results show that HopDock has high sampling capability and can be employed to
effectively obtain a large and diverse ensemble of decoy configurations that can then be further refined in greater

Background

Proteins do not operate in isolation. They achieve their
biological function by interacting with one or more
molecules to form higher-order assemblies. Structural
characterization of protein assemblies (formed by inter-
acting protein units) is central to understanding molecu-
lar interactions, designing new effective drugs, and
unraveling the molecular basis for different chemical
processes in the healthy or diseased cell [1].

There are mainly two predominant experimental tech-
niques to elucidate the biologically-active structure of a
protein assembly: X-ray Crystallography and Nuclear
Magnetic Resonance (NMR). These techniques are time-
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and labor-intensive and are often limited by the size of
the molecular assembly [2]. The number of protein-pro-
tein assemblies with structures deposited in the Protein
Data Bank (PDB) [3] is small compared to that of single
protein chains. Due to the biological importance and
ubiquity of protein-protein assemblies and current lim-
itations of experimental techniques, computational
approaches are emerging to complement wet laboratory
efforts in elucidating structures of protein assemblies.
When the number of protein units is limited to two,
the problem of predicting the biologically-active or
native structure formed upon docking of the units onto
each other is known as protein docking. This problem
is challenging to address in-silico for several reasons.
Figure 1 illustrates the docking problem where
two unbound units A and B interacts with each other to
form a bound configuration. If no a priori information
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Figure 1 Protein-protein Docking. Two unbound units A and B
are docked to form a bound configuration AB through rigid-body
motion.

is available, then the problem requires searching over a
space of N * M + 6 dimensions. In this space, N and M
parameters are needed to instantiate the two protein
units in different tertiary structures, and 6 parameters
are used to represent the rotation and translation com-
ponents of the spatial arrangement of one unit onto the
other, effectively docking the unit designated as moving
onto the one designated as the base.

The number of parameters in the general protein-pro-
tein docking problem is large, resulting in a high-dimen-
sional search space infeasible for search with systematic
approaches. For this reason, many computational
approaches elect to reduce the number of parameters by
focusing on a sub-problem known as rigid-body dock-
ing. In this version of the problem, the tertiary struc-
tures of the units are considered to remain the same
before and after docking, hence rigid. This effectively
does away with the N and M parameters and presents
instead a 6-dimensional SE(3) space, which is the space
of (rigid-body) spatial arrangements of the moving unit
onto the base unit.

Nowadays, many protein-protein docking software and
web servers are available, such as pyDock [4], Haddock
[2], Zdock [5], ClusPro [6], PatchDock and SymmDock
[7], Combdock [8], Budda [9], Rosetta-Dock [10], SKE-
DOCK [11], FiberDock [12], and more. As summaries of
their performance in the Critical Assessment of PRe-
dicted Interactions (CAPRI) community-wide experi-
ment are showing, their accuracy is steadily increasing.
However, these summaries are also elucidating that no
method in particular is best at all target assemblies.
Moreover, even the top-performing methods on particu-
lar assemblies seem to be able to capture only a fraction
of the actual interaction interface [13]. Limited sampling
capability, inaccuracy of the energy function used
to rank an interaction interface, or a combination of
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both are often cited as possible reasons for current
limitations.

Most docking protocols that do not employ any a
priori knowledge about the location of the actual inter-
action interface in the native dimeric structure follow a
similar template that consists of two main stages [14].
In stage one, a large ensemble of dimeric configurations
is obtained. Scoring functions are used to increase the
likelihood that this ensemble contains configurations
near the native structure. The ensemble is reduced in
preparation for stage two through either scoring func-
tions that employ more detail or through clustering-
based techniques that select a subset of the decoys gen-
erated in stage one. The selected decoys are possibly
added more structural detail, refined at length through
more computationally-intensive energy minimization
techniques to make final predictions on which decoys
best represent the sought native structure. In some pro-
tocols, flexibility is considered to improve the quality of
the selected decoys and possibly get closer to the native
structure [2]. An important component of the success of
this two-stage protocol is the ability of the search algo-
rithm employed in stage one to obtain a relevant ensem-
ble of decoys and not miss the region near the native
structure.

The focus of this work is on enhancing sampling of
relevant regions in the dimeric configuration space to
obtain a diverse decoy of ensemble that can then be
analyzed and further refined in energetic detail in the
context of ab-initio docking protocols. Towards this
goal, we propose here a novel probabilistic search algo-
rithm, HopDock. HopDock samples dimeric configura-
tions that are local minima of some energy function
employed to rank interaction interfaces. However, Hop-
Dock does not spend its entire computational time
operating on the energy surface, which would be com-
putationally demanding. Instead, HopDock elects to
operate on the energy surface only to refine configura-
tions that are obtained to align putative interaction
interfaces. It is important to note that the definition of a
putative interaction interface in this work builds over
both the body of geometry-based methods for docking,
summarized above, and our own previous work that
extends this definition to include evolutionary conserva-
tion. In [15,16], we have shown in simple settings of
Metropolis Monte Carlo random walks that geometric
complementarity and evolutionary conservation are key
to narrowing the search space of interest to only a few
subspaces shown to include known interaction interfaces
in dimers. We build here over this body of work, pro-
posing a more powerful probabilistic search framework
that uses this information in a computationally-viable
manner. The framework conducts all its global search
on regions of SE(3) deemed to contain putative
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interaction interfaces. Its local search component spends
time to further refine interaction interfaces with a sim-
ple physics-based energy function.

HopDock is an evolutionary search algorithm and can
be considered an algorithmic realization of the Basin
Hopping (BH) (or Iterated Local Search) framework [17]
(hence, the name HopDock). Our adaptation of the BH
framework in HopDock focuses on efficiently navigating
the reduced search space (of putative interaction inter-
faces) to obtain an ensemble of bound configurations
corresponding to local minima of a given energy func-
tion. Since the focus in this work is on proposal and
analysis of effective components in the BH framework
for protein docking, the energy function considered here
is a simple one consisting of basic physics-based terms.

Our inspiration to build over the BH framework
comes from recent findings in the computational struc-
tural biology community, including our own preliminary
investigation in [18]. Though the BH framework was
first proposed to compute structurally-diverse Lennard-
Jones minima of small clusters of atomic particles, it has
now been shown promising in obtaining low-energy
decoy configurations in the context of ab-initio protein
structure prediction, where the goal is to predict the
structure of a single protein chain in isolation [19-25].
At the core of the BH framework lies a repeated appli-
cation of a structural perturbation of a configuration fol-
lowed up by an energetic refinement or minimization of
the resulting configuration to obtain a trajectory of low-
energy local minima. A Metropolis criterion [26] is used
to bias the growing trajectory of consecutive minima
towards lower-energy regions of the energy surface.

Our adaptation of the BH framework in HopDock
focuses on effective implementations of the perturbation
and minimization components that make use of the
underlying SE(3) search space. For example, the struc-
tural perturbation in HopDock builds over the basic
process of aligning geometrically-complementary and
evolutionary-conserved regions on the molecular sur-
faces. The minimization component uses the simple
energetic scheme to further optimize a configuration
resulting from the structural perturbation.

A preliminary proof-of-concept implementation of this
BH-based exploration of dimeric configuration spaces
has been presented in [18]. Here we present a more
general framework, where we additionally investigate,
for instance, the relationship between strength of evolu-
tionary conservation and the ability of the algorithm to
capture the correct interaction interface in its ensemble
of decoy configurations. Moreover, a detailed analysis
over different implementations of the perturbation and
minimization components is also carried out in this
paper to obtain effective implementations of these com-
ponents in HopDock. HopDock is benchmarked on a
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broad and diverse list of protein dimers with known
native structures. A detailed comparative analysis places
HopDock in the context of other search algorithms used
in docking protocols. Our results suggest that HopDock
is efficient, competitive, and samples many near-native
configurations. These characteristics make it a promis-
ing search algorithm to use in the context of docking
protocols, particularly if more powerful energy functions
are used and if the generated decoys are further selected
and refined at greater detail and with more computa-
tional resources [27,28].

The rest of this article is organized as follows. We first
provide a review of related work in order to place Hop-
Dock in context. Details on the different components of
HopDock are provided in the Methods section. The
Results section evaluates these components on seven-
teen diverse protein dimers and further compares the
result of HopDock to those reported or obtained by cur-
rent state-of-the-art docking protocols. The Conclusions
section provides a discussion and offers promising direc-
tions of future research.

