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Abstract

Background: The field of proteomics involves the characterization of the peptides and proteins
expressed in a cell under specific conditions. Proteomics has made rapid advances in recent years
following the sequencing of the genomes of an increasing number of organisms. A prominent
technology for high throughput proteomics analysis is the use of liquid chromatography coupled to
Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). Meaningful
biological conclusions can best be made when the peptide identities returned by this technique are
accompanied by measures of accuracy and confidence.

Methods: After a tryptically digested protein mixture is analyzed by LC-FTICR-MS, the observed
masses and normalized elution times of the detected features are statistically matched to the
theoretical masses and elution times of known peptides listed in a large database. The probability
of matching is estimated for each peptide in the reference database using statistical classification
methods assuming bivariate Gaussian probability distributions on the uncertainties in the masses
and the normalized elution times.

Results: A database of 69,220 features from 32 LC-FTICR-MS analyses of a tryptically digested
bovine serum albumin (BSA) sample was matched to a database populated with 97% false positive
peptides. The percentage of high confidence identifications was found to be consistent with other
database search procedures. BSA database peptides were identified with high confidence on
average in 14.1 of the 32 analyses. False positives were identified on average in just 2.7 analyses.

Conclusion: Using a priori probabilities that contrast peptides from expected and unexpected
proteins was shown to perform better in identifying target peptides than using equally likely a priori
probabilities. This is because a large percentage of the target peptides were similar to unexpected
peptides which were included to be false positives. The use of triplicate analyses with a "2 out of
3" reporting rule was shown to have excellent rejection of false positives.

Background ple is important to systems biology research. Although
The high-throughput determination of the identities and  many different proteomics methodologies are in use
abundances of peptides and proteins in a biological sam-  today, Pacific Northwest National Laboratory (PNNL) has
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implemented a high-throughput process based on multi-
ple mass spectrometry technologies, including liquid
chromatography coupled to Fourier transform ion cyclo-
tron resonance mass spectrometry (LC-FTICR-MS) [1-4].
This high-throughput process is diagramed in Figure 1.

The PNNL proteomic analysis process consists of two
major steps: 1) generation of a potential mass and time
(PMT) tag database, created from experimental data, con-
taining all of the peptide detections for the organism
being studied and 2) high-throughput LC-FTICR-MS
experiments to identify the peptides and proteins
expressed under various biological conditions, using the
PMT tag database for identification. The database is gener-
ated through a series of tandem mass spectrometry (LC-
MS/MS) experiments, using the resultant data to build a
comprehensive set of peptides likely to be expressed by
the organism under various growth and stress conditions.
Within the PMT tag database, each peptide has an exact
mass (calculated from its amino acid sequence), an
observed normalized elution time (NET), and various
confidence indicators associated with it, all resulting from
the analysis of the MS/MS fragmentation spectra.

The high mass accuracy of LC-FTICR-MS allows peptide
identifications to be made by searching the PMT tag data-
base with the masses observed in a deisotoped mass spec-
trum. The search scope can be narrowed further using the
normalized elution time of the given spectrum [1]. Auto-
mated database searches are required for high-throughput
proteomic sample analyses. For LC-MS/MS analyses,
search software that makes use of scores to reflect the
degree of fit between the MS data and the peptides in the
database has been developed (for example [5]). In the
case of LC-FTICR-MS analyses, probabilities can be esti-
mated to the matches, providing a direct measure of the
confidence of peptide identifications. We present a statis-
tical methodology and the underlying assumptions used
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to estimate probabilities to the matches of LC-FTICR-MS
features to known peptides in a database. Norbeck et. al.
have used this method to explore the specificity of theo-
retical tryptic digests from complex proteomes [6]. Our
search methodology compares the observed masses and
the normalized elution times of the detected features to
the theoretical masses and normalized elution times of
the known peptides in the database. We demonstrate our
methodology using 32 LC-FTICR-MS analyses of a trypti-
cally digested bovine serum albumin (BSA) sample and a
database consisting of 72,962 peptides.

