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Abstract
Background: Honey bee (Apis mellifera) workers are characterized by complex social behavior.
Their life-history is dominated by a period of within-nest activity followed by a phase of long-
distance flights and foraging. General insights into insect metabolism imply that foraging onset is
associated with fundamental metabolic changes, and theory on social evolution suggests metabolic
adaptations that are advantageous for the colony as a whole.

Results: Here we address the life-history characteristics of workers with LC-MS/MS based relative
quantification of major proteins. Our approach includes: i. Calculation of a false positive rate for
the identifications, ii. Support of relative protein quantification results obtained from spectral count
by non-parametric statistics, and iii. Correction for Type 1 error inflation using a bootstrap
iteration analysis. Our data are consistent with the use of glucose as the main fuel for honey bee
flight. Moreover, the data delivers information on the expression of ATPsynthases/ATPases, and
provide new insights into nurse- and forager-specific patterns of protection against oxidative stress.

Conclusion: The results show the suitability of this approach to investigate fundamental
biochemical changes in an insect, and provide new evidence for metabolic specializations that occur
during the social ontogeny of worker honey bees.

Background
Studies of the biochemistry of life-history progression
provide insights into the dynamic properties of biological
systems, including metabolic change [1]. A fundamental
step in evolution was the emergence of social life, as
exemplified by social insects [2]. The best-studied insect
model in sociobiology is the honey bee, which has proven
useful for understanding regulatory changes that may
have occurred during social evolution [3-7]. Work on
honey bee life-history progression has focused on the
transition from nest-tasks to flight activity and foraging, a
behavioral shift characteristic of the caste of facultative

sterile worker females (reviewed by [8]). Several studies
have demonstrated changes in brain mRNA levels when
worker bees shift from working in the nest to foraging
flights approximately 2–3 weeks after adult emergence [9-
12]. Differences are found for genes involved in signal
transduction and primary metabolism [13], but mRNA
expression does not always correlate with protein concen-
trations and metabolic state [14-17].

Enzyme activity measurements and flux analyses on
worker bees, including studies of hexokinase, phosphof-
ructokinase, glyceraldehyde-3-phosphate-dehydrogenase,
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citrate synthase and cytochrome oxidase, indicate that oxi-
dation of carbohydrates is the primary energy source used
for foraging flights (e.g. [18-20]. Also, recent use of a 2d-
gel based proteomic approach in combination with
enzyme assays point to metabolic changes in honey bee
thorax muscle that can increase flight ability after foraging
onset (increase in troponin T 10a and citrate synthase,
[21]). We address this important life-history transition by
using an electrospray tandem mass spectrometry
approach for relative quantification of the whole-body
proteome of nest workers and foragers. A common argu-
ment against whole-body analyses is that the contribu-
tions of different organs or tissue types to the overall
pattern are unclear. Yet whole-body analyses have pro-
vided fundamental insights into key biological processes
like aging, development, and immunity (e.g. [22-24]:
They focus quantitatively on the most important changes
in the organism as a whole, and complement more tar-
geted tissue- or organ-specific profiling methods.

Although not routine, recent descriptions of some honey
bee subproteomes (subset of the whole proteome of an
organism, i.e. royal jelly proteome, bee venome pro-
teome, hypopharyngeal gland proteome, haemolymph
proteome), prove that proteomic research on honey bees
using mass spectrometry is feasible [25-28]. Our approach
included an estimate of the false positive rate, non-para-
metric statistics, and iterative correction against Type 1
error inflation. In total, 113 proteins were identified and
47 of them quantified by our approach. Levels of 15 pro-
teins diverged significantly between nest workers and for-
agers. Our data are consistent with the use of glucose as
the main fuel for honey bee flight. Moreover, the data
delivers information on the expression of ATPsynthases/
ATPases, and provide new insights into nurse- and for-
ager-specific patters of protection against oxidative stress.