Related work

Current docking methods can primarily be categorized
into two approaches, energy-based and geometry-based.
Methods like pyDock [4], RosettaDock [10], ClusPro [6],
and Haddock [2] take an energy optimization approach.
The optimization seeks minima of a defined energy
function. If the energy function is sufficiently accurate,
near-native configurations will be found among the low-
est-energy minima [6,13]. In docking protocols, the pro-
cess is usually split into two stages. In the first stage, a
search is conducted to obtain a large number of low-
energy bound configurations. The focus on the size of
the ensemble is partially due to the fact that current
energy functions are not accurate. Indeed, if only the
lowest-energy minimum is maintained in the ensemble,
the native structure will certainly be missed by many
Angstroms (described in Results section). The size of
the ensemble makes it impractical to employ a lot of
structural detail and use expensive energy functions. For
this reason, typically, the large ensemble is obtained
with a simple scoring function. The ensemble is reduced
through selection techniques, often relying on structural
clustering, to obtain a subset that can be afforded to be
optimized in greater structural detail and with more
expensive scoring functions in stage two. Computational
time can even be devoted in this stage to incorporate
some flexibility around detected interfaces in the bound
configurations [12].

RosettaDock is a representative of current protocols.
The optimization in RosettaDock is carried out over rigid-
body orientations and side-chains, followed by continuous
minimization. pyDock is another optimization-based
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server for accurately scoring rigid-body motions. In the
first stage, pyDock uses FT-DOCK [29], a Fast Fourier
Transform-based docking algorithm, for rigid-body
docking. Configurations are then evaluated by their
binding energy based on electrostatic and desolvation to
obtain a relevant subensemble. As in pyDock, the first
stage in ClusPro is performed using a Fast Fourier
Transform-based docking algorithm known as DOT
[30]. In preparation for stage two, configurations are
filtered using a combination of desolvation and electro-
static energies. A clustering algorithm is applied to dis-
criminate against false positives and reduce the set of
configurations to near-native structures. Haddock [2] is
another example of an energy-based docking protocol
that makes use of biochemical data available from NMR
to reduce the search space where possible.

Even if computational resources are considered unlim-
ited for optimization, research shows that it remains
challenging to design energy functions to accurately
score native interaction interfaces [13,31]. For this rea-
son, a group of docking methods take a complementary
approach that delays energy considerations to the extent
possible.

Instead of conducting the search over a large continu-
ous space, some methods like Budda [9], CombDock
[8], PatchDock, SymmDock [7], ZDOCK [5], and LZerD
[32] discretize the space by defining geometrically-com-
plementary regions on the molecular surfaces of the
units participating in the assembly. The process of
searching for arrangements that take one unit over the
other then becomes searching for rigid-body transforma-
tions that align a region of one molecular surface with a
complementary region of the other molecular surface.
The main basis of this geometric treatment is that mole-
cules are more likely to interact along geometrically-
complementary regions on their surfaces. Convex
regions fit better in concave ones, which should produce
more stability for docked configurations that superim-
pose geometrically-complementary regions.

In order to model geometric complementarity, the
molecular surfaces of the unbound units need to be ana-
lyzed and summarized in terms of geometric properties.
Several numerical methods quantize and represent
molecular surface with a collection of points, most nota-
bly the Connolly [33] and Shuo methods [34]. These
methods summarize a molecular surface in terms of
“critical” points that contain information on whether the
surface region they represent is convex, concave, or sad-
dle. This information is used to consider only rigid-body
transformations that align geometrically-complementary
regions (such as convex with concave).

The search for geometrically-complementary surface
regions is conducted through mainly two approaches. A
traditional grid-based shape complementary approach
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like FTDock [29] identifies grid points surrounding the
base unit and the total number of grid points overlap-
ping any grid points corresponding to the moving unit.
A more accurate and detailed computer vision-based
technique known as Geometric Hashing [35] uses trans-
formation-invariant representations of the molecular
surface which allow direct matching. It takes as input a
database of objects and a scene in which to find the
objects. The algorithm consists of two stages, preproces-
sing followed by recognition. During the preprocessing
stage, some features of the base unit are extracted and
hashed into a table. The recognition stage similarly
extracts related features from the moving unit and then
matches those features to those of the base unit stored
in the hash table.

CombDock [8] is based on the technique of Geo-
metric Hashing (GH). In the first stage, CombDock
matches geometrically-complementary regions on mole-
cular surfaces. Promising configurations are then sub-
jected to the filtering stage, which uses both geometry
and physico-chemical features to identify promising
decoys without any use of a detailed energy function.
LZerD [32] also uses Geometric Hashing for shape
matching in the first step and incorporates a novel geo-
metry-based scoring function using 3D Zernike descrip-
tors in the final step. Multi-LZerD, a recent algorithm
for protein assemblies of more than two units [36] uses
LZerD for pairwise docking and then relies on a genetic
algorithm to sample multimeric configurations. The
multimeric decoys are ranked with a physics-based scor-
ing function. Other techniques, like VASP [37], do not
carry out explicit docking, but propose useful volu-
metric-based analysis and representations of surface cav-
ities, clefts, and tunnels to rank and compare binding
interfaces.

Due to the implicit discretization of the search space,
geometry-based approaches are more efficient but also
less accurate than energy-based approaches. Thus, geo-
metry-based approaches are useful to obtain many
decoys in an efficient manner. Optimization can be dele-
gated to subsequent stages. Indeed, since their introduc-
tion, they have demonstrated that they feasibly produce
decoy configurations that then, through further ener-
getic refinement, reproduce biologically-relevant native
assemblies [38]. The HopDock algorithm we propose in
this paper can be considered to fall in this category,
using a simple energy function to refine dimeric config-
urations found by essentially matching geometrically-
complementary regions. In addition, HopDock only
explores subspaces of SE(3) of potential interest by nar-
rowing the definition of a putative interaction interface
to one that matches both geometrically-complementary
and evolutionary-conserved surface regions. We now
relate details on the HopDock algorithm.
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Methods

We now relate detail on the HopDock algorithm. As
mentioned in the Introduction section, a preliminary
proof-of-concept implementation of the BH framework
realized in HopDock has been presented in [18]. Our
description of HopDock focuses on the overall approach
and the novel components added to it in this paper.
However, for the sake of completeness, we summarize
the components of the preliminary presentation in [18].

In summary, HopDock is based on the BH framework,
and the search in it is guided by a simple energy function.
The search is conducted over rigid-body transformations
that align interfaces that are both geometrically-
complementary and evolutionary-conserved. Though
these two criteria do not guarantee finding the native
interaction interface, they do allow narrowing the
search for dimeric configurations to those that align
credible interfaces. Geometric complementarity is a
well-established predictor for true contact interfaces.
Moreover, a detailed analysis in the Results section
shows that focusing on evolutionary-conserved regions
not only helps finding the correct interaction interface,
but more evolutionary-conserved regions are on the
native interaction interface than elsewhere on the
molecular surface.

Details of the proposed algorithm are presented as
follows. First, we define the search space by describing
in detail how we use the geometry and evolutionary
conservation information to detect rigid-body transfor-
mations of interest. Second, we describe a simple
energy function that can rank a bound configuration
resulting from applications of such a rigid-body trans-
formation. Third, we relate details on how all these ele-
ments are incorporated in the proposed HopDock
algorithm.

From molecular surfaces to rigid-body transformations
We now describe how molecular surfaces are analyzed
and represented in order to define rigid-body transfor-
mations that align chosen surface regions of the units
being docked onto each other. Our criteria for choosing
certain surface regions are geometric complementary
and evolutionary conservation, as detailed below.

From molecular surfaces to critical points

The predominant representation of a molecular surface
is the Connolly Surface representation [33]. The Con-
nolly method places a probe ball, representing the sol-
vent molecule, tangent to the atoms of the molecule on
thousand different locations. For each position of the
ball, the point that does not overlap with the van der
Weaals radii and points facing the inward-surface of the
probe becomes part of the molecular surface. The 3D
coordinates of each such point are maintained in the
Connolly representation of the molecular surface,
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together with the normal vector and a numeric value to
indicate the geometric type of the point. The type
ranges from convex, saddle, to concave, and is deter-
mined based on the tangency of the probe to the num-
ber of atoms on the molecular surface.

The Connolly representation is dense. A sparse repre-
sentation can be calculated instead [34] that consists of
critical points. These are defined as the maxima
or minima of a Connolly face of a molecular surface.
Critical points are referred to as “caps”, “pits,” or “belts”
to represent the center of gravity of the convex, concave,
and saddle surface of the Connolly representation,
respectively. The collection of critical points is sufficient
and complete to cover key locations of the molecular
surface. This sparse representation reduces the total
number of points from the high number of points gen-
erated by the Connolly surface and so reduce the costs
of a geometric treatment in rigid-body docking.

