Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

PROTEOME

i) scIENCE

An improved peptide-spectral matching
algorithm through distributed search over
multiple cores and multiple CPUs

Jian Sun'", Bolin Chen'" and Fang-Xiang Wu'*"

Abstract

Background: A real-time peptide-spectrum matching (RT-PSM) algorithm is a database search method to interpret
tandem mass spectra (MS/MS) with strict time constraints. Restricted by the hardware and architecture of individual
workstation, previous RT-PSM algorithms either are not fast enough to satisfy all real-time system requirements or
need to sacrifice the level of inference accuracy to provide the required processing speed.

Results: We develop two parallelized algorithms for MS/MS data analysis: a multi-core RT-PSM (MC RT-PSM)
algorithm which works on individual workstations and a distributed computing RT-PSM (DC RT-PSM) algorithm
which works on a computer cluster. Two data sets are employed to evaulate the performance of our proposed
algorithms. The simulation results show that our proposed algorithms can reach approximately 216.9-fold speedup
on a sub-task process (similarity scoring module) and 84.78-fold speedup on the overall process compared with a
single-thread process of the RT-PSM algorithm when 240 logical cores are employed.

Conclusions: The improved RT-PSM algorithms can achieve the processing speed requirement without sacrificing
the level of inference accuracy. With some configuration adjustments, the proposed algorithm can support many

peptide identification programs, such as X!Tandem, CUDA version RT-PSM, etc.

Background

Tandem mass spectrometry (MS/MS) has been widely
used in the early detection of diseases, chemical analysis
and pharmaceutical industry. It can efficiently identify
and characterize the protein component information
in complex biological mixtures. Interpretations of MS/MS
spectra need to perform peptide-spectrum matches (PSMs)
by searching experimental MS/MS spectra against a protein
sequence database.

In order to improve the efficiency and the accuracy of
MS/MS experiments, a real-time peptide identification
procedure needs to be involved in a mass spectrometry
system which analyzes peptides and performs the PSMs
in a peptide identification procedure life-circle. Wu et al.
[1] have proposed a pretty fast procedure, called real-time
PSM (RT-PSM). The key component is “identifying

* Correspondence: faw341@mail.usask.ca

"Equal contributors

'Division of Biomedical Engineering, University of Saskatchewan,

57 Campus Dr, S7N 5A9 Saskatoon, SK, Canada

“Department of Mechanical Engineering, University of Saskatchewan,
57 Campus Dr, S7N 5A9 Saskatoon, SK, Canada

(BioMed Central

peptides”, which is performed by a software application
[1]. However, this RT-PSM procedure does not include
any external software controlling features. Although the
method is fast, further experiments indicate that the
programming still cannot completely satisfy all real-
time system requirements, since it is a single-thread
program that runs on a single workstation.

As a real-time system, the time window of each peptide
identification procedure is limited by the spectrum acquir-
ing time of mass spectrometers. It could be between
0.05 second to 0.5 second due to different mass spectrom-
eters. To fit in the narrow time window, using parallel
computation to improve the speed of PSMs is becoming a
trend. Duncan et al. [2] develop a program called Parallel
Tandem by using a computer cluster. It processes MS/MS
in parallel by using X!Tandem and a computer cluster
with Parallel Virtual Machine (PVM) or Message Passing
Interface (MPI). Sadygov et al. [3] develop the parallel ver-
sion of SEQUEST, which is also based on the PVM in a
computer cluster. Diament et al. [4] further develop a faster
SEQUEST, called Tide, to speed up the performance of the

© 2014 Sun et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.

mailto:faw341@mail.usask.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

SEQUEST. It acheives up to 170 times faster than
SEQUEST. Zhang et al. [5,6] use SIMD instructions in
a single workstation to develop programs for improving
the speed of peptide identification procedures. Graumann
et al. [7] recently develop a framework of intelligent agent,
termed MaxQuant Real-Time, which is implemented in
the MaxQuant computational proteomics environment.
The framework is especially uesful for new instrument
types, such as the quadrupole-Qrbitrap.