Results and discussion
Methodology setup and validation
Experimental manipulation and data analysis at a sys-
temic, whole body level can readily increase our knowl-
edge about living organisms. This principle is apparent
e.g. when looking at the outcome of systemic RNA inter-
ference approaches (e.g. [29,30]). Here, tissue specific
effects are not well defined but global response can be
monitored and understood. If differences can be observed
on the whole-organism level they are likely to be substan-
tial, as they are robust to deflation by combining body
compartments. Further, although separating an organism
into its parts can help to clarify how contributions of dif-
ferent tissues translate into global patterns, the data can-
not easily be added up to the overall pattern of any
protein. This is because background matrix will vary from
tissue to tissue and might impair quantification itself.
Therefore, whole body analyses can contribute in a

unique way to increase our knowledge about biochemical
changes during honey bee ontogeny.

Our approach consists of a protein extraction step, fol-
lowed by protein digestion, separation of peptides via
HPLC and characterization of the proteins by mass spec-
trometry. We were able to identify 113 proteins and sev-
eral hundred peptides with this approach [see Additional
files 1 and 2]. Relative quantification is accomplished by
spectrum count where the spectra that are identified for
any given protein in one sample are counted and this
value is compared to the value obtained for the same pro-
tein in another sample [31-35]. Thus, every quantified
protein was identified several times leading to a high reli-
ability of identification.

In our experiment, actin showed the most stable protein
quantity over all samples and was used for standardiza-
tion. Use of honey bee actin for relative quantification is
also common in mRNA expression studies (e.g., [3]). We
further validated our approach to data handling by stand-
ardization toward the overall spectral count obtained for
each sample. Statistics were in good agreement between
these two methods of correction [see Additional file 1],
and even without standardization more than 75% of the
observed differences in protein expression remained (data
not shown). Our analysis, therefore, is both reproducible
and robust, and in the following we report the results
based on correction toward actin. Of the 47 quantifiable
proteins, 15 were expressed at significantly different levels
in nest bees and foragers [as determined by Mann-Whit-
ney U-test, P < 0.05, n = 12, see Additional file 1]. A hier-
archical clustering analysis computed on the quantifiable
proteins revealed distinct clustering of behavioral groups
with one exception [Figure 1]. Surprisingly, one forager
clusters much closer to the nest bees than to the other for-
ager bees. This could be because the respective bee was on
the verge of changing its tasks (bees in this study were of
unknown age) what would imply that some physiological
features of the nest bee stage are retained in young forag-
ers and that there is a gradual rather than an abrupt
change in the expression pattern of some proteins when
bees change from in-hive tasks to foraging.

Glucose consumption
The main task of foragers is to provide the colony with
nectar and pollen. Consequently, one of their major
behavioral characteristics is long-distance flights for the
purpose of food collection. There is current agreement
that honey bee flight is predominately fueled through
hexose sugars [20,36]. Thereby, primarily glucose is used
to produce ATP and NADH necessary for the exhaustive
demands of the flight process. The bee thorax is largely
dominated by flight muscle tissue [37], and proteins of
the thorax make up a major fraction of total bee protein
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[38]. In addition, metabolic rate during flight is much
higher than during non-flight activities [39], and activities
of glycolytic enzymes increase from the nest bee stage to
the forager stage [40]. These observations led us to expect
that in honey bees the concentrations of proteins in the
major pathways of ATP production and use can reflect
flight muscle contents, and that they should be higher in
foragers than in nest bees. This higher level would indicate
a major physiological adaptation associated with the shift
in social behavior from nest tasks to intense flight activity.

In accordance with this prediction, we found that proteins
similar to the glycolytic enzymes fructose-1,6-bisphos-
phate aldolase, glyceraldehyde-3-phosphate-dehydroge-
nase (GAPDH) and enolase are significantly elevated in
foragers [Fig. 2].

Food synthesis and processing
Nest bees and foragers have different provisioning func-
tions. Nest bees care for the brood and queen, whereas
foragers bring in the resources needed for colony growth
and reproduction. Unlike foragers, nest bees synthesize
proteinaceous jelly in a set of paired acinous head glands
(hypopharyngeal glands), and these secretions are fed to
the brood and to other adult bees including foragers [41].

A family of proteins specific to jelly are the major royal
jelly proteins [42,43]. In general, the bee's biology of jelly
synthesis and transfer matches well with our finding of
higher values for a major royal jelly protein in nest bees
compared to foragers [see Additional file 1]. We also
observed that a protein similar to a transketolase, which is
an important enzyme in the pentosephosphate-pathway,
is downregulated in foragers [Fig. 2]. One of the major
functions of this pathway is the production of NADPH
and building blocks that can be used in biosynthetic reac-
tions [44]. This may point to a more important role of
reactions involving NADPH in nest bees compared to for-
agers.