From critical points to active critical points: an evolutionary
conservation analysis

We now introduce the notion of an active critical point
by additionally considering an evolutionary conservation
analysis of the molecular surface.

Several studies have shown that molecular regions
making up actual interaction interfaces are more evolu-
tionary conserved, probably as a result of higher pres-
sure to retain functional integrity during evolution [39].
Some amino acids are bound to remain more conserved
throughout evolution than others if they are involved in
an interaction interface. Thus, evolutionary conservation
can be a good predictor of the native interaction inter-
face. Several methods [40], [41] now exist for rigorous
evolutionary analysis of protein sequences that allow
associating evolutionary conservation values with each
amino acid of a protein of interest.

The evolutionary analysis method known as Joint Evo-
lutionary Trace (JET) [40], which we employ in this
work, allows associating conservation scores with each
amino acid of a protein chain. JET relies on multiple
sequence alignment and provides rates of conservation
known as trace scores. Each amino acid is associated its
own trace score in JET. The score is in the [0.0 - 1.0]
range corresponding to the least conserved to the most
conserved spectrum. We have used iterative JET (iJET),
which essentially repeats the JET analysis # times to
associate a more reliable (average) conservation score
with each amino acid. After obtaining such scores, a
threshold score conserve, is then used to designate an
amino acid as conserved or not conserved. The determi-
nation of the value of this parameter and its role in nar-
rowing the focus to the correct interaction interface
while not discarding it, is detailed in Results section.

The obtained evolutionary scores can be transferred to
critical points. Specifically, a critical point is assigned the
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conservation score of the surface amino acid closest to
it. A critical point with a conservation score greater
than conservey, is deemed to be “active” as opposed to
“passive.” The active/passive designation is inspired by
work in [2]. As we detail below, active critical points are
used to define surface regions of interest for alignment.
From active critical points to active triangles

We now describe how active critical points are used to
build active triangles for matching during docking. For
any rigid-body motion, a reference frame needs to be
defined. In this work, reference frames are defined in
terms of active triangles on molecular surface as follows:
three critical points are used to define a triangle. At
least one of these points has to be active for the triangle
to be designated active, as well. First, given the thresh-
old conservation score conservey,, a critical point is cho-
sen whose conservation score is above the threshold. Let
us refer to this point as p;.

Given p;, two more critical points (let us refer to them
as p, and p3) need to be specified in order to define a
triangle. The two other points do not have to be neces-
sarily conserved in our definition of an active triangle,
as long as one point (served by p;) is. The only criteria
in selecting p, and pj; is that they have to satisfy angle
and distance constraints. Satisfaction of angle con-
straints is needed so that the points are not collinear
and a triangle can indeed be defined. The distance con-
straints ensure that the resulting triangle is not too
small or too large and are based on the ones originally
put forth in [38]. A minimum distance of 2.0A is used
so that points are not within this distance of one
another (so not on th same van der Waals - vdw -
radius of an atom). The maximum distance of 5.0A
ensures the resulting triangle does not cover too much
of the molecular surface.

We narrow our focus to unique active triangles in
order to limit the number of attempted transformations
aligning geometrically-complementary active triangles and
avoid redundancy as in [15,16]. A triangle’s vertices are
first subjected to a lexicographic ordering, which is used
to ensure that no two triangles share their first vertex.
Further, triangles are hashed by their center of mass in
order to ensure that no two triangles share their center
of mass. The result of all these constraints is that less
than # active triangles are defined given # critical points.
From active triangles to rigid-body transformation
First, one of the units, let’s say A, is arbitrarily selected
as the “base” unit. Therefore, the other unit B will be
the “moving unit”. For each unique active triangle
selected from A, a matching active triangle is selected
from B. The features considered for matching two active
triangles are only geometric. Suppose the two selected
triangles are try and trg. The rigid-body transformation
superimposing triangle trg over triangle ¢r, according to
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1, will align the monomer B on monomer A, resulting
in a particular dimeric configuration. Thus, a new
dimeric configuration is the result of a rigid-body trans-
formation using active triangles.

T =try *tra (1)

where try defines the inverse of reference frame trp.

Energy function

HopDock uses a simple energy function to quickly sam-
ple low-energy dimeric configurations to get a broader
view of the local minima in energy minimization com-
ponent. Suppose HopDock has obtained a new dimeric
configuration through a rigid-body transformation that
aligns two active triangles (one on each unit). We use
the following simple energy function to guide the search
in HopDock towards configurations that represent
minima of this energy function:

E = Evaw + Eetectrostatic + Ehydrogen—bonding- 2)

The first two terms measure vdw and electrostatic
interactions and are based on the CHARMM?22 force
field [42]. Specifically, the vdw term is based on the
standard 12-6 Lennard-Jones potential as follows:

Eaw =Y 8[(;@)12—2X(2)6] 3)

atompairs

where r;; is the atomic radii sum, E is the energy well
depth derived from CHARM22 [42], and d; measures
the Euclidean distance between atoms i and j. This
energy term penalizes collisions between atoms on one
unit and atoms on the other unit in the bound config-
uration. Atomic pairs (one atom on each unit) that lie
not only closer but also farther than an ideal distance
(determined by atom types) are also penalized.

The electrostatic term is computed based on
Coulomb’s law:

Eelectrostatic = E

atompairs e

qi X gj
dijz (4‘)

where g; and g; are the electrostatic charges of atoms i
and j obtained from CHARM?22 [42], e is the dielectric
constant (vacuum constant 1 is used for this paper), and
dj; is the distance between atoms i and j. The purpose
of this term is essentially to penalize atomic pairs that
bring similar charges.

The hydrogen-bonding term is calculated through the
12-10 hydrogen potential [43] as follows:

Ehydmgen—bonding =5 X (:1(:])12 —6 X (:1(:])10 (5)

where d;; measures the Euclidean distance between the
interface acceptor atom i and interface donor j. Here, 1
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= 2.9A is the idealized distance for hydrogen bonding.
The purpose of this term is to reward formation of pos-
sible hydrogen bonds between atoms in an interaction
interface.

HopDock: a BH-based algorithm sampling low-energy
configurations of dimeric protein assemblies

As in the BH framework, HopDock computes a trajec-
tory of n configurations Cj, ..., C,, that correspond to
minima of a chosen energy function through the BH
framework. The general BH framework is illustrated in
Figure 2. Starting from a configuration C; sampled at
random (obtained through a rigid-body transformation
aligning sampled geometrically-complementary active
triangles), HopDock hops between two consecutive con-
figurations in the trajectory, C; and C;,;, through an
intermediate configuration Cperturb,i- A structural pertur-
bation component in HopDock modifies C; to obtain a
configuration Cpereurb,i that allows escaping the current
minimum represented by C;. The minimization compo-
nent follows the perturbation. The minimization con-
sists of a series of structural modifications, initiated at
Cperturb,i» to obtain a new energetically-refined configura-
tion C,,; representing the energy minimum nearest to
Cperturb,i- The resulting C;,; configuration is added to
the growing trajectory only if it passes the Metropolis
criterion. This criterion is based on the difference in
energy between C; (the previous minimum in the trajec-
tory) and C,,; (the current configuration considered a
candidate for the new minimum) and an effective tem-
perature serving as a scaling parameter as in elFC ) E
(C;)]/T, . The objective is for the trajectory of energy
minima to converge to lower-energy minima over time.
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In the Results section, we detail and analyze the effect
of different temperature values to select an effective
temperature that allows enhancing the sampling of low-
energy minima near the native dimeric configuration.
Structural perturbation

The perturbation component structurally modifies the
current minimum configuration C; by seeking a new
rigid-body transformation to obtain Cperturb,i- A naive
implementation would not maintain a correlation
between the contact interface in C; and that in Cperturb,i-
We compare to a naive implementation in Results sec-
tion and show that preserving some (but not too much)
of the contact interface of C; in Cperturp,i is important in
obtaining good-quality decoy configurations. We do so
by essentially limiting the search for a new contact
interface in Cpereurp,i to surface regions near the contact
interface in C;. We limit the neighborhood over which
new active triangles are sought for matching to obtain
Cperturb,i- This is based on studies showing that a pertur-
bation jump of magnitude not too small and not too
large results in successful applications of the BH frame-
work for molecular modeling [22-24,44].