No matter using a computer cluster or a single work-
station, the principles of parallel computing are identical:
dividing a large sequential process into several inde-
pendent sub-processes and executing the sub-processes
concurrently to reduce the execution time [8]. However,
those previous parallel computing methods [1-7] still have
some room to be improved. In terms of processing time,
parallel forms of X!Tandem [2] and SEQUEST [3] spend
more time than the RT-PSM algorithm proposed in [1]
when analyzing individual spectra. Although the Tide [4]
is already very fast, the speed can still be improved. In
terms of computing environments, SIMD instructions
are restricted by the CPU L2 Cache [9,10], which often
needs to sacrifice the level of inference accuracy to
achieve the time limitation of a real-time system, while
a computer cluster circumvents this problem. More-
over, instead of design a specific program, we aim to
develpe a general platform that can support many peptide
identification programs.

In this paper, we develop an improved peptide identi-
fication procedure on a computer cluster based on the
RT-PSM algorithm proposed by Wu et al. in [1]. Two
parallel algorithms are developed in this study: a multi-core
RT-PSM algorithm (MC RT-PSM) which works on an indi-
vidual workstation in form of a multi-thread program and a
distributed computing RT-PSM algorithm (DC RT-PSM)
which works on a computer cluster in form of a distributed
computing program. The DC RT-PSM is built by using the
parallelized MC RT-PSM procedure, which allocates and
manages task computating resources through a head node
in the distrubuted computing procedure. Source code of
the DC RT-PSM algorithm and sample data are available in
the Additional file 1. The improved algorithms can achieve
processing speed requirements without sacrificing the level
of inference accuracy.

Results and discussion

Experimental environment and data sources

The experimental computer cluster consists of one head

node and 32 worker nodes, which is connected with 1

Gigabit Ethernet. Each node has 8 logical CPU cores.
Two datasets are employed to test the improved al-

gorithms in this study. Dataset A is the one used in the

RT-PSM package [1]: the MS/MS spectrum experimental

data source includes 2058 group spectrum data and the

Page 2 of 9

protein database is taken from a subset of the UniRef100
human protein database. It contains over 2200 entries
(over 180000 peptide sequences). Dataset B includes 16463
groups of experimental spectrum data and over 3300
entries. It is also generated from the UniRef100 human
protein database.

The level of inference accuracy for the improved algorithms
The purpose of the parallel computing processing in our
improved algorithms is to reduce the peptide identification
time. Hence, the proposed algorithms do not gain better
performance by decreasing the level of inference accuracy.
The results of the improved algorithms should be identical
with the original RT-PSM in [1]. We randomly choose
100 groups of experimental data from the results of our
improved alogirthms and the original RT-PSM. The
identification results are in excellent agreement between the
original RT-PSM program and our improved MC RT-PSM
and DC RT-PSM programs.

The time speedup of the 2-Dimensional peptide database
search method

Rather than using binary search method to query the
peptide sequence database, we propose to employ the
2-Dimensional peptide database search method. Although
this new search method does not improve the accuracy of
candidate peptide selection, it can speed-up the procedure
to a certain degree. For example, in Dataset A, the new
search method makes the similarity-scoring module spent
less than 6.7% execution time. The detail information of
time spending is shown in Table 1.

The time speedup of the MC RT-PSM procedure

As expected, the performance of MC RT-PSM mainly
depends on the speed of CPU frequency and the number
of logical cores of the CPU. The MC RT-PSM is tested on
four different computers. Table 2 shows the detail informa-
tion of those computers’ CPUs.