To fuel flight, foragers must utilize high energy containing
food. Their capacity of glycolysis appears to be upregu-
lated compared to nest bees (described above). However,
we reasoned that enzymes involved in sugar uptake and
processing would also be upregulated. Interestingly, a
protein highly similar to an alpha-glucosidase, a protein
that is involved in the processing of disaccharides to glu-
cose, shows higher levels in foragers [see Additional file
1]. This result agrees well with previous reports by Kubo et
al. on elevated levels of alpha-glucosidase mRNA and pro-
tein in foragers [45-47]. We conclude that our observa-
tions generally agree with a higher capacity of sugar
processing and NADH production in foraging honey bees.

Citric acid cycle enzymes
Pyruvate produced by glycolysis is converted to acetyl-
CoA and enters the citric acid cycle, which serves further
production of reduction equivalents and biosynthetic pre-
cursors. On an organismal level, our data suggest that the
dynamics of the honey bee citric acid cycle enzymes are
complex. While a malate dehydrogenase-like protein is
upregulated in foragers, the amounts of other enzymes of
the cycle including an isocitrate dehydrogenase-like pro-
tein and a protein similar to oxoglutarate dehydrogenase
remained seemingly unchanged [see Additional file 1].
These results suggest that some enzymes of the citric acid
cycle can be regulated by metabolites or posttranslational
modifications rather than on the level of enzyme amount
[48], that higher expression levels in one tissue are accom-
panied by lower expression levels in another tissue, that
differences were too subtle to be detected by the method
we used, and/or that malate dehydrogenase has an addi-
tional role besides its involvement in the citric acid cycle,
e.g. its function in an aspartate/malate shuttle [49]. Inter-
estingly, Sacktor et al. reported a sharp increase of malate
concentration at the beginning of flight in blowfly while
levels of citrate, oxaloacetate and α-ketoglutarate
remained seemingly unchanged [50]. However, no
explanatory framework was provided with their observa-
tion.

Result of a hierarchical clustering analysis computed on quan-tifiable proteinsFigure 1
Result of a hierarchical clustering analysis computed on quan-
tifiable proteins.
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One major consumer of NADH generated by glycolysis
and the citric acid cycle is the mitochondrial respiratory
chain. While electrons are transported from NADH to
oxygen, an electrochemical gradient is build up over the
inner mitochondrial membrane. This gradient in turn is
used to drive the generation of ATP by ATPsynthases.
These proteins, accordingly, play a key role in production
of ATP. As muscle activity depends largely on the availa-
bility of ATP, and as an increase in mitochondria and
cytochromes from young nest bees to older foragers was
reported by Herold and coworkers [51,52], we expected
higher levels of respiratory chain enzymes in foragers. The
lack of differences in cytochrome c-levels (a protein of the
mitochondrial respiratory chain) was thus surprising.
Notably, the overall spectrum count for cytochrome c was
low, and therefore the lack of differences between nest

bees and foragers could to be due to methodological lim-
itations. A change in the protein extraction technique
could enable improved insight into these dynamics in
future analyses.

Enzymes related to ATP generation and consumption
ATPsynthase subunit homologs were more abundant in
foragers, in accordance with foragers having larger ATP
production capacities than nest bees [Fig. 3].

In contrast, levels of proteins similar to the subunits of a
v-type ATPase remained unchanged [Fig. 3]. V-type
ATPases are structurally similar to mitochondrial ATP syn-
thases but serve other functions [53]. Instead of generat-
ing ATP, they establish and maintain an electrochemical
gradient over plasma membranes under the consumption