Our work was first reported at METMBS'04 [7], where we
focused on the statistical derivation and the equally likely
prior probability case illustrated with a simple example.
Since then, we have expanded our focus: refining our
motivation, improving the statistical algorithms, and
applying these in a more complex example using the prior
probabilities for rejection of false positives. We describe
our most recent work in this paper.

Methods

The problem of estimating the probability that a peptide
in an appropriate PMT tag database matches the measure-
ments of a feature from an LC-FTICR-MS analysis is a sta-
tistical classification problem. That is, the measurements
come from one of a number of known statistical popula-
tions, but from which did they arise? We assume that the
PMT tag database establishes the entirety of possible pop-
ulations. Although a statistical classification problem is
formally a Bayesian statistical decision problem involving
losses, costs of misclassification, and a priori (prior) prob-
abilities, we will concern ourselves with calculating the
conditional probabilities of coming from each of the pos-
sible populations, given the measurement [8]. These con-
ditional probabilities will reflect our confidence that the
peptides are in the sample analyzed by LC-FTICR-MS. A
peptide is considered to be identified if the conditional
probability is large enough; here, 0.95 is taken to be high
confidence.

To begin our development of the conditional probabili-
ties, suppose M, is the vector of measured mass and nor-
malized elution time of the i-th feature from the LC-
FTICR-MS analysis, M; = (m;, t;). Let 14 = (44, p4;) be the
vector of theoretical mass and elution time from the j-th
record (peptide) of the PMT tag database. The subscripts
m and t denote mass and normalized elution time, respec-
tively.

If we assume that if the i-th feature was the same as the j-
th record, then M, is statistically distributed as a bivariate

Gaussian distribution with mean vector 4 and covariance

matrix %;. As a first-order approximation, suppose that
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mass and normalized elution time are independent, so

that %, is a diagonal matrix with diagonal elements 0',2n]~

and 65 , where these variances reflect the uncertainties in

measured LC-FTICR-MS masses and normalized elution
times.

A standardized distance of the measurement M; to ; is

dij = (M; _:uj),z,;l(Mi - ;)
_ (m; —Hmj)2 (¢ —.Utj)2

+ , 1
=) = (1)

under the assumption of independence between the
measurements of mass and normalized elution time. If we
knew the prior probability 7 that measurements come
from the distribution associated with the j-th record, then
the conditional probability that M; comes from the j-th
record, given the measurement M,, is

mj 125 2 exp(-dj; /2)
SN w15 72 exp(-dy /2))

pij = ( (2)
where N is the number of peptides in the PMT tag data-
base and the determinant [%| = 0',%1]- 0'5. This paper will
compare the results using prior probabilities with the

results assuming equally likely prior probabilities (i.e., 7

= 7, for all j and k), which yields conditional probabilities

(ijcfi )_1 "'Xp(—dij /2)
Zszl(O-mthk ) exp(—dy, /2 ))

pij:( (3)

The prior probabilities in Equation (2) are meant to reflect
the analysts' expectation of observing the particular pep-
tides among the sample's observed LC-FTICR-MS features.
The prior probabilities can account for the likelihood that
proteins are present in the sample and, at a more detailed
level, the detectabilities of the peptides of each protein
(which vary because of mass/charge effects).

If we drop the assumption that the PMT tag database
establishes the entirety of possible peptides in the ana-
lyzed sample, we can admit the possibility that a LC-
FTICR-MS feature is something else when the d;; values are
large for all records in the PMT tag database. Equation (3)
will always assign probabilities, but if d;; is greater than
10.6 (approximately the 99.5th percentile of the chi-
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squared distribution with 2 degrees of freedom), we will
consider the i-th feature as unmatched.