In terms of the time speedup, we compare the MC
RT-PSM with the RT-PSM proposed by Wu et al. in [1].
Figure 1 illustrates the time speedup of the MC RT-PSM
procedure. The numerical experiments are conducted
on the same dataset (Dataset A). When using one
single-thread, the MC RT-PSM achieves about 5-fold
speedup than the RT-PSM proposed by Wu et al. [1].
When increasing the thread number to eight, the MC

Table 1 Comparisons between the binary search method
and the 2-dimensional peptide database search method

Method Spectra number Time (ms)
Binary search method 2058 8.043
2-Dimensional peptide 2058 7.668

database search method

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

Table 2 The detail information of experiment hardware
environments

Name CPU Threads HT Usage

WS1 i7 3770 8 YES Personal server

WS2 i5 750 4 NO Development PC

WS3 XEON E5410 8 NO Worker node of cluster
Ws4 i7 2720QM 8 YES Personal computer

RT-PSM achieves about 25 to 34-fold speedup than
the RT-PSM procedure.

The time speedup of the DC RT-PSM procedure

The performance of the DC RT-PSM is compared with
the single-thread MC RT-PSM procedure. Two tasks are
designed for comparisons. Task 1 is to search 2058 spec-
tra against 2200 protein entries that conducted on Data-
set A. Task 2 is to search 16463 spectra against 3300
protein entries that conducted on Dataset B.

The comparison is first done on the similarity-scoring
module, which is the core part of those algorithms. For
taks 1, the DC RT-PSM is 53.64-fold speedup with 80
threads (10 worker nodes), 105.11-fold speedup with 160
threads (20 worker nodes) and 124.91-fold speedup with
240 threads (30 worker nodes) compared with the single-
thread MC RT-PSM program. For taks 2, the DC RT-PSM
is 69.09-fold speedup with 80 threads, 155.37-fold speedup
with 160 threads and 216.90-fold speedup with 240 threads
compared with the single-thread MC RT-PSM program.
The results are shown in Figure 2. Generally, an ideal
parallel computing algorithm is able to gain k-fold
speedup when a task is allocated into k threads. The
performance of DC RT-PSM is close to the theoretical
performance, especially when it is used to search a large
scale database (such as task 2 in our experiments), which
is quite promising.

Page 3 of 9

—@=—Experiment Dataset B]

[—p==Lxperiment Dataset A

0 50 100 150 200 250
Thread Number
Figure 2 The speedup of execution time of the similarity-scoring
module for the DC RT-PSM compared with MC RT-PSM algorithm
in two experiment databases.

The comparison is then done on the overall performance
of those programs. For task 1, no matter whether 80,
160 or 240 threads are allocated, the whole time spent
by the DC RT-PSM is about 11-fold speedup compared
with the single MC RT-PSM program. For task 2, the
DC RT-PSM is 48.44-fold speedup with 80 threads,
67.82-fold speedup with 160 threads and 84.78-fold
speedup with 240 threads compared with the single-
thread MC RT-PSM program. The results are shown in
Figure 3. The decreased fold speedup of the overall
performances of DC RT-PSM is due to the fact of sys-
tem natures. In the DC RT-PSM program, the task ini-
tial time and node message communication time are
fixed, even worker nodes are connected with 1 Gigabit
Ethernet. The time spent by those processes is about
2.0 seconds to 2.3 seconds. Therefore, if the experi-
mental spectrum dataset is too small, the number of

——WS1

——-Wws2

= WS3

“—H=WS4

1 2 3 4

proposed by Wu et al. [1] in four experiment computers.

Thread Number
Figure 1 The speedup of execution time of the similarity-scoring module for the MC RT-PSM compared with RT-PSM algorithm

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

=#=Experiment Dataset A ~®—=Experiment Dataset B I

250

0 50 100 150 200 250
Thread Number
Figure 3 The overall speedup of execution time for the DC
RT-PSM compared with MC RT-PSM algorithm in two
experiment databases.

nodes allocated in a task could barely affect the total
execution time, just like the performance of task 1 shows
in Figure 3. Even though, the time speedup from DC
RT-PSM algorithm is still promissing that can satisfies
almost all real-time system requirements.