Box-and-whisker-plots of selected proteins associated with glucose processing Boxes represent 25–75% percentiles of the data, outliers are marked as open circlesFigure 2
Box-and-whisker-plots of selected proteins associated with glucose processing Boxes represent 25–75% percentiles of the 
data, outliers are marked as open circles. * denotes significant differences between nest bees and foragers, for p-values see 
Additional file 1. Aldolase: fructose-1-6-bisphosphate aldolase, GAPDH: glyceraldehyde-3-phosphate-dehydrogenase. Spectrum 
countcorr: spectrum count corrected for actin.
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Box-and-whisker-plots of proteins homologues to ATPases/synthasesFigure 3
Box-and-whisker-plots of proteins homologues to ATPases/synthases. Boxes represent 25–75% percentiles of the data, out-
liers are marked as open circles. * denotes significant differences between nest bees and foragers, for p-values see Additional 
file 1. Left: subunits (su) of the mitochondrial ATPsynthase. Right: subunits (su) of a v-type ATPase. Spectrum countcorr: spec-
trum count corrected for actin.
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of ATP [54]. Our data indicate that v-type ATPases are
equally important for both nest and forager bees and may
illustrate how two structurally similar proteins (mATPsyn-
thase and vATPase) can differ profoundly in their roles in
life-history transitions.

The data discussed so far suggest that in foragers a whole
pathway involved in the processing of glucose and the
generation of ATP and NADH is optimized to meet the
demands of the energy consuming flight process. How-
ever, we also observed differences that can not be
explained by this line of argument. Arginine kinase, for
example, converts arginine plus ATP into phosphoargine
plus ADP and vice versa [55], and can be used to control
the ATP resources and rapidly release ATP when necessary.
Indeed, a highly related protein (creatine kinase) is one of
the major players in muscle contraction and maintenance
of ATP/ADP balance in mammals [56,57]. Arginine kinase
activity has been reported in insect flight muscle and its
role in maintaining high levels of ATP at the sites of mus-
cle contraction has been discussed [58-60]. Thus, higher
arginine kinase activities are often associated with greater
locomotory performance. Based on these findings, one
could assume that foragers – in constant demand for rap-
idly released energy, for maintenance of adequate ATP/
ADP ratios during flight, and with greater locomotory per-
formance – have higher levels of arginine kinase. Yet we
found that arginine kinase levels are significantly higher
in nest bees [see Additional file 1]. A possible explanation
is that nest workers, which perform defecation flights and
also use flight muscle contraction to maintain optimal
nest temperature (fanning, warming), utilize more energy
phosphates than foragers as their oxidative catabolic path-
ways may not yet be optimized for flight. However,
arginine kinase mRNA is highly expressed in honey bee
tissues other than the thorax (head, abdomen) [61], and
thus the contribution of flight muscle arginine kinase to
whole-body patterns are likely confounded by other
sources. Ubiquitous distribution of arginine kinase might
suggest its involvement in a synthetic redox/shuttle mech-
anism that is common to many tissue types.

Reactive oxygen defense
One class of proteins that in honey bees appears to deviate
from general biochemical reasoning [7,62] is involved in
protection against reactive oxygen species (ROS). A major
threat for organisms that depend on oxygen for metabo-
lism is production of ROS that cause oxidative damage to
cellular components. Due to a high demand for oxygen
during flight and, thereby, an assumed increase in ROS
and a documented increase in oxidative damage [63]; one
might reason that foragers generally invest in higher levels
of proteins involved in ROS protection. Interestingly, at
the whole-organism level we found no general bias of the
relative abundance of proteins putatively involved in the

protection against oxidative stress in foragers compared to
nest bees [Fig. 4].

Levels of CuZn superoxide dismutase and of a peroxire-
doxin-like protein were observed to be at least 3-fold
higher in foragers. Homologs of these proteins have been
shown to protect mammalian muscle from oxidative
damage and this might also be true in honey bees [64].
Other enzymes commonly associated with ROS protec-
tion are catalase and thioredoxin reductase, but their lev-
els remained unchanged in foragers [Fig. 4 and Additional
file 1]. In sharp contrast, glutathione-s-transferase (GST)
levels, another enzyme involved in the response against
oxidative stress and in detoxification but also in synthetic
pathways [65], were at least 7-fold higher in nest bees. For
some insects age-related decrease of GST activities and lev-
els have been reported previously [66-68]. Studies on
GSTs in honey bees revealed a complex influence of sev-
eral parameters on GST activity including colony size,
brood/adult ratio [69], insecticide treatment, tempera-
ture, and starvation [70]. Smirle and Winston reported
that the total detoxification capacity related to GST and
mixed function oxidases was lower in forager midguts
compared to nest bee midguts [71]. However, since the
enzyme activity per milligram midgut protein was higher
in foragers, they stated that foragers account for loss of
GST levels to some extent by increasing GST activity.