Given the current minimum C;, a dimeric configura-
tion Cpereurb,i that preserves some of the good structural
characteristics of C; is obtained as follows. Let us refer
to the two active triangles that are used to define the
rigid-body transformation resulting in the current mini-
mum C; as {tr,, trg} (one from each monomer). The
perturbation component samples a new active triangle
tr), over the surface of unit A uniformly at random in a
d-neighborhood of ¢r,. Here d refers to the distance, in
angstroms, between the center of mass of try and tr).
Given the newly sampled tr/,, a new active triangle try is

Ioc?:lp:'giigigrna
YE/AY
W/ / \
MV

basin

==== original energy surface (E)

---- transformed energy (E)
perturbed configuration
© local minima
®rejected minima

Figure 2 Overview of Basin Hopping Framework. Under the BH framework, the energy surface is transformed into a collection of
interpenetrating staircases. A trajectory of local minima is obtained consecutively, through iterated applications of a structural perturbation to
jump out of a current local minimum and an ensuing local optimization to map to another nearby local minimum.




Hashmi and Shehu Proteome Science 2013, 11(Suppl 1):56
http://www.proteomesci.com/content/11/5S1/56

sampled over a d-neighborhood of trg uniformly at ran-
dom. This process is repeated until a pair of geometri-
cally-complementary active triangles tr, and try is found.
Once these triangles are obtained, a new rigid-body
transformation aligning them is defined (as described
above), resulting in the perturbed dimeric configuration
Cperturb,i'

Small values of d will ensure that C; and Cpereurb,; are
close in configuration space and so share structural fea-
tures and parts of their contact interfaces. However,
such values may result in no geometrically-complemen-
tary active triangles. Large values of d increase the prob-
ability that a geometrically-complementary pair will be
sampled, but they also result in C; and Cpereurb,i poten-
tially being far away in configuration space. When that
happens, our adaptation of BH in this algorithm degen-
erates to essentially minimization with random restarts.
In the Results section we show the effect of two values
of d on the magnitude of the perturbation jump and the
ability of our algorithm to sample minima near the
native configuration. We additionally demonstrate that
controlling the value of d to some not very large value
yields better results than a simple framework that
follows up random restart with minimization (where d
is essentially infinite).

Local optimization: energy minimization

The minimization component modifies the perturbed
configuration Cpereurn,i to obtain a new nearest energy
minimum C;,;. The minimization essentially attempts to
correct structural features that the perturbation compo-
nent changed from C; in Cpereurb,; and so compute new
good features resulting in another energy minimum C;
+1. The minimization component in this paper carries
out at most m consecutive structural modifications,
starting with Cpereurb,i until k consecutive modifications
fail to lower energy. Two different implementations are
pursued in this paper, depending on how the structural
modifications are defined. One straightforward imple-
mentation is to define each of these modifications essen-
tially as versions of the perturbation component, but
with smaller d. The purpose of making d small is so
that the minimization brings Cperturb,i to the nearest
local minimum and not to some random point in the
configuration space.

Our analysis shows that it can be hard to find small
values of d that will still allow finding geometrically-com-
plementary active triangles. Therefore, this implementa-
tion is not effective, as it tends to make large jumps in
configuration space all the while attempting to lower
energy. Therefore, a new implementation is pursued for
the minimization component. This implementation
essentially samples new rigid-body transformations
directly, rather than through active triangles, in a contin-
uous neighborhood of an initial transformation.
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A rigid-body transformation is represented as (¢, u, ),
where ¢ specifies the translation component, and (u, 6)
specify the orientation component in an axis-angle
representation (implemented here through quaternions).
In each modification in the minimization component, a
new random transformation is sampled in the neighbor-
hood of the transformation representing the configura-
tion resulting from the previous modification. The
translation and rotation components are sampled indivi-
dually. A new translation component is sampled in a J,
neighborhood of . A new rotation component is
obtained by sampling a new axis u rotating around the
axis # by a sampled angle value J,; a new angle is
obtained by sampling in a dy neighborhood around 6.

The implementations we propose for the minimization
component do not seek to identify the true basin of a
local minimum. The depth of the exploration is deter-
mined by the parameter m in the minimization. Given
that the decoys need to be low-energy but can be
refined in detail at a later stage, this approximate defini-
tion of a local minimum is sufficient. For this reason,
the minimization component employs a simple energy
function.

Results and discussion

The organization of this section is as follows. The
implementation details and the protein systems
employed here for validation of HopDock are described
first. Second, an analysis of the distribution of evolution-
ary-conserved regions on the molecular surface in find-
ing the true interaction interface is presented in the
next section. The next few sections provide a detailed
analysis on how values of different parameters in Hop-
Dock have been chosen. The parameters analyzed here
are the evolutionary conservation threshold, the effective
temperature 7, employed in Metropolis Criterion, the
perturbation distance d in the perturbation component,
and the translation distance ¢ in the minimization com-
ponent. In the following section an analysis has been
performed to investigate the relationship between the
lower energy values to the near-native structures. A
detailed comparative analysis on the attainment of the
known native configuration for the proteins systems stu-
died in this work to other state-of-the-art docking pro-
tocols is provided in the last section.

Experimental setup

Implementation details

HopDock was run on a 3GHz of Opteron Processor
with 4GB of memory to generate 10, 000 dimeric con-
figurations per protein system considered. A detailed
analysis of HopDock was conducted on 5, 000 to 20,
000 configurations. Results obtained with r 10, 000 con-
figurations were found to be representative, so the
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analysis presented below is over 10, 000 sampled config-
urations. Depending on the size of the protein systems
under investigation, obtaining this number of configura-
tions takes anywhere from 1 - 12 hours on one CPU.
Performance measurements

Our analysis employs least Root-Mean-Square-Deviation
(IRMSD) to the known native dimeric structure to
determine the quality of a generated configuration.
IRMSD is a widely accepted performance measurements
in docking methods, reported in units of Angstrom (A).
RMSD is a measure of the average atomic displacement
between two configurations, say x and y, under compari-
son and is calculated as follows:

1 N
D ki —yill? 6)
N i=1

IRMSD refers to the minimum RMSD over all possible
rigid-body motions of one configuration relative to the
other. A value between 2 and 5A is considered to be
indicative of a configuration being highly similar to the
known native structure, and the configuration is deemed
near-native. We use IRMSD here not only to determine
the proximity of dimeric configurations generated by
HopDock to the known native structure but also to ana-
lyze the proximity of configurations to each other in the
trajectory generated by HopDock.

Protein systems of study

We have selected seventeen different dimers with
known native structures obtained from PDB as our sys-
tems of study. These dimers, listed in Table 1 are cho-
sen because they vary in size, functional class, and have
been studied by other docking methods, as well. Table 1
lists the PDB ID of the known native structure of each
dimer in column 1, the size of each unit in a dimer in
terms of number of atoms in column 2, and the known
functional classification obtained from PDB in column
3. Systems that are CAPRI targets are marked with an
asterisk in column 1.

Evolutionary conservation analysis preserves native
interface

The role of evolutionary conservation in finding the true
contact interface has been demonstrated in other studies
[45,46]. The work in [45] shows good correlation
between sequence conservation and inclusion of con-
served surface regions in the interaction interface. The
analysis in [45] was expansive, classifying 265 proteins
into different functional categories and measuring the
correlation between conservation and inclusion of con-
served regions in the interaction interface through Mat-
thews’ correlation coefficient (MCC) [47]. Analysis
of MCC values allowed concluding that interaction
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interfaces in signal proteins and enzymes was particu-
larly conserved. A larger dataset of 2646 protein inter-
faces was analyzed in [46]. The study concluded that
not only there are highly conserved surface regions on
the majority of proteins, but also in most proteins these
regions are more likely to be found on interaction inter-
faces than on the rest of the molecular surface.

We conduct here a similar analysis to that in [46] to
investigate the relationship between the known interac-
tion interface and evolutionary-conserved regions based
on our working definition of active critical points
(described in Methods section). The goal is to uncover
any correlation between high evolutionary conservation
score and the true contact interface. We point out that
our analysis is confined to the 17 systems studied in this
work, 8 of which were specifically chosen due to their
inclusion in the study in [46]. We measure two different
ratios, Rj,¢erface and R,.;; on each of the known native
dimeric structures of the systems studied here. R, se/face
is the ratio between the number of conserved critical
points on the known interaction interface to the total
number of critical points on that interaction interface.
Ryest 18 1 - Rypserface- TWo critical points, one from the
molecular surface of unit A and the other on that of
unit B in known native dimeric structure, are considered
to be in contact and thus in the true interaction inter-
face if their Euclidean distance is no higher than 5A.
This distance threshold is commonly employed in other
work [2,5].

Each of the ratios described above is measured as a
percentage, and the difference between them, R,.y - R,
terfaces 18 plotted in Figure 3 in column diagram format.
A negative value indicates that the interaction interface
is more conserved than the rest of the surface, as more
of the active critical points fall in it rather than else-
where on the molecular surface. Results are shown for
three different conservation thresholds in {0.25, 0.50,
0.75} in different colors to visualize the effect that vary-
ing the conservation threshold has on the distribution of
conserved critical points.