Conclusions

In this paper, we have proposed an MC RT-PSM algorithm
which works on an individual workstation and a DC RT-
PSM algorithm which works on a computer cluster for
interpreting MS/MS spectra. The MC RT-PSM algorithm
is an extension of the single-thread RT-PSM algorithm pro-
posed by Wu et al. in [1], while the DC RT-PSM algorithm
is a distributed parallel computing algorithm that allocates
and manages cluster worker nodes to perform the MS/MS
spectrum analysis.

One advantage of our proposed method is that it is a gen-
eral platform of parallel computing, since many current
parallel algorithms are either not fast enough for all real-
time MS/MS systems or restricted to specific computing
environments. The distributed computing algorithm is de-
signed not only for this RT-PSM algorithm but also for
other similar algorithms. It can support many other peptide
identification programs with some configuration adjust-
ments, such as X!Tandem, SEQUEST, SIMD version RT-
PSM, etc.. The other advantage of our method is that it can
speed up the searching time. The proposed DC RT-PSM al-
gorithm can reach the real-time constraints of most MS/
MS systems without sacrificing the level of inference
accuracy.

Methods

The performance of the RT-PSM program

The RT-PSM program proposed by Wu et al. [1] is a
single-thread program. It contains four main steps. The

Page 4 of 9

first step is to load the peptide database and raw experi-
mental spectrum data. The second step is to select candi-
date peptides from the peptide database. The masses of
candidate peptides are those in the range of the experi-
mental spectrum. Once a group of candidate peptides are
selected, scores of every peptide-spectrum pairs are calcu-
lated in the third step (the similarity-scoring module). In
the last step, after the program computes the statistical
significance of the highest similarity score for each group,
the final results are displayed. The workflow of the
RT-PSM algorithm is shown in Figure 4.

The similarity-scoring module is the most time-
consuming part in the RT-PSM program. It consumes
over 95% CPU time in profiling experiments [5]. This
is due to the fact that each spectrum has to be com-
pared with the whole set of candidate peptides, which
could easily contain thousands of peptide sequences.
Hence, it is critical to reduce the computing time of
the similarity-scoring module in terms of satisfying
the time constraint of a real-time system.

In this paper, we develop both a multiple core com-
puting algorithm and a distrubited algorithm to speedup
the performance of the RT-PSM program. The com-
parison is made betweet our algorithm and the RT-
PSM algorithm in [1]. The definition of sensitivity and
specificity in [1] refer from the textbook [11], which
are different from currently widely accepted formula.
We ignore the name of sensitivity and spedificity, but
employ the evalutation formula used in [1] to carry out
our comparisons.

The similarity-scoring module of the RT-PSM program

Given an experimental spectrum, the similarity-scoring
module searches the database of candidate peptides to
find the best matched one according to a similarity
score. The similarity score is calculated by comparing

Loading the peptide database and spectra data

v

gkfind(): Selecting candidate peptide from peptide database

v

cscore(): Scoring the peptide-spectrum matches

v

pscore(): Reprocessing the scores by statistical significance

v

end

Figure 4 The workflow of the RT-PSM algorithm proposed by
Wu et al. [1].

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

Table 3 Types of fragment ions and their m/z values in
the RT-PSM program

lon type m/z value
b* b

b*-H,0 b-18
b*-NH; b-17
b"-CO@") b-28

y' y

y*-H,0 y-18

y NH; y-17
y"-NH(z") y-15

The signs '+ in superscript of the letter b (and y) denote the singly charge
positive ions. The symbol b (and y) without any superscript denote the m/z
value of a b-(or y-)ion with a single positive charge. The symbol -H,0’, “NH5’,
-CO’ and -NH’ represent an ion lose a small molecule of ‘H,0’, ‘NH5’, ‘CO’
and ‘NH’, respectively.

the difference of m/z values of ions between the experi-
mental MS/MS spectrum and a theoretical spectrum
of a peptide in the candidate database. Eight kinds of
fragment ions are considered in the RT-PSM program,
which are listed in Table 3.