Results

We matched 32 LC-FTICR-MS analyses of a tryptically
digested bovine serum albumin (BSA) sample to a PMT
tag database consisting of 72,962 PMT tags (peptides).
The PMT tag database was constructed by analyzing a tryp-
tically digested sample of a mixture of standard proteins
and peptides 318 times over a ten-month period using
LC-MS/MS. This mixture, containing BSA, 11 other pro-
teins, and 23 peptides, was recently proposed as a quality
assessment standard for use in proteomics studies [9]. In
order to populate the database with false positive results,
the LC-MS/MS data was searched using an organism data-
base file combining both known protein sequences and
sequences from S. Oneidensis (Shewanella). The resulting
PMT tag list contains three distinct types of peptides: 1)
bovine peptides (including BSA), 2) peptides from
known, standard proteins, and 3) false positive
Shewanella peptides (97.1% of the PMT tag list). Thus, the
ability of the methodology to reject spurious matches can
be tested.

The software package SEQUEST [10] was used to identify
candidate peptides for the fragmentation spectra. The
organism database file provided to SEQUEST contained
the sequences of BSA, as well as the other 11 proteins and
23 peptides in the protein standard mixture, 4 variants of
human keratin (a common protein contaminant from
sample preparation), and 14 other standard proteins cho-
sen because they are commonly used in other protein
standard mixtures. In addition, the organism database file
contained the sequences for the 4897 Shewanella proteins
obtained from the sequence repository at TIGR (March
21, 2000). This gave the following distribution of amino
acid residues: 0.27% from bovine peptides, 0.54% from
standard proteins and known contaminants, and 99.2%
from Shewanella and other unexpected proteins.

The SEQUEST search was performed with enzyme rules
turned off, thus allowing partially and non-tryptic pep-
tides to be identified, although nontryptic peptides were
excluded from the PMT tag database. The PMT tag data-
base was populated with the sequences having cross cor-
relation (XCorr) values > 1.9 and delta correlation
(DelCn) values < 0.10. Due to the inherent false positive
rate in the sequences determined by SEQUEST, the pep-
tides that were observed in only one MS/MS fragmenta-
tion spectrum were required to have higher XCorr values:
> 1.9 for 1+ charge species, > 2.2 for 2+ species, and > 3.5
for 3+ species (note that 164,461 MS/MS spectra con-
tained at least one valid peptide vs. 715,724 total MS/MS
spectra). The peptide monoisotopic masses £, in the PMT
tag database were computed theoretically. The normal-
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ized elution times (NETs) z; were determined empirically
from the observed LC-MS/MS elution times (using discri-
minant scores as weights [11]).

The peptides in the PMT tag database were examined for
identification ambiguities: peptides found in multiple
proteins or with similar PMT tags. Only three peptide
sequences were found to be common to two different pro-
tein sources each (one rabbit and two horse peptides were
also Shewanella peptides). One-third of the BSA peptides
(60 out of 179) were close in the standardized distance
metric to some other peptide in the PMT tag database; 57
were close to a Shewanella peptide, one was close to a
peptide from another bovine protein, and one pair of BSA
peptides was close to each other. High-confidence identi-
fication of these 60 BSA peptides is unlikely.

The LC-FTICR-MS analyses were processed using the
PRISM Data Analysis system, a series of software tools
developed in-house. The first step involved deisotoping
the MS data, giving the monoisotopic mass, charge, and
intensity of the major peaks in each mass spectrum. Fol-
lowing this, the data were examined in a two-dimensional
fashion to determine the sets of mass spectral peaks that
make up each peptide's charge-state profile. Each feature
(set of peaks) represents a single component eluting from
the LC column and detected by the mass spectrometer.
The feature's inherent properties are median mass, central
normalized elution time (NET), and an abundance esti-
mate determined using the area of the MS peaks belong-
ing to the most abundant charge state in the feature.
Features with NET values > 0.9 were omitted from analysis
as such features are most likely mass calibration com-
pounds that are infused at the completion of each analy-
sis.