The results in Figure 3 allow concluding that in 10 of
the 17 dimers, the distribution of conserved critical
points is heavily concentrated on the true interaction
interface as opposed to the rest of the molecular surface.
In the context of employing this information for dock-
ing, this result means that more rigid-body motions will
focus on matching regions on the actual interaction
interface than elsewhere on the molecular surfaces. On
the rest of the dimers, Figure 3 shows that the difference
is not too large, which means HopDock will not spend a
large portion of its time on matching regions elsewhere
on the molecular surface rather than on the known
interaction interface.
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Table 1 Protein systems of study.
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PDB ID (Chains) Size(Number of Atoms)

Functional Classification

1C1Y (AB) 1376, 658
1DS6 (AB) 1413, 1426
1TX4 (AB) 1579, 1378
TWWW (W,Y) 862, 782
TFLT (V)Y) 770, 758
1IKN (AQ) 2262, 916
1IKN (CD) 916, 1589
1VCB (AB) 755, 692
1VCB (B,Q) 692, 1154
10HZ* (AB) 1027, 416
1T6G* (AQ) 2628, 1394
1ZH* (AB) 1597, 1036
2HQS* (AQ) 3127, 856
1QAV (AB) 663, 840
1G4Y (BR) 682, 1156
1CSE (ED) 1920, 522
1G4U (RS) 1398, 2790

Signaling Protein

Signaling Protein

Complex(gtpase Activatn/proto Oncogene)
Nerve Growth Factor/trka Complex
Complex (growth Factor/transferase)
Transcription Factor

Transcription Factor

Transcription

Transcription

Cell Adhesion

Hydrolase Inhibitor
Transcription/replication

Transport Protein/lipoprotein
Membrane Protein/oxidoreductase
Signaling Protein

Complex(serine Proteinase Inhibitor)
Signaling Protein

Details are provided on the dimers selected in this study. PDB ID of known native structure along with chains in bracket is shown in column 1. Column 2 lists the
number of atoms per unit in a dimer, and column 3 shows the known functional classification of each dimer. CAPRI targets are marked with an asterisk.

Analysis of different parameter values employed in
HopDock

Here we investigate in detail the effect that varying
values of certain parameters in HopDock has on the
quality of the ensemble of sampled dimeric configura-
tions. The parameters we investigate are the conserva-
tion threshold and its effect on the size of the search
space, the effective temperature employed in the Metro-
polis criterion and its effect on the energetic and

structural quality of sampled configurations, and the
perturbation distance in the perturbation component
and translation distance in the minimization component
and their effect on the overall quality of the sampled
ensemble.

Analysis of evolutionary conservation threshold

Analysis on the choice of the conservation threshold,
conservey, is presented in Table 2 on three selected sys-
tems that considers the same three different thresholds

20
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more conserved than the rest of the molecular surface.
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Figure 3 Analysis of Evolutionary Conservation. Column diagram shows the Ryes; - Rinterface difference on each of the seventeen dimers. Three
different conservation thresholds are considered and results for each are shown in different colors. Negative percentages indicate the interface is
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Table 2 Conservation threshold analysis.

PDB ID Threshold Nr. IRMSD Rrest -
Triangles (A) Rinterface
1FELT (V.Y) 0.25 2417 2.06 6.67
0.50 2338 112 -3.50
0.75 2080 1.03 127
TWWW (W, Y) 0.25 2900 229 -18.37
0.50 2911 2.24 -745
0.75 2854 260 6.62
1C1Y (AB) 0.25 3385 1.89 -13.65
0.50 3325 130 -38.64
0.75 3306 145 -21.01

Table shows the effect of three different conservation thresholds 0.25, 0.5,
and 0.75 on the number of active triangles and lowest IRMSD to native
structure.

as in Figure 3. The results of this table are obtained
through our previous work [15,16]. The analysis focuses
on showing the effect of different evolutionary conserva-
tion thresholds on the number of active triangles and
essentially on the lowest IRMSD to native that can be
achieved. Column 1 indicates the PDB ID of these three
systems and their chains in brackets. Three conservation
thresholds in {0.25, 0.5, 0.75} are employed to define
three sets of active triangles and are reported in column
2. Column 3 shows the number of active triangles
defined on the molecular surface of the base/reference
unit under each conservation threshold. For each sys-
tem, three sets of dimeric configurations, one for each
threshold, are then obtained from our previous work.
The lowest IRMSD to the experimentally-determined
native structure from these dimeric configurations is
recorded for each set and these values are reported for
each system in column 4. The last column shows R, -
Riyterface recorded for each conservation threshold as
from Figure 3.

Table 2 highlights a few results. First, the number of
active triangles decreases as the conservation threshold
increases. This is expected, since a higher threshold lim-
its the number of active critical points which in turn
limit the number of active triangles. Second, the lowest
IRMSD generally decreases as the conservation thresh-
old increases, but the effect on IRMSD depends on how
much of the conserved critical points under each con-
servation threshold remain on the true interaction inter-
face as opposed to elsewhere. These results, combined
with our analysis on the distribution of conserved criti-
cal points on the molecular surface above, allow us to
conclude that a conservation threshold of 0.5 is a rea-
sonable compromise between maintaining a smaller
number of active triangles, thus reducing the size of the
search space, while retaining the known interaction
interface. For this reason, the rest of our experiments
employ conserve,, = 0.5 as conservation threshold.
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Analysis of effective temperature

The effective temperature 7T, in the Metropolis criterion
affects the acceptance probability e 27 with which an
energetic increase JE is accepted in the trajectory. A
higher temperature increases the probability to accept
an energy increase between two consecutive configura-
tions in the trajectory than a lower temperature. A high
temperature will allow HopDock to make large jumps in
the energy surface, effectively degenerating to a random
restart search where there is no correlation between two
consecutive configurations in the HopDock trajectory.
On the other hand, a low temperature may provide too
strong a bias and not allow HopDock to accept tempor-
ary energetic increases to potentially cross energy bar-
riers needed for convergence to deeper local minima
over time.

In [18], we compare various effective temperatures
and their effect on two measures of performance, lowest
IRMSD to the native structure and percentage of config-
urations with IRMSD <5A to the native structure. The
analysis focuses on two representative temperatures, Ty,
a representative of a medium temperature and 75, a
representative of a lower temperature. 7, allows accept-
ing an energy increase of 2 kcal/mol with probability of
0.39, allows accepting that same energy increase with a
lower probability of 0.16. The analysis presented in [18]
allows concluding that T, allows HopDock to generate
slightly more near-native configurations than T, does.
The lower temperature 7; allows achieving lower ener-
gies, as expected, but these do not necessarily translate
to near-native configurations when dealing with inaccu-
rate energy functions. Based on this analysis, we have
chosen the higher temperature T, to allow more ener-
getic diversity for the rest of the experiments in the
Metropolis criterion that guides the acceptance of local
minima sampled by HopDock.

Analysis of perturbation and minimization distance

The next experiment compares different implementa-
tions of the perturbation distance d described in the
Methods section. The first implementation essentially
allows testing the efficacy of random restart. In this
implementation, a geometrically-complementary pair of
triangles is sampled uniformly at random, and the
resulting transformation is applied to obtain a new per-
turbed configuration. This implementation essentially
refers to the case when d = oo, since it employs no
knowledge of the pair of triangles that were aligned to
obtain the previous minimum C;. In the second and
third implementations, d is controlled and set to 7 and
5A, respectively. A smaller value of 4 makes it very hard
to find geometrically-complementary triangles on the
molecular surfaces.

Our preliminary investigation in [18] compares these
three different implementations in terms of various
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statistics. First, the distance in terms of IRMSD between
two consecutive perturbed configurations, Cperturb,i and
Cperturb,i+1 is recorded to obtain a measure of the magni-
tude of the perturbation jump in each setting. Let us
refer to this distance as /. The median over these dis-
tances over all perturbed configurations obtained in the
process of running HopDock with each of the three
implementations of the perturbation component, [, is
also tracked. The actual distribution of these distances is
investigated in more detail by tracking the percentage of
distances in the 0-5A and 5-10A range. The effect of
controlling d is also evaluated in terms of the quality of
the overall ensemble of sampled minima by measuring
the lowest IRMSD to the native structure and the per-
centage of minima configurations with IRMSD to the
native structure less than 5A. All these measurements
are compared across the three settings of d € {e, 7, 5}
A, and our detailed analysis in [18] allows concluding
that d = 5Arepresents an optimal setting. We highlight
the most salient conclusions of that analysis in Figure 4.
We show in Figure 4(a) that controlling d allows con-
trolling the median distance /,,,. Additionally, Figure 4(b)
shows that lowering d also increases the number of con-
secutive perturbed configurations with <5A of each-
other. The full analysis in [18] shows this is also true for
perturbed configurations with <10A IRMSD of each-
other, and that lowering d does not impact the number
of minima with low IRMSDs to the native structure
negatively. For this reason, we employ d = 5A in the
rest of our experiments below.