Generally, it is not necessary to search the whole
database for finding the best-matched candidate pep-
tide. The mass difference between an experimental
peptide and its matched candidate peptide is often very
small. A nearest neighbor search (NNS) is employed
in the RT-PSM algorithm. Suppose M,, is the mass of
an experimental peptide and t is the tolerance range of
the NNS. Only those candidate peptides with mass
range between M,, -t and M, +t need to be consid-
ered. The RT-PSM program proposed by Wu et al. [1]
employs the most common binary search method to
perform the NNS [12]. The time complexity of the
binary search is O (log n). Hence, the time spending
on the peptide search is related to the size of peptide
database.

In this study, we propose to employ an 2-Dimensional
peptide database search method to decrease the searching

Page 5 of 9

time. The method is described as follows. First, in-
stead of treading the whole peptide database as a
large array, the database is separated into a series of
small peptide groups (indices) according to the inte-
ger part of the peptide mass. After that, each subset
is indexed according to the integer part of the mass
value. The integer peptide database is a sorted col-
lection containing indexed sub-databases as shown
in Figure 5.

With this improved data structure of peptide data-
base, the peptide searching consists of two steps. The
first step is to search if the integer part X of the target
peptide mass with tolerance value t is indexed by the
peptide database (X + t). If the value is found, then the
first record in the indexed sub-array is the matched
peptide, and the time complexity of this step is O(2 t).
If the first step cannot find a matched peptide and the
database also contains a subset with index (X-1), then
the second step is using the binary search method to
check if this subset contains the matched peptide. The time
complexity of the second step is O(log(subset length)).
The pseudo code of the 2-dimensional peptide database
search method for peptide database searching is shown
in Algorithm 1.

In terms of the time consuming for each peptide P in
the candidate peptide group, the scoring time ty is.

n

= i i)y
o= (ti+t)

i=1

where n is the number of ion types that are consid-
ered in the algorithm, t;; is the peptide searching time,
ty; is the peptide scoring time. For each candidate
peptide group, the total time of the similarity-scoring
module is

N
trotal = E ti,
k=1

where N is the number of peptides in the group.

@ [(b)

1.001

1.00

'Nl(dbi
—

1.00

3.03339

A 2

=]

00313

1813.03339 2.

3.04215
3.04665

&~

1813.04215 2.01

1813.04665

Figure 5 An improved data structure for searching peptide database. (a) The original Ppptide data structure in the form of a large array;
(b) The improved peptide data structure with the integer part of the mass value as indices.

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

Algorithm 1: 2-Dimensional Peptide Database Search Method

Page 6 of 9

function integer gkfind(OnePeptideGroup, PeptideDB, tolerance)

//Multidimensional Search:

if OnePeptideGroup.mass > PeptideDB.lastRecord.

Mass OR

OnePeptideGroup.mass < PeptideDB.firstRecord.Mass then

return -1;
else

lowBoundary «— (OnePeptideGroup.mass - tolerance) + 1 ;
upBoundary < (OnePeptideGroup.mass + tolerance);

for i < lowBoundary; i< upBoundary; i++ do
if PeptideDB hasIndex (i) then
subSet «— PeptideDB.item(i);
return subSet.firstltem.Index;

else if PeptideDB hasIndex(lowBounday -

1) then

subSet «— PeptideDB.item(lowBounday -1);
Index < BinarySearch(subSet, OnePeptideGroup.mass)

return Index;

end function

Multi-core Computing and Distributed Computing

The similarity-scoring module in the RT-PSM program
is a typical CPU-bound computation function, which
means the computing time of the function is determined
principally by the speed of CPU. Normally, one proces-
sor can only execute one function at one time. In order
to reduce the time consumed for the similarity-scoring
module, we propose a parallel algorithm that combines
the advantages of multi-core computing and distributed
computing to achieve the maximum performance.

The multi-core RT-PSM (MC RT-PSM) algorithm

The MC RT-PSM is based on the Hyper-Threading
Technology (HT Technology), which is a form of simultan-
eous multi-threading that takes advantage of super scalar
architecture (multiple instructions operating on separate
data in parallel) [13]. Based on this technology, the CPU-
bound computations can execute multiple scoring functions
concurrently in a single-CPU workstation [14]. The work-
flow of the MC RT-PSM program is illustrated in Figure 6.