The identity of each of the 69,220 features in the 32 LC-
FTICR-MS analyses of the BSA sample was determined by
comparing the mass and NET of each feature with the
mass and NETs of the 72,962 PMT tags in the database.
The standardized distances of Equation (1) were com-
puted assuming 3 parts per million uncertainty on mass,
that is, g,,;= 0.000003,,;, and setting o; equal to 0.025
added in quadrature to the standard error of the empiri-
cally determined ;. Thus, o reflects the uncertainty of
in the PMT tag database and the LC-FTICR-MS NET meas-
urement error. Three cases were considered in the calcula-
tion of conditional probabilities, the first being our
proposed procedure and two others for comparison.

Case 1: conditional probabilities were calculated using
Equation (2) with prior probabilities set according to
whether or not the PMT was from an expected protein
source with a ratio of 50:1, respectively. The expected
sources for the 32 analyses of the BSA sample were BSA,
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other bovine proteins, trypsin, markers, and common
human contaminants (keratin variants).

Case 2: conditional probabilities were calculated using
Equation (3) with equally likely prior probabilities.

Case 3: like Case 1, but with the Shewanella peptides
removed from the PMT tag database (effectively setting
their prior probabilities to zero and not calculating their
Equation (1) d; value).

At first glance, it would seem that Case 3 would be the
most relevant when analyzing BSA samples: remove from
the PMT tag database those peptides from completely
unexpected sources. However, nearly the same "down-
weighting" can be accomplished using the prior probabil-
ities of Case 1 without completely taking away the
opportunity to find those peptides if they are actually
present. There are quality control reasons for wanting
large PMT tag databases (to detect cross-contamination of
samples, for example). Also, if analyzing unknown sam-
ples, extremely large PMT tag databases are required and
equally likely prior probabilities are used to represent the
lack of information regarding the sample.

Case | results

A large percentage of the features from the 32 LC-FTICR-
MS analyses of the BSA sample went unmatched in the
Case 1 analysis. Of the 69,220 features, 12,287 (17.8%)
passed the d;; < 10.6 threshold for matching. These 12,287
features were matched with one or more of 9290 of the
72,962 PMT tags with conditional probability of match-
ing greater than 1/1000. 7083 features (10.2%) were iden-
tified with high confidence (that is, with a conditional
probability greater than 0.95) and are summarized in
Table 1, leaving 5204 features as ambiguously matched.
Of the 179 BSA PMT tags, 47 were identified in at least 1
of the 32 analyses. While a large proportion of the feature
identifications were with the false positive Shewanella
peptides, 79.7%, those results were generally not repro-
ducible as the peptides were identified on average in just
2.7 of the 32 analyses. Contrast that with the BSA identi-
fications that were identified on average in 14.1 of the 32
analyses. PNNL typically runs samples in triplicate and
applies a "2 out of 3" rule for reporting peptide identifica-
tions. Based on this reporting rule, 13 false positive
Shewanella peptides would be expected to be reported
(that is, with probabilities > 0.87 of being identified in at
least 2 out of 3 analyses), contrasted with 16 expected BSA
peptides. Besides these peptides, of all the other peptides
in the PMT tag database, only 2 peptides from common
human contaminants and 1 marker peptide would be
expected to be reported. While the expected reported
number of false positives is large compared to the
expected reported number of the target BSA peptides, the
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Table I: High confidence peptide identifications across 32 analyses using 50:1 relative prior probabilities.

Protein source (# of PMT tags) Number of PMT tags observed

Average number of identifications feature identifications

BSA (179) 47
Bovine (607) 72
Human (385) 37
Marker (18) 12
Trypsin (24) 6
Shewanella (70,832) 1873
Other (917) 54

14.1 10.4%
2.6 3.0%
4.8 2.8%
6.9 1.3%
6.8 0.6%
2.7 79.7%
2.6 2.2%

false positive rejection is excellent considering 97.1% of
the PMT tags were false positives and 0.2% were the tar-
gets.