Finally, our preliminary investigation in [18] also
pitches different implementations of the minimization
component against one another. In all implementations,
m = 100 and k = 20 (i.e., the minimization trajectory
initiated from a perturbed configuration is at most 100
steps long and can terminate earlier, if 20 consecutive
steps all fail to lower energy). In the Methods section
we explain that the consecutive modifications pursued
in the minimization component to lower interaction
energy can be considered versions of the perturbation
component with d = 5A. However, these result in large
moves in the minimization component and do not
ensure that a perturbed configuration will be projected
to a nearby local minimum rather than some uncorre-
lated configuration in the search space. Our analysis
suggests that this implementation is less effective. The
results below show the effect of three other implementa-
tions, which sample rigid-body transformations directly,
rather than through active triangles, in a continuous
neighborhood of the rigid-body transformation in the
previous configuration in the minimization trajectory.
These implementations use the same thresholds of J, =
10° and dy = 30°. What varies is the translation distance
threshold ¢, which takes values in {1.5, 2.0, 2.5}A. We
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Figure 4 Analysis of Effect of Perturbation Distance. The effect
of perturbation distance on three representative systems is shown
here to summarize the detailed analysis in [18]. Three different
values of d are considered, o, 5A and 7A, color-coded in different
colors. The bars in the top pannel (a) show the median /,, of the |
distribution of IRMSDs between two consecutive perturbed
configurations. Those in the bottom pannel (b) show the

percentage of consecutive distances within 5A of each-other.

decide to focus on varying ¢ rather than the orientation,
as the translation distance is expected to have a more
dramatic effect on changing the contact interface. The
goal of this analysis is to determine whether making
small moves during minimization, which increases the
probability of actually populating the minimum nearest
to Cperturb,i» has any effect on the distance between a
perturbed configurations and its nearby minimum as
well as on the overall quality of sampled local minima.
In summary, the analysis in [18] compares these
implementations in terms of various statistics. First, the
distance between Cperurb,i to C; sampled by HopDock is
recorded, referred to as i. The distribution of distances
is tracked and compared across the various settings in
terms of its median i,, and the percentage of distances
in the 0 - 5A and 5 - 10A range. The overall effect on
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the quality of the ensemble of configurations is also
measured in terms of the lowest IRMSD to the native
structure and the percentage of minima configurations
with IRMSD <5A to the native structure. The analysis in
[18] suggests that varying ¢ in this range does not seem
to result significant differences in the measured statis-
tics. However, comparing the lowest IRMSD to the
native structure and the overall number of minima
within 5A of the native structure shows that a transla-
tion distance ¢ = 1.5A provides a good compromise.
For this reason, the rest of our experiments below use
t = 1.5A.

Analysis of relationship between energy and proximity to
native structure

Based on the above analysis, an ensemble of 10, 000
dimeric configurations is obtained for each of the 17
protein systems using HopDock with conserve,, = 0.5,
T, = Ty, d = 5A, and t = 1.5A. Here we investigate the
extent to which an energetic reduction scheme that
reduces the sampled ensemble Q) based on low energies
is able to retain near-native configurations with low
IRMSDs to the known native structure. For this purpose,
we define a variable p to track the % of configurations
with lowest energies retained in a reduced ensemble Q,,.
p is varied from 10 - 100% increments of 10. £, _ 100
means that the entire ensemble Q is retained. Q, _ 19
means that only the 10% of the configurations with low-
est energies are retained. Figure 5 plots the lowest
IRMSD to the native structure over configurations in
each reduced ensemble Q, as p is varied. This is shown
for each of the 17 protein systems. Figure 5 shows that
the lowest IRMSD obtained by HopDock over the entire
ensemble is retained even when p = 40 - 50% for most
protein systems. This effectively means that near-native
configurations are not discarded if focusing only on
those with energies below the mean. For many systems,
the lowest IRMSD does not change significantly even
when only p is further reduced. This result is encouraging,
particularly, if HopDock is considered as a configuration
sampling technique to be employed in docking protocols.
Even this coarse reduction by energy ensures that near-
native configurations will be present in the reduced
ensemble and can be further refined by docking protocols
to improve their proximity to the native structure.

Comparative analysis of HopDock to other existing
methods

Table 3 shows the results obtained when applying Hop-
Dock (with the parameter values and implementations
above) on the seventeen protein systems studied here.
Columns 1-2 relate details on these dimers in terms of
the PDB ID of the known native structure of the dimer
and size (total number of atoms). Column 3 shows the
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lowest IRMSDs to the native structure as reported by
Budda in [9], which uses geometric complementarity to
match regions for docking and relies on clustering
and some short energetic refinements of top clusters.
Column 4 shows again for reference the lowest IRMSD
obtained from our previous work which relies on
exhaustive matching of active geometrically-complemen-
tary triangles [16]. Columns 5 and 6 show the lowest
IRMSDs obtained on each dimer with the pyDock [4]
and ClusPro [6] servers, respectively. The methods
selected for the comparison are representative of geome-
try- and energy-based methods commonly used by
docking protocols. Column 7 reports the lowest IRMSD
obtained by the HopDock (the lowest-IRMSD configura-
tion is shown superimposed on the native structure for
9 systems in Figure 6).

Table 3 shows that HopDock obtains low IRMSDs to
the native structure on each dimer. These IRMSDs are
comparable to the geometric-based Budda method and
our previous work in [16] on most protein systems. In
few cases, our previous work, which relies on exhaustive
sampling of geometrically-complementary active trian-
gles, achieves slightly lower lowest IRMSDs than Hop-
Dock. This is largely due to the fact that a very large
number of dimeric configurations, 100, 000 to 700, 000,
depending on the size of the proteins are sampled in
[16]. It is indeed encouraging to obtain similar IRMSDs,
and even lower in some cases, with HopDock, which
samples only about 10% of the configurations in [16].
The comparison of HopDock to two energy-based
methods, pyDock and ClusPro, allows us to obtain a
more comprehensive view of the results obtained by
HopDock. In comparison to PyDock and ClusPro, the
performance of HopDock in terms of proximity to the
known native structure is better or comparable. This is
particularly the case as the size of the protein system
grows. This result is expected, as energy-based optimiza-
tion methods operate on a large search space, whereas
HopDock focuses on potentially-relevant contact inter-
faces through its combination of geometry and evolu-
tionary conservation.

Comparative analysis of computing time and power

The above results are promising and suggest that Hop-
Dock is an important first step into a multi-stage dock-
ing protocol. Here we provide a broader picture by
comparing HopDock to two established docking servers,
pyDock [4] and ClusPro [6]. The purpose of this analysis
is to better gage how HopDock compares to these ser-
vers, even though we are fully aware that the implemen-
tations in these servers are tuned and optimized, and
that the methods in these servers use different search
approaches and sophisticated energy functions. To get
a sense of the resources available to HopDock as com-
pared to these other serves, Table 4 summarizes number
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Figure 5 Analysis of Lowest Energy Values. Lowest IRMSD from native structure is shown for each reduced Q, ensemble on all 17 protein
systems. (), contains the p% lowest-energy configurations generated by HopDock. Results for each protein system are shown in different colors.

of processors, processing speed, memory, and average
CPU time used by each method. Table 5 shows the time
that each of these servers, including our own algorithm,
HopDock, takes on each of the 17 systems studied here.
This table shows that ClusPro is faster on most systems,

Table 3 Final Results of HopDock presented in this work.

but HopDock, though not fine tuned, achieves compar-
able running times to both servers. Taken together,
these results suggest that HopDock is a promising
search algorithm that ca be used in the first stage by
docking protocols.