The maximum number of threads can be used in the
MC RT-PSM is based on the number of logical processors.
The pseudo code of MC RT-PSM algorithm is shown in
Algorithm 2.

The distributed computing RT-PSM (DC RT-PSM) algorithm
Similar to MC RT-PSM algorithm, the DC RT-PSM
algorithm also needs to separate a large task into several
sub-tasks and executes them concurrently. However,
they are different in the following two aspects. Firstly, the
DC RT-PSM algorithm is designed to run on a distributed
computer, such as a computer cluster, rather than a single-
CPU workstation. The cluster is a computer system with
the processing elements connected as a network. The
Windows HPC SDK package provides a stable and user-
friendly development environment for us to develop the
program of the DC RT-PSM algorithm. Secondly, each
processor has its own memory in the DC RT-PSM pro-
gram, while all processors access to a shared memory in
the MC RT-PSM program [15].

Result
Collection

e e]

1 1
Thread 1 | Candidate peptide Similarity scoring Statistical 1

1| search module module significance module |

eyt B o W s oy e }

1 i
Thread 2 | Candidate peptide Similarity scoring Statistical !

| search module module significance module |

. S :

1 1

1 1

i H H ’_‘_{

1 1

1

A 4

1 1

1 | Candidate peptide > Similarity scoring Statistical !
Thread n : search module module significance module [

e e i el R S G ey B e g

Figure 6 The workflow of the MC RT-PSM program.

Sun et al. Proteome Science 2014, 12:18 Page 7 of 9
http://www.proteomesci.com/content/12/1/18

Algorithm 2: The pseudo code of MC RT-PSM algorithm

class Peptideldentification
Collection PeptideDB; //peptide database
Collection ExperimentPeptideData; //experiment data

function PIF()
PeptideDBLoading (DBfile, PeptideDB);
//load peptide database
ExperimentalPeptideDatal.oading(DataFile, ExperimentPeptideData);
//load experiment data
MaxThreadNum «— Maximun number of CPU logical cores //obtain thread number
InitMultiThreadCalc(MaxThreadNum, PeptideDB, ExperimentPeptideData);
//initial each thread
StartThreadList(MaxThreadNum, PeptideDB, ExperimentPeptideData);
//run multithread RT-PSM

end function

function Pipid (PeptideDB,ExperimentPeptideData)
//RT-PSM algorithm
Tolerance«— user-defined peptide search tolerance value;
Collection score; // similarity score list

for each OnePeptideGroup in ExperimentPeptideData do

filter (OnePeptideGroup,PeptideDB);

candidatePeptideData «— qkfind(OnePeptideGroup, PeptideDB, tolerance);

//2-demensinal peptide search

for each candidatePeptide in candidatePeptideData do
msct «— cscore(OnePeptideGroup,candidatePeptideData);
//similarity scoring function
score.Add(msct + 1);
Init Matrix evalue;
if pscore(evalue, score) is true postive then display result;
//statistical significance function
end function
end class

class MultiThreadCalc // Multithread control class
void function InitMultiThreadCalc(Thread, PeptideDB, ExperimentPeptideData)
//initial one thread
for i«— 0;i<Thread; i++ do
InitOneThreadPip(PeptideDB, ExperimentPeptideData);
end function

void function StartThreadList(Thread,PeptideDB, ExperimentPeptideData)
// execute one thread
for i«— 0;i<Thread; i++ do
ThreadList[i].Pipid(PeptideDB, ExperimentPeptideData);;
end function
end class

In our case of the DC RT-PSM algorithm, the whole achieve the minimum execution time, the head node
identification procedure is divided into several sub creates, distributes, synchronizes and monitors tasks
RT-PSM tasks. Results of those computations are in each worker node. The pseudo code of the distrib-
combined by a head node [16]. Each sub task runs in uted task management algorithm for the head node is
an individual worker node of the cluster. In order to shown in Algorithm 3.