Proteins involved in the defense against ROS have major
effects on longevity in many if not all organisms [72,73].
It has been suggested that lack of sufficient ROS defense
mechanisms in foragers reflects reduced somatic mainte-
nance, that this reduced maintenance conserves energetic
resources at the colony level, and that it in part is respon-
sible for rapid somatic decline in foraging bees [63]. In a
recent study, our group showed that nest bees in compar-
ison with foragers are more tolerant to the ROS inducing
agent paraquat [7]. This effect was directly and positively
linked to the circulating vitellogenin protein levels in the
respective bees, and vitellogenin was shown to exhibit
characteristic antioxidant function by being preferentially
carbonylated by ROS. In the present study we were unable
to quantify vitellogenin, although a possible peptide from
this protein was detected [see Additional file 2]. This ina-
bility to quantify vitellogenin is likely due to relatively low
whole-body abundance in the sampled bees. However,
our proteomic data suggest that other compounds like
GST might contribute to the higher ROS tolerance of nest
bees, and that protection mechanisms in foragers may be
limited to proteins indispensable for their foraging per-
formance, as we have suggested previously [74-76].

Conclusion
In this study we compare the overall protein profiles of
honey bee nest workers and foragers. The resulting data
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provide new biochemical insights into the major adult
life-history transition of this social insect, although they
do not permit the separation of behavioral and age effects.
Our findings should encourage future studies on tissue-
specific profiles that ultimately can reveal how different
parts of the body contribute to the overall proteomic pro-
file, and also show how each tissue contributes to major
biochemical processes.

Methods
Chemicals
Unless indicated otherwise, chemicals were obtained
from Sigma-Aldrich (St. Louis, USA) and Roche (Indiana-
polis, USA).

Bee sampling and protein extraction
Nest workers and foragers were collected from 2 wild type
(unselected) honey bee colonies in the apiary of Arizona
State University. Bees were sampled based on established
behavioral assays: nest workers were collected in the
brood nest while inserting their head into cells containing
larvae (performing nursing behavior) [77], and foragers
were collected at the hive entrances when returning from
foraging flights [78]. Nectar and/or pollen loads were
determined to confirm forager identity. Bees where then
frozen in liquid nitrogen, and stored at -80°C until fur-
ther use. Protein extraction was essentially performed as
described in [79]. Briefly, a protein extraction mixture
containing 50 mM hepes pH 7.5, 6 M urea, 40% sucrose,

Box-and-whisker-plots of proteins homologues to proteins putatively involved in oxygen stress responseFigure 4
Box-and-whisker-plots of proteins homologues to proteins putatively involved in oxygen stress response. Boxes represent 25–
75% percentiles of the data, outliers are marked as open circles. * denotes significant differences between nest bees and forag-
ers, for p-values see Additional file 1. CuZn SOD: CuZn superoxide dismutase. GST: glutathione-s-transferase. Spectrum 
countcorr: spectrum count corrected for actin.
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1% β-mercaptoethanol, and 60 mM sodium fluoride (300
μl/bee) as well as tris buffered phenol (900 μl/bee) was
added and bees were ground in this mixture at room tem-
perature followed by incubation at 4°C for 15 min on a
sample rotator. Subsequently, samples were centrifuged at
12.000 rpm for 5 min, and 300 μl of the upper phase were
precipitated with ice-cold acetone at -20°C over night. On
the following day the samples were centrifuged for 5 min
at 10.000 rpm and the pellet was washed twice with 300
μl ice-cold methanol each. Finally, pellets were dried at RT
for 20 min.

Protein digestion and sample preparation for HPLC
For tryptic digestion protein pellets were first redissolved
in 50 μl of a dissolvation buffer containing 50 mM ammo-
niumbicarbonate, 8 M urea, and 1 mM CaCl2. Then, 150
μl of digestion buffer (50 mM ammoniumbicarbonate, 1
mM CaCl2) and 2 μl of a 0.5 μg/μl trypsin solution
(trypsin in 1 mM HCl) were added and proteins were
incubated over night at 37°C. Samples were desalted on
the next day using C18 extraction plates (3 M empore, St.
Paul, USA) following the instructions provided in the
manual. Desalted peptides were dried in a speed vacuum
device and stored at -20°C until further use.