Case | results compared to Cases 2 and 3

Summaries of the high confidence BSA peptide identifica-
tions from the Case 2 and Case 3 analyses are presented in
Tables 2 and 3. The Case 2 analysis has the same
unmatched features as Case 1 (82.2%) because the d;; val-
ues of Equation 1 do not depend on the prior probabili-
ties used in the subsequent conditional probability
calculations. The Case 2 analysis identifies 27.7% fewer
BSA peptides across the 32 analyses than the Case 1 anal-
ysis because of the large number of BSA peptides that are
ambiguous with other peptides (mostly Shewanella pep-
tides as mentioned above). The Case 3 analysis leaves a
larger percentage, 97.1%, of the features unmatched
because of the significantly smaller PMT tag database.
However, nearly all (99.2%) of the matches are high con-
fidence and 14.9% more BSA peptides are identified
across the 32 analyses because the ambiguous Shewanella
peptides are removed from consideration. When BSA fea-
ture matches with conditional probabilities > 0.6 are con-
sidered, there is 98.5% agreement between the Case 1 and
Case 3 analyses (685 features out of 696 and 695 features,
respectively).

The average number of analyses in which PMT tags were
identified was similar across analysis cases. Considering
the "2 out of 3" reporting rule, for the Case 2 analysis, 10
BSA, 13 Shewanella, 2 human keratin, and 1 marker pep-
tides would be expected to be reported. For the Case 3

analysis, 17 BSA, 1 bovine, 1 E. coli, 2 human keratin, and
1 marker peptide would be expected to be reported.

Conclusion

Validation of the estimation of conditional probabilities
is difficult because of the lack of ground truth: protein
samples deemed to be pure often contain 10% impurities/
contaminants while peptide digestion can be incomplete
resulting in missed cleavages.

The use of prior probabilities set to contrast peptides from
expected/unexpected proteins was shown to perform bet-
ter in identifying target peptides than using equally likely
prior probabilities. This is because a large percentage of
the target peptides (BSA) were similar in PMT tag space to
unexpected peptides (Shewanella) which were chosen to
be false positives in the PMT tag database. Equally likely
prior probabilities would perform well when there is little
or no overlap. When using the contrasting prior probabil-
ities, a large percentage, 81.9%, of our high confidence
feature identifications were of peptides from unexpected
sources (false positives). Using equally likely prior proba-
bilities was only a bit worse with 86.1% unexpected iden-
tifications. However, in both cases, these unexpected
identifications were not reproducible, appearing in less
than 3 out of 32 analyses on average.

The completeness of the PMT tag database is also an issue,
as 82.3% of the features were unmatched, that is, were not
close to any of the PMT tags in the monoisotopic mass/
normalized elution time space. However, this matching
rate is similar to that of other PMT tag database search
procedures.

Table 2: High confidence peptide identifications across 32 analyses using equally likely prior probabilities.

Protein source (# of PMT tags) Number of PMT tags observed

Average number of identifications feature identifications

BSA (179) 34
Bovine (607) 54
Human (385) 28
Marker (18) 12
Trypsin (24) 2
Shewanella (70,832) 1892
Other (917) 54

13.8 7.6%
28 2.4%
5.3 2.4%
6.7 1.3%
35 0.1%
2.7 83.9%
2.6 2.2%
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Table 3: High confidence peptide identifications across 32 analyses using 50:1 relative prior probabilities without the Shewanella

peptides in the PMT tag database

Protein source (# of PMT tags) Number of PMT tags observed

Average number of identifications feature identifications

BSA (179) 54
Bovine (607) 94
Human (385) 41
Marker (18) 12
Trypsin (24) 6
Other (917) 105

Examination of the proteins to which the matched pep-
tides belong could be used to improve the computed con-
ditional probability. For example, the probability for
those peptides derived from proteins with multiple pep-
tide matches should be higher than that for those peptides
derived from proteins with single or few peptide matches.
While we took into account the uncertainty of the empir-
ically determined elution times, one might also incorpo-
rate into the matching procedure the SEQUEST XCorr or
any other quality of identification score for the peptides in
the PMT tag database. Finally, comparison of the observed
NET with the predicted NET for the peptide [12] could
lead to a further improvement in the utility of the condi-
tional probabilities.
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