PDB ID (Chains) Size Budda [9](A) Prev. [16](A) pyDock [41(A) ClusPro [6](A) HopDock (A)
1C1Y (AB) 2034 12 13 104 7.2 19
1DS6 (AB) 2839 12 18 08 17 34
1TX4 (AB) 2057 14 24 185 47 10
TWWW (W.Y) 1644 114 22 182 17.2 22
TFLT (VY) 1528 15 11 28 47 15
1IKN (AQ) 3178 12 20 20.1 197 22
1IKN (C,D) 2505 20 20 16.7 209 46
1VCB (AB) 1447 07 2.1 14 19 36
1VCB (BQ) 1846 13 13 227 19 17
10HZ (AB) 1443 18 17 75 33 22
1T6G (AQ) 4022 16 25 0.1 148 25
1ZHI (AB) 2633 253 17 238 241 33
2HQS (AQ) 3983 291 22 152 166 26
1QAV (AB) 1503 14 10 96 17 26
1G4Y (BR) 1838 08 23 262 19 41
1CSE (E) 2442 07 15 132 11 27
1G4U (RS) 4188 10 22 276 16.1 56

A comparative analysis has been performed on all seventeen dimers. For the comparison, two geometry-based (Budda [9] and work in [16]) and two energy-
based methods (pyDock [4] and ClusPro [6]) have been chosen. Lowest IRMSD to native structure is reported for Budda in column 3, work in [16] in column 4,

pyDock in column 5, ClusPro in column 6, and HopDock in column 7.
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1T6G, IRMSD = 2.5 A

1FLT, IRMSD = 1.5 A

1TX4, IRMSD = 1.0 A

TWWW, IRMSD = 2.2 A 1G4Y, IRMSD = 4.1 A

Figure 6 Analysis of Lowest IRMSD to Native Structures. Nine systems are selected to draw the lowest-IRMSD configuration obtained by
HopDock. This configuration is drawn in opaque, with chains in blue and red. The native structure, over which the lowest-IRMSD configuration
is superimposed to highlight structural differences, is drawn in transparent. The actual IRMSD between the two is shown below. Visualization is
obtained through VMD [50].

. J
Table 4 Summary of the computing power of different Conclusion

docking protocols. We have presented here HopDock, a novel rigid-body

Protocols Number of Processing Memory  Average protein docking algorithm based on the BH frame-work,

Processor (SGF’:;’)d (GB) ﬂ::e to efficiently generate low-energy decoy configurations

(Hours) for dimeric systems. The algorithm conducts its search

oyDock 2 Nodes 24 65 35 over the SE(3) space of rigid-body transformations but

(16 core each) narrows its focus to regions corresponding to transfor-

ClusPro 16 13 32 (shared) 4 mations aligning evolutionary conserved geometrically-

HopDock 2 (Core 2 Duo) 3.00 4 35 complementary regions on molecular surfaces. The

Summary of computing power of different protein-protein docking protocols lncorporatlon of eVOlutlonarY information reduces and
is presented to place HopDock in context. simplifies the search space over which the structural
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Table 5 Timing comparison.

PDB ID (Chains) HopDock pyDock [4] ClusPro [6]
(HH:MM) (HH:MM) (HH:MM)
1C1Y (AB) 04:00 01:30 00:53
1DS6 (AB) 06:26 02:00 01.30
1TX4 (AB) 10:42 02:30 01:00
TWWW (W,Y) 03:12 01:00 00:53
TFLT (V) 02:36 00:30 00:53
1IKN (AQ) 06:00 01:30 01.24
1IKN (CD) 03:54 00:18 01.24
1VCB (AB) 01:04 00:33 00.54
1VCB (B,O) 01:36 01:08 00:58
10HZ (AB) 00:57 02:30 01:00
176G (AQ) 11.04 04:00 00:59
1ZHI (AB) 03:17 04:45 00:59
2HQS (AQ) 12:07 01:00 01:00
1QAV (AB) 01:05 01:30 00:40
1G4Y (BR) 03:13 05:29 00:59
1CSE (E) 02:48 02:00 00:38
1G4U (RS) 09:19 01:14 01:26

Timing comparison (HH:MM) of HopDock to other web servers is presented
on each of the seventeen systems studied here.

perturbation in HopDock selects the dimeric configura-
tions for minimization component. Since HopDock is a
decoy sampling algorithm, a simple energy function has
been employed to reduce the time complexity of the
minimization component and measure the performance
of HopDock. A detailed analysis of evolutionary conser-
vation and different components of HopDock has been
presented in this work. This analysis shows that Hop-
Dock produces many near-native configurations in the
decoy ensemble it samples. A detailed comparative ana-
lysis shows that the algorithm is competitive with other
state-of-the-art protocols. This suggests that HopDock
is a promising decoy sampling algorithm to be incorpo-
rated in a docking protocols.

There are several further directions for future
research. One involves taking into account additional
criteria beyond evolutionary conservation to predict
interaction interfaces [48,49]. Pursuit of more sophisti-
cated energy functions used by state-of-the-art docking
protocols is another direction. We also intend to pursue
different implementations, especially for the minimiza-
tion component. While the perturbation component can
focus on expediently obtaining configurations at a low-
resolution level of detail (exploring the SE(3) space of
rigid-body transformations), the minimization can add
more detail to project a low-resolution configuration
onto a nearby minimum of a more detailed energy sur-
face. Combined with clustering and further refinement
of top-populated clusters, the combination of a geo-
metric and energetic treatment proposed here promises

Page 16 of 17

to result in an effective docking protocol. Wider sam-
pling through population-based versions of the BH fra-
mework and incorporation of fluctuations on and
nearby interaction interfaces will also be considered to
improve the quality of decoy ensembles.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

IH suggested the methods and the performance study in this manuscript
and drafted the manuscript. AS guided the study, provided comments and
suggestions on the methods and performance evaluation, and improved the
manuscript writing.

Acknowledgements

This work is supported in part by NSF IS CAREER Award No. 1144106. The
authors would like to thank members of the Shehu lab for their valuable
comments on this work.

Declarations

The publication costs for this article were funded by the corresponding
author AS through NSF Grant No. 1144106.

This article has been published as part of Proteome Science Volume 11
Supplement 1, 2013: Selected articles from the IEEE International Conference
on Bioinformatics and Biomedicine 2012: Proteome Science. The full
contents of the supplement are available online at http://www.proteomesci.
com/supplements/11/S1.

Authors’ details

1Departmem of Computer Science, George Mason University, 4400 University
Dr, Fairfax, VA, 22030, USA. “Department of Bioengineering, George Mason
University, 4400 University Dr, Fairfax, VA, 22030, USA. *School of Systems
Biology, George Mason University, 10900 University Blvd., Manassas, VA,
20110, USA.

Published: 7 November 2013

References

1. Camacho CJ, Vajda S: Protein-protein association kinetics and protein
docking. Curr Opinion Struct Biol 2002, 12:36-40.

2. Dominguez C, Boelens R, Bonvin A: HADDOCK: A protein-protein docking
approach based on biochemical or biophysical information. J Am Chem
Soc 2003, 125:1731-1737.

3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Research
2000, 28:235-242[http://www.pdb.org].

4. Cheng TMK, Blundell TL, Fernandez-Recio J: pyDock: Electrostatics and
desolvation for effective scoring of rigid-body protein-protein docking.
Proteins 2007, 68(2):503-515.

5. Chen R Li L, Weng Z: ZDock: an initial-stage protein-docking algorithm.
Proteins: Struct Funct Bioinf 2003, 52:80-87.

6. Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: a fully automated
algorithm for protein-protein docking. Nucl Acids Res 2004, 32(S1).

7. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and
SymmbDock: servers for rigid and symmetric docking. Nucl Acids Res 2005,
33(S2):W363-W367.

8. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ: Combinatorial docking
approach for structure prediction of large proteins and multi-molecular
assemblies. J Phys Biol 2005, 2:5156-5165.

9. Polak V: Budda: backbone unbound docking application. Master’s thesis
School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel; 2003.

10. Lyskov S, Gray JJ: The RosettaDock server for local protein-protein
docking. Nucl Acids Res 2008, 36(S2):W233-W238.

11. Terashi G, Takeda-Shitaka M, Kanou K, lwadate M, Takaya D, Umeyama H:
The SKE-DOCK server and human teams based on a combined method
of shape complementarity and free energy estimation. Proteins: Struct
Funct Bioinf 2007, 69(4):866-887.


http://www.proteomesci.com/supplements/11/S1
http://www.proteomesci.com/supplements/11/S1
http://www.ncbi.nlm.nih.gov/pubmed/12580598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12580598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.pdb.org
http://www.ncbi.nlm.nih.gov/pubmed/17444519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17444519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24105929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17853449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17853449?dopt=Abstract

Hashmi and Shehu Proteome Science 2013, 11(Suppl 1):56
http://www.proteomesci.com/content/11/5S1/56

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Mashiach E, Nussinov R, Wolfson HJ: FiberDock: Flexible induced-fit
backbone refinement in molecular docking. Proteins: Struct Funct Bioinf
2010, 78(6):1503-1519.

Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil C: Towards the
development of universal, fast and highly accurate docking/scoring
methods: a long way to go. British J Pharmacology 2009, 153(S1):S7-S27.
Vajda S, Kozakov D: Convergence and combination of methods in
protein-protein docking. Curr Opinion Struct Biol 2009, 19(2):164-170.
Hashmi I, Akbal-Delibas B, Haspel N, Shehu A: Protein Docking with
Information on Evolutionary Conserved Interfaces. Int/ Conf on Biomed
and Bioinf Workshops (BIBMW) IEEE; 2011, 358-365.

Hashmi I, Akbal-Delibas B, Haspel N, Shehu A: Guiding Protein Docking
with Geometric and Evolutionary Information. J Bioinf and Comp Biol
2012, 10(3):1242002.

David J, Doye JP: Global Optimization by Basin-Hopping and the Lowest
Energy Structures of Lennard-Jones Clusters Containing up to 110
Atoms. J Phys Chem A 1997, 101(28):5111-5116.

Hashmi I, Shehu A: A Basin Hopping Algorithm for Protein-protein
Docking. In Int/ Conf on Bioinf and Biomed (BIBM). IEEE;Gao J, Dubitzky W,
Wu C, Liebman M, Alhaij R, Ungar L, Christianson A, Hu X 2012:466-469.
Verma A, Schug A, Lee K, Wenzel W: Basin hopping simulations for all-
atom protein folding. J Chem Phys 2006, 124(4).044515.

Prentiss MC, Wales DJ, Wolynes PG: Protein structure prediction using
basin-hopping. The Journal of Chemical Physics 2008,
128(22):225106-225106.

Olson B, Shehu A: Populating Local Minima in the Protein
Conformational Space. IEEE Intl Conf on Bioinf and Biomed (BIBM) 2011,
114-117.

Olson B, Shehu A: Evolutionary-inspired probabilistic search for
enhancing sampling of local minima in the protein energy surface.
Proteome Sci 2012, 10(Suppl 1):55.

Olson B, Shehu A: Efficient basin hopping in the protein energy surface.
In IEEE Intl Conf on Bioinf and Biomed (BIBM). IEEE;Gao J, Dubitzky W, Wu C,
Liebman M, Alhaij R, Ungar L, Christianson A, Hu X, Philadelphia, PA
2012:119-124.

Olson B, Hashmi I, Molloy K, Shehu A: Basin Hopping as a General and
Versatile Optimization Framework for the Characterization of Biological
Macromolecules. Advances in Al J 2012, 2012(674832).

Shehu A: Probabilistic Search and Optimization for Protein Energy
Landscapes. In Handbook of Computational Molecular Biology. Chapman &
Hall/CRC Computer & Information Science Series;Aluru S, Singh A 2013..
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E: Equation
of State Calculations by Fast Computing Machines. J Chem Phys 1953,
21(6):1087-1092.

Akbal-Delibas B, Hashmi I, Shehu A, Haspel N: Refinement of Docked
Protein Complex Structures Using Evolutionary Traces. Int/ Conf on
Biomed and Bioinf Workshops (BIBMW) IEEE; 2011, 400-404.

Akbal-Delibas B, Hashmi I, Shehu A, Haspel N: An Evolutionary
Conservation Based Method for Refining and Reranking Protein
Complex Structures. J of Bioinf and Comp Biol 2012, 10(3):1242008.

Gabb HA, Jackson RM, Sternberg MJ, et al: Modelling protein docking
using shape complementarity, electrostatics and biochemical
information. Journal of molecular biology 1997, 272:106-120.

Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E,
Tsigelny |, Ten Eyck LF: Protein docking using continuum electrostatics
and geometric fit. Protein Eng 2001, 14(2):105-113.

Murphy J, Gatchell DW, Prasad JC, Vajda S: Combination of scoring
functions improves discrimination in protein-protein docking. Proteins
2003, 53(4):840-854.

Venkatraman V, Yang YD, Sael L, Kihara D: Protein-protein docking using
region-based 3D Zernike descriptors. BMC bioinformatics 2009, 10:407+.
Connolly ML: Analytical Molecular Surface Calculation. J Appl Cryst 1983,
16(5):548-558.

Lin SL, Nussinov R, Fischer D, Wolfson HJ: Molecular surface
representations by sparse critical points. Proteins 1994, 18:94-101.
Wolfson HJ, Rigoutsos I: Geometric hashing: an overview. [EEE Comp Sci
and Engineering 1997, 4(4):10-21.

Esquivel-Rodriguez J, Yang YD, Kihara D: Multi-LZerD: Multiple protein
docking for asymmetric complexes. Proteins 2012.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

Page 17 of 17

Chen BY, Honig B: VASP: a volumetric analysis of surface properties
yields insights into proteinligand binding specificity. PLoS Comput Biol
2010, 6(8).

Fischer D, Lin SL, Wolfson HL, Nussinov R: A geometry-based suite of
molecular docking processes. J Mol Biol 2005, 248(2):459-477.

Lichtarge O, Bourne HR, Cohen FE, et al: An Evolutionary Trace Method
Defines Binding Surfaces Common to Protein Families. J Mol Biol 1996,
257(2):342-58.

Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A: A Large-Scale
Method to Predict Protein Interfaces Based on Sequence Sampling. PLoS
Comp Bio 2009, 5:21000267.

Goldenberg O, Erez E, Nimrod G, Ben-Tal N: The ConSurf-DB: pre-
calculated evolutionary conservation profiles of protein structures.
Nucleic Acids Research 2009, 37.D0323-D327.

Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M, et al:
CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. J Comput Chem 1983, 4(2):187-217.

Kortemme T, Baker D: A simple physical model for binding energy hot
spots in protein-protein complexes. Proc Natl Acad of Sci USA 2002,
99(22):14116-14121.

Louren,co H, Martin O, Stitzle T: Iterated Local Search. In Handbook of
Metaheuristics, Volume 57 of Operations Research & Management Science.
Kluwer Academic Publishers;Glover F, Kochenberger G 2002:321-353.
Kanamori E, Murakami Y, Tsuchiya Y, Standley DM, Nakamura H, Kinoshita K:
Docking of protein molecular surfaces with evolutionary trace analysis.
Proteins: Struct Funct Bioinf 2007, 69:832-838.

Choi YS, Yang JS, Choi Y, Ryu SH, Kim S: Evolutionary conservation in
multiple faces of protein interaction. Proteins 2009, 77:14-25.

Matthews BW, et al: Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta
(BBA) - Protein Structure 1975, 405:442-451.

Glaser F, Steinberg DM, Vakser IA, Ben-Tal N: Residue frequencies and
pairing preferences at protein-protein interfaces. Proteins 2001,
43(2):89-102.

Chen CT, Peng HP, Jian JW, Tsai KC, Chang JY, Yang EW, Chen JB, Ho SY,
Hsu WL, Yang AS: Protein-Protein Interaction Site Predictions with Three-
Dimensional Probability Distributions of Interacting Atoms on Protein
Surfaces. PLoS ONE 2012, 7(6):e37706+.

Humphrey W, Dalke A, Schulten K, et al: VMD - Visual Molecular Dynamics.
Journal of Molecular Graphics 1996, 14:33-38.

doi:10.1186/1477-5956-11-S1-S6

Cite this article as: Hashmi and Shehu: HopDock: a probabilistic search
algorithm for decoy sampling in protein-protein docking. Proteome
Science 2013 11(Suppl 1):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/20077569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20077569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16460193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16460193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18554063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18554063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22759582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22759582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11297668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11297668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14635126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14635126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20003235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20003235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8146125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8146125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22488467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22488467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20814581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20814581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7739053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7739053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8609628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8609628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18971256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18971256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19350617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19350617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11276079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22701576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22701576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22701576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8744570?dopt=Abstract

	Abstract
	Background
	Methods
	Results and conclusions

	Background
	Related work

	Methods
	From molecular surfaces to rigid-body transformations
	From molecular surfaces to critical points
	From critical points to active critical points: an evolutionary conservation analysis
	From active critical points to active triangles
	From active triangles to rigid-body transformation

	Energy function
	HopDock: a BH-based algorithm sampling low-energy configurations of dimeric protein assemblies
	Structural perturbation
	Local optimization: energy minimization


	Results and discussion
	Experimental setup
	Implementation details
	Performance measurements
	Protein systems of study

	Evolutionary conservation analysis preserves native interface
	Analysis of different parameter values employed in HopDock
	Analysis of evolutionary conservation threshold
	Analysis of effective temperature
	Analysis of perturbation and minimization distance

	Analysis of relationship between energy and proximity to native structure
	Comparative analysis of HopDock to other existing methods
	Comparative analysis of computing time and power


	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors' details
	References