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

Algorithm 3: The pseudo code of DC RT-PSM algorithm

class DCRTPSM
int MaxNodeNum <«—user-defined maximum number of work nodes;

function CreateHPCJob
ICluster cluster <- new Cluster;
cluster.connect();
aJob <- cluster.CreateJob;
for i <- 0; 1 <NodeNum; i++ do
aTask <- cluster.CreateTask;// Create a new task
set aTask.commandline;
set aTask.Stdout;
set aTask.Stderr;
set aTask.RequirtNodes;
set aTask.MaximumNumberOfProcessors;
aJob.AddTask(aTask);
end function

function TrackHPCJob(jobID)
while aJob is not finished do
aJob <- cluster.GetJob(JobID);
check aJob status;
handle aJob exceptions;
end function //handle aJob exceptions;

function HPCJobResultCollection()
end function //collecting results from node i
end class

Page 8 of 9

Load spectra data

Processing the spectra data
[)|
Spectra file(1) Specitra file(2) e 7 o Spectra file(r)

Task(1) Task(2) Task(r)
Node(1) MC RT-PSM Node(2) MC RT-PSM Node(r) MC RT-PSM

v v

| Output file(1) ‘ I Qutput file(2) | Output file(r)

!

Output file collection, Display results

Figure 7 The workflow of the distributed task management program.

Sun et al. Proteome Science 2014, 12:18
http://www.proteomesci.com/content/12/1/18

The DC RT-PSM algorithm consists of three steps.
Firstly, it loads the experimental MS/MS spectral data file
and divides it into a specified number of small files. Each
smaller file is assigned to a related worker node. Secondly,
it creates a sub RT-PSM task for each worker node and
starts all tasks simultaneously. The DC RT-PSM monitors
all tasks when they are executing. It collects the feedback
information, including the task status and exceptions.
Finally, after all tasks are accomplished, the DC RT-PSM
collects results from each worker node and generates a
final report as the output. Figure 7 shows the workflow of
the distributed task management program.

The time consumption of the similarity scoring func-
tion in DC RT-PSM algorithm is:

t" = tlj -|-t2j +t3j,j = 1,2,...,[‘

where j is the number of worker node, t;;, t; and t5; are
the peptide searching time, the peptide scoring time and
the message communication time spend in the J™ worker
node. In practice, the time consuming of message commu-
nication in each thread is fixed. Hence, when processing a
large dataset, the peptide searching time t;; and the peptide
scoring time ty; contribute a large amount of time consum-
ing compared with the message communication time. The
total time consumption of the DC RT-PSM algorithm is:

!’
ttota

=t + max{tj},j =1,2,...,r.

where t, is the task initial time.

Additional file

Additional file 1: Source code of the DC RT-PSM algorithm and
sample datasets.

Abbreviations

PSMs: Peptide-spectrum matches; RT-PSM: Real-time peptide-spectrum
matching; MS/MS: Tandem mass spectra; MC RT-PSM: Multi-core RT-PSM;
DC RT-PSM: Distributed computing RT-PSM; PVM: Parallel Virtual Machine;
MPI: Message Passing Interface; NNS: Nearest neighbor search; HT
Technology: Hyper-Threading Technology.

Competing interests
The authors declared that they have no competing interest.

Authors’ contributions

FXW initiated this study. BC, JS and FXW discussed the algorithms and their
implemetnations. JS performed the experiments, BC and JS drafted the
manscript. FXW and BC revised the manscript substaintially. All authors read
and approved the final manuscript.

Acknowledgements
This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI).

Received: 26 September 2013 Accepted: 4 April 2014
Published: 11 April 2014

Page 9 of 9

References

1. Wu FX, Gagné P, Droit A, Poirier GG: RT-PSM, a real-time program for
peptide-spectrum matching with statistical significance. Rapid Commum
Mass Sepctrom 2006, 20:1199-1208.