HPLC and mass spectrometry
Dried peptides were redissolved in 8 μl of 5% acetonitrile,
2% TFA of which 6 μl were used for analyses. Peptides
were separated on a monolithic column (100 μm ID,
Merck, Darmstadt, Germany) using a 95 min gradient
ranging from 95% A (0.1% formic acid, 99.9% H2O) to
80% B (0.1% formic acid, 99.9% acetonitrile) followed by
a 15 min equilibration step. Peptides were eluted from the
reversed phase μLC column directly into an LTQ mass
spectrometer (Thermo, San Diego, USA). The isolation
window was set to 3 m/z, collision energy to 35, and the
activation time to 30 ms. MS2 was triggered for the three
most abundant peaks in each MS spectrum. Using the
open source search tool OMSSA [80] the spectra were
matched against an A. mellifera sequence database
retrieved from the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA) containing
additional trypsin and keratin sequences. The following
criteria were used: 0.8 Da fragment tolerance, 2.0 Da pre-
cursor tolerance [81], maximum of 2 missed cleavages,
only tryptic sequences allowed, only one hit per peptide
reported (only the best hit for a given spectrum with a
given scan number was shown), variable modifications:
methionine oxidation.

To assess the rate of false positive identifications and to
obtain an adequate e-value cutoff, peptides were also
searched against a database containing the same
sequences as the original database but in reversed order.
False positive spectra were determined to make up less

than 1% at an e-value of 1 (evalue -he 1), which was used
in all analyses. In addition, a protein hit was only
accepted if at least three spectra were obtained represent-
ing two distinct peptides or one single peptide if it repre-
sented more than 20% of the protein sequence and
displayed an e-value of at least 0.1. Using these additional
criteria no false positive protein hits were identified in a
reverse database search. When hits with ambiguous iden-
tifications were obtained due to the presently unfinished
annotation of the A. mellifera genome, affiliation of the
identified peptides to certain proteins was ascertained
using BLAST [82]. Proteins were quantified using spec-
trum count, which delivers an estimate for relative quan-
tification [31,32,35]. For standardization purposes it was
determined which of the proteins displayed the lowest
variation throughout all samples. The individual values
for this protein were then used to correct protein values by
dividing each protein value by the "standard protein"
value for the respective sample. In addition, we calculated
ratios of individual spectral count of every quantified pro-
tein divided by the overall spectral count for every sample.
This leads to normalized values that are corrected for over-
all protein amount. Proteins were only quantified, if
accepted (criteria for acceptance as described) in at least
four of the six measured samples belonging to one sample
group (hive bee or forager). In the remaining samples
where no peptides were found for the respective proteins,
an arbitrary value of 0.1 was used for quantification calcu-
lations.

Statistics
Of 113 proteins identified, 47 met the criteria for quanti-
fication (n = 12, 6 nest bees and 6 foragers, one run each).
Of these 47, data for 4 proteins did not conform to
assumptions of ANOVA, as determined by Hartley-
Cochran-Bartlett and the Levene's test. Therefore, the non-
parametric Mann-Whitney U-test was used to test for sig-
nificant differences between nest bees and foragers. To
control the Type 1 error rate, 1000 bootstrap iterations
were run for each protein using values corrected for actin
amounts (see Results and Discussion). During one itera-
tion, 6 expression values were randomly assigned to each
of two groups, and a P-value calculated using the Mann-
Whitney U-test. The 1000 P-values were subsequently
sorted in ascending order, and the bootstrap cut-off value
of the 5% lower tail was determined for the P-value distri-
bution. This cut-off was > 0.13 for all the examined pro-
teins, which implies that our report of significance at an
alpha level of 0.05 is not associated with inflation of Type
1 error. The analysis was conducted with Statistica 6.0.
The bootstrap algorithm was written in MatLab 6.5.

The hierarchical clustering analysis was conducted on the
actin normalized values of the quantifiable proteins.
Euclidean distance and average linkage clustering was
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used to visualize sample groups with common features
(TIGR Multiexperiment Viewer version 4.0 b [83]).
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