2. Duncan DT, Craig R, Link AJ: Parallel Tandem: a program for parallel
processing of tandem mass spectra using PVM or MPI and X!Tandem.

J Proteome Res 2005, 4:1842-1847.

3. Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, MacCoss MJ, Yates JR 3rd:
Code developments to improve the efficiency of automated MS/MS
spectra interpretation. J Proteome Res 2002, 1:211-215.

4. Diament BJ, Noble WS: Faster SEQUEST searching for peptide identification
from tandem mass spectra. J Proteome Res 2011, 10:3871-3879.

5. Zhang J, McQuillan |, Wu FX: Speed Improvements of Peptide-Spectrum
Matching Using single-instruction multiple-data instructions.

Proteomics 2011, 11:3779-3785.

6. Zhang J, McQuillan I, Wu FX: Parallelizing peptide spectrum scoring using
modern graphics processing units. In Proceedings of 2011 IEEE Tst
International Conference on Computational Advances in Bio and Medical
Sciences (ICCABS 2011): 3-5 Feb 2011, Orlando. Edited by Mandoiu I, Miyano
S, Przytycka T, Rajasekaran S. Washington DC: IEEE Computer Society;
2011:208-213.

7. Graumann J, Scheltema RA, Zhang Y, Cox J, Mann M: A framework for
intelligent data acquisition and real-time database searching for shotgun
proteomics. Mol Cell Proteomics 2012, 11:M111.013185.

8. Almasi GS, Gottlieb A: Highly parallel computing. Redwood City: The
Benjamin/Cummings publishing Company, Inc; 1989.

9. Rognes T, Seeberg E: Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics 2000, 16:699-706.

10. Song F, Moore S, Dnogarra J: L2 cache modeling for scientific applications
on chip multi-processors. In Proceedings of International Conference on
Parallel Processing (ICPP 2007): 10-14 Sept 2007; Xi‘an. Edited by Li J, Zhang X.
Washington DC: IEEE Computer Society; 2007:51.

11, Baldi P, Brunak S: Bioinformatics: The machine learning approach (2" edn).
Cambridge: MIT Press; 2002.

12. Dutta D, Chen T: Speeding up tandem mass spectrometry database
search: metric embeddings and fast near neighbor search. Bioinformatics
2007, 23:612-618.

13. Holmes DW, Williams JR, Tilke P: An events based algorithm for distributing
concurrent tasks on multi-core architectures. Comput Phys Commun 2010,
181:341-354.

14. Ben-Ari M: Principles of concurrent and distributed programming. New York:
Prentice Hall; 1990.

15. Rajasekaran S, Reif J: Handbook of Parallel Computing Models, Algorithms and
Applications. Chapman & Hall/CRC: Boca Raton; 2007.

16. Yamazaki K, Ando S: A case-based parallel programming system. In
Proceedings of International Symposium on Software Engineering for Parallel
and Distributed Systems: 20-21 Apr 1998; Kyoto. Edited by Krdmer B, Uchihira
N, Croll P, Pusso S. Los Alamitos: IEEE Computer Society; 1998:238-245.

doi:10.1186/1477-5956-12-18

Cite this article as: Sun et al: An improved peptide-spectral matching
algorithm through distributed search over multiple cores and multiple
CPUs. Proteome Science 2014 12:18.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolVied Central

http://www.biomedcentral.com/content/supplementary/1477-5956-12-18-S1.zip

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Experimental environment and data sources
	The level of inference accuracy for the improved algorithms
	The time speedup of the 2-Dimensional peptide database search method
	The time speedup of the MC RT-PSM procedure
	The time speedup of the DC RT-PSM procedure

	Conclusions
	Methods
	The performance of the RT-PSM program
	The similarity-scoring module of the RT-PSM program
	Multi-core Computing and Distributed Computing
	The multi-core RT-PSM (MC RT-PSM) algorithm
	The distributed computing RT-PSM (DC RT-PSM) algorithm

